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1.1. Sincé the plastic strain is one quartfér of the e‘lasticv str‘éin, the 'total
strain at the yield point is
€ = €e+€p=%ee =%

and the stress/strain equation gives

v (2]
180 | LIE
[Y 0.75__1—_[_5_ 0.25
or E T 180 (L
.1__1_”/3 sYY/3 1 (1 )3 | 1
or E_ | 180 i = 180 | ILL - 9L3 ¢

The true strain at instability is €=0.25, while the true and nominal stres-
ses at instability are given by »

1]

0.25 :

e € = 3,71 9% = 0,89 .

1]
I
=la
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]
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1.2, The engineering strain at the onset of instability is given by the instzanbili-f
ty condition

45 _ 4 (g en) =00 . _O_
de de (C et) e l+e
or (L+e)ln=e, or e=n/(1l-n)
1 . 1
and € =2n(l+e) = 2n {1———] s which exceeds Q,n[ ]When e<n.
-n l-e

Since the magnitude of the total true strain at instability must be equal to
¢n{1/(1-n)}, ‘

n

1 L2 _ 1
l-e+2'n2«1_£n[ ]

where 21 is the length of the bar at the end of compression, and %2 the length
at instability. Then

where %5 is the initial length of the bar.

1.3. According to the Voce equation, the instability condition is

%—g— = agg{c(l—m e D) }=cmn e = n(c-0)
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and the onset of instability corresponds to

n(C-0) =0, or G=Cn/-;(1+n) .

ne _ Cm _ n =
Hence, e =5 =1 [l— l+n} m(1+n)
1
and € =-I;5Ln[m(l+n)] , m(l+n)z 0.

When m(1 +n) <1, the instability strain is zero for a rigid/plastic bar. In-
troducing ¥,

C(1-m e™0€) = C{l—mé(%]n}

C{(l-m)+m [1 - [%ﬁ]n]} = C(l-m+11;n€¥) .

The stress-strain curve is thus linearized. Note that when n=0, €%= n(L/%)=¢

o

1.k, The total compressive load at any stage is

P;oA=oAO[I;1—°}=oAO/(1-e) .

Since de=de/(1l-e) in compression, the differentiation of the above equatioﬁ

gives
@ _ b a0, oh _ A (a0
de  (L-e)2 ae + (1-e)2 " (1-e)2 [de + 0]

a’p Ao d*c | 4o 28 [do
= + — | + -+ .
de (1-e)3 [dez. de (1-e)? |ae  °
Hence, at the point of inflection (a%P/ae?=0),
e}

‘do
a?+3gz+ec=o.

The empirical stress-strain equation o= Cel' gives

do _no d%°c _n 'dd n Y
de € ° dZ € de €2 —n(n'l)?—'

Hence the point of inflection corresponds

falazd) 3.0} -

or 2¢2+3ne-n(l-n)=0

or €=-]ﬁ[—3n+|/n(8+n5]

Thus, € >n corresponds to Ya(8+n) > Tn, or 8n+n?>4on?, or n<1/6.
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:1.5, The nominal compressive stress at any stage is

Ao

By successive differentiation, we get

ds _ [dc + 0} exp(e)

S="E‘='E[hTO]=0eXP(€) .

de de
a%s a%g a0
acz - [dez * 23 ac T ]exP(E) °

The point of inflection corresponds to a%s/ae? =0, or

2
d%c do _[a -
dEZ+.2d€+0'--[d€+1] g=0
n(n-1) _

or {———gf— Sy +1}0—0

or e2+2ne-n(l-n) =0, or €= +V/n-n.

The inflection strain will exceed the uniaxial instability strain if vn-n >n,
or n<0.25.

1.6. The differentiation of the Ramberg-Osgood equation furnishes

%(EJ(l-n)/n '
n

de _ 1
ac " E T

al-

at the onset of instability in simple tension.

Since E >>0, we have

3009 1/n5 1, or 9 . |InE ;
TnE | 0o ? 0o |3 99
.9 {7nE)", 300 (1nE
and € E{SOO] TE [_3 oo]
1-n
- Tn Oo
o cmne (2] (%)
When n=0.05 and 0p/E =0.002, the instability strain is
. 0.05
€ = 0,05 + [-O?)i] (0.0(532)0'95 = 0.0525

the percentage error being 0.25/(0.0325) = 4, 8%.
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1.7. ‘ If plastic instability occurs simul-
- taneously in the three bars, the true
strain is n; in the central bar and
ns in the inclined bars at instabili-
ty. If 0 is displaced to 0' at the

point of necking, then from geometry,

0'B= e N

O'A = 0'C = R e™? secVy.

From geometry,

22tan?Y=AB%=0'A2-0'B?

