TABLE OF CONTENTS

Chapter 1	1
Chapter 2	5
Chapter 3	14
Chapter 4	24
Chapter 5	28
Chapter 7	36
Chapter 11	40
Chapter 12	51
Chapter 13	52

CHAPTER 1

1-1 A polymer sample combines five different molecular-weight fractions, each of equal weight. The molecular weights of these fractions increase from 20,000 to 100,000 in increments of 20,000. Calculate \overline{M}_n , \overline{M}_w , and \overline{M}_z . Based upon these results, comment on whether this sample has a broad or narrow molecular-weight distribution compared to typical commercial polymer samples.

Solution

Fraction #	M_i (×10 ⁻³)	Wi	$N_i = W_i / M_i (\times 10^5)$
1	20	1	5.0
2	40	1	2.5
3	60	1	1.67
4	80	1	1.25
5	100	1	1.0
Σ	300	5	11.42

$$\bar{M}_{n} = \sum_{i=1}^{5} W_{i} / N = \frac{5}{1.142 \times 10^{-4}} = 43,783$$

$$\bar{M}_{w} = \frac{\sum_{i=1}^{5} W_{i} M_{i}}{\sum_{i=1}^{5} W_{i}} = \frac{300,000}{5} = 60,000$$

$$\bar{M}_{z} = \frac{\sum_{i=1}^{5} W_{i} M_{i}^{2}}{\sum_{i=1}^{5} W_{i} M_{i}} = \frac{4 \times 10^{8} + 16 \times 10^{8} + 36 \times 10^{8} + 64 \times 10^{8} + 100 \times 10^{8}}{3 \times 10^{5}} = 73,333$$

$$\frac{\bar{M}_{z}}{\bar{M}_{n}} = \frac{60,000}{43,783} = 1.37 \text{ (narrow distribution)}$$

1-2 A 50-gm polymer sample was fractionated into six samples of different weights given in the table below. The viscosity-average molecular weight, \overline{M}_{v} , of each was determined and is included in the table. Estimate the number-average and weight-average molecular weights of the original sample. For these calculations, assume that the molecular-weight distribution of each fraction is extremely narrow and can

https://ebookyab.ir/solution-manual-polymer-science-and-technology-fried/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

be considered to be *monodisperse*. Would you classify the molecular weight distribution of the original sample as narrow or broad?

Fraction	Weight (gm)	${ar M}_{ m v}$
1	1.0	1,500
2	5.0	35,000
3	21.0	75,000
4	15.0	150,000
5	6.5	400,000
6	1.5	850,000

Solution Let $M_i \approx M_y$

Fraction	Wi	\overline{M}_{i}	$N_i = W_i / M_i$	W_iM_i
			(×10 ⁶)	
1	1.0	1,500	667	1500
2	5.0	35,000	143	175.000
3	21.0	75,000	280	627,500
4	15.0	150,000	100.	2,250,000
5	6.5	400,000	16.3	2,600,000
6	1.5	850,000	1.76	1,275,000
Σ	50.0		1208	7,929,000

$$\overline{M}_{n} = \sum_{i=1}^{6} W_{i} / N = \frac{\overline{50.0}}{1.21 \times 10^{-3}} = 41,322$$
$$\overline{M}_{w} = \frac{\sum_{i=1}^{6} W_{i} M_{i}}{\sum_{i=1}^{6} W_{i}} = \frac{7,930,000}{50.0} = 158,600$$

 $\frac{M_{\rm w}}{\overline{M}_{\rm p}} = \frac{158,600}{41,322} = 3.84$ (broad distribution)

1-3 The Schultz–Zimm [11] molecular-weight-distribution function can be written as

$$W(M) = \frac{a^{b+1}}{\Gamma(b+1)} M^b \exp(