=22(e2n2 2n3 )

sec?y-e

or 2P _1 = (M2 1)sec?y

Jexp(onp) = 1
exp(2n1) - 1

or - cosy =

1.8. During a small deformation produced by a vertical load P at O, the strains
in the vertical and inclined bars are

_S8cosy _ % cos2y

€ =
? 2 L secy

=lo

€1 =

respectively. When all the bars are plastic, the corresponding stresses are

n n
Y [%—%] , Oz =Y [%?; coszw]

Hence the applied load is

Oy

P = A(o; +2 02 cosy)

P _ (B8)" on+l
or i [YSL] (1+2 cos™  ~ )

which holds for €2 2 Y/E, or E§/YR 2 séczlp. When only the vertical bar is
plastic, the stresses are ~

o] Y [%%] R O2 =§£— ccszw .

2 _ [E8)" £ 3
Hence N {Yﬂ,) +2(Y2]C§SW

which holds for €1 2 Y/E and €2 < i’/E. Therefore, the restriction is
1< ES/YL € sec®P. -The results corresponding to Y = w/L and n = 0.25 are
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ES/Y8 | 1.0 1.5 2.0 3.0 4.0 5.0

P/AY 1.707 2,167 | 2.603 2.881 3.096 3.276

R Sl A CEE HEEEE ~
1.9. Equating the total work corresponding to
the stress-strain equations,

ol e

€o o 4
[ (Y+He)de=C [ e ae
0 0

1 __GC _
or Yeo+3HE =177 o =

or 2Y+H gg =2 0o/(1+n)

The second condition furnishes the rela-

tion
n €0 n  H€o.
(Y +Heg) - Cgg =2{C(—é-] —[Y +—2—]} 0
————— £ ‘80
_ n l-n, _ l-n '

or 3¥+2Hey = C gy (L4277 7) = gp(1+2777) (b)
Solving (a) and (b) for Y and H, we have

= 3-n 1-n .= l1-n 2-n

v=o, (3522 ] Héeo—QOO(z -1+n].
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The maximum percentage error in the linear approximation over the range AB
corresponds to

_d_(l _ Y+He] _ zH+ (Y+He)(n/e) _

de cel C&:nE

or €= [lfn] % ¢ |
Hence Y +He =.1‘En=10.?n[?.;§— 2l_n}
and ce® = gy ['{%]n= % [lfn]n (H'Y€0Jn

o n n n
n 3-n 1l-n 1-n 2=-n
o(25) (-] (2 -4))

Setting n = 0.3, we get
Y+He = % (2—1 - 20'7] = Qau52hk 0p = 0.6463 oy

0.7T11.3 0.7
}}0.3

] (100) = 7.8% .

—3

1

[}
w

0.3 . .
ce® = q, [—?—] (0.1524)0+3 {2[20‘7 - L

g0 (0.3060)%°3 = 0.7010 9

'0.6463

and the percentage error 1s (1 ~ 0.7010

'1.10. Let r denote the current mean radius of the
’ ring and t the current thickness, When the
angular velocity is w, the centrifugal force
acting in an element of the ring is

F=pwr(trdd) = pw?r?tad .

For radial equilibrium, F = t0d®, or )\jf‘
| | [

o=pwtr?. ¢ \ / to
do dw _ dr’ ‘b
= = —_— = /
Hence = 2 [ o T T } . A 4
Since dw=0 at the onset of instabiliity, we \/
have
do _ ao _
5 - 2de , or e 20

where 0 is the uniaxial stress acting in the ring cirecumferentially, and €
the corresponding strain. Since do/de =,,,PO/ € by the given power law, €=n/2

6
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at instability. The maximum angular velocity is given by

n
pw?rd = o(re/r)? = cele™® = ¢ (%} e

él.ll. In a thin spherical shell under an internal pressure p, the non-zero princi-
' pal stresses are each equal to 0. Thus

= - =Ex.—
0g = O = 0 = 5¢

where r is the current mean radius and t the current thickness. The compo-
nents of the strain increment are

der=-q£=—de, dee=de¢=%£=

T de .

o=

Since dp =0 at the onset of instability,

do _dp  dr _dt _3
o] p+r t 2d€

and the instability condition becomes

The empirical equation 0 =Cel! gives n o/e=3 c/2, or € = n at instability,

and the corresponding thickness and radius are

w|r

ct
1]

toe™F= t, exp (- % n]

Hence, the bursting pressure is given by

myea n
3=20t=20toe—n=2tg _2_n B
C Cr Crqy ro |3

1.12. Let the longitudinal tensile stressesi existing in the inner and outer cylin--
i ders, having cross-sectional areas A; and A, respectively, be denoted by o3
and 02, Then the resultant a ial tension is

= A101 + A2
Hence —[Al—-+01—" 5+[ﬁ2 3 + 02 i ]

where € is the longitudinal strain in the composite bar of length 2. Since
A% and AsQ are constants by the constancy of volume,
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and A»/A; remains constant during the deformation. At the load maximum,

dP =0, giving

_ doa | doa
0 "Al[de - Gl}"“;( dc 02]
- mo_ ny _
o (2 - 1)+ saoa (2 - 1]
or e =’A101‘n1 + A302n2 - nj + ns
A101 + A202 2

1.13.

if A101 =A202

A _01 _ G m-n2

at instability. Then
_a (___m + 1

ni=-ns
Co 2 ] ‘

N
Q
N

| Let ro be initial radius to an element
that is currently at a distance z from

the outer edge of the lip. In view of
the incompressibility of the material,

2matdz

2mrg te drg

or dz/dry = roto/at .

Since the state of stress is uniaxial,

the thickness strain is one half in
magnitude of the hoop strain. Hence

T I P - b o [ra
ln{to] =-3 Qn[ro}, or To N a

which gives

4z _rg fa _ fro
drg aVrg a

T v 3/2
z _ =3/2 %° _2[ro
or P f /E‘Edro-—g[f—;] .
O H
Since z=h when ro=a, we get h = % a. Also, the thickness variation is

given by

~

o (z)MP L (2)P
to a 2a *

The plastic work per unit volume of a typical element is

n(a/ro)
fode = ¢C
0

" a
n —=
Yo

E =

. 1+n
elde = —2 [ ]
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The total work done during the perforation is

: h a 1+n
_ _ 21 C to a
w-znaof Etdz = > f[zn——ro) ro dro

2 *® .
= TCtoa e™* xl+ndx{x=22n—?‘—]

(1+n)2¥™ ¢ to
2 2
or W=—ﬂ—%r(2+n)=ﬂ-g-§%-a—ﬂl+n) .
(1+n)2 o

When n = 0.5, we have

_TCtgal (;}=ﬂ/ﬁ:0'toazg 2
W T3 Y 7 0.984 a“t,C .

Let s denote the ineclined distance of a
typical element that was initially at a
radial distance ro from the axis of sym-
metry. The incompressibility of the
‘material requires

1.1k,

2Trotodro = 27 (b+ssina)tds .

Since the state of stress is uniaxial,
toVro = tvb+ssina .
Hence vb+ssina (ds/drg) = rovro .

The integration of this equation gives

(b+s sinOL)?’/2 -'b3/2 = ro3/2 sinoO,

Since b+ssina = a when ro = a, we have

a3/25inoc, or b =al(l -sina)2/3 .

}3/2

3/2 _ 3/2

a

s 3/2 T
Also,[l+;ssina} =l+(—,é11 sin o .

The thickness variation of the perforated plate is therefore given by

-1/3
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1.15. A In the purely elastic range, the stresses are
; - _ES
O3 ‘— E e = T
02 =E €2 = % cos?Y = 01 cos?P

and ’éhe applied load is

P=A(01 +202 cosp) =A01 (1+2cos 3y).

Hence the elastic stresses become

o = —ELA 5, + \B/A)cos?¥

_= 1+2 cosd3y ? 1+2 cos3y

Subtracting these stresses from the fully plastic stresses of Prob. 1.8, we
obtain the residual stresses. Thus

or . (E8)™ _p/ay  _ (ES8)*[, _1%2 cos®™
Y2 1+2 cosdy Y% 1+2 cos3)

2n 2
o1’ _ E § )% cos Y -cos’y
or oy secv = - ( Y2 ] 1+2 cosdy .

Since 01 +202' cosP =0 for the unloaded structure,
0,'/Y = =(01 / 2Y)secy .

The residual deflection §' of point O is obtained by subtracting (01/E)& from
the plastic deflection 8. Thus ’

E8' _ES [ES)P[1+2 cost™ y
Y& T YR T | ¥R 142 cos3y *

When n=0.25, Y=7/4 and E§/YL =3, we get

10,25
01' _ 5 (20.25 ) (0.5)""77-0.5 1 _
. 10.25
ES' _ 0.25 [1+v2 (0.5)7°°7\ _
7 =3-0) { 1+ 0.707 }' .31z .

At the onset of instability, the
horizontal rigid bar is inclined at
an angle 6. Since the groove is
smooth, the stretched wires AB' and
CD' must remain perpendicular to the
center line of the bar. From geomet-
ry, we have

1.16

AB'

a(cos® + sinb)

C‘Dl

a cos® + b sin® .

10
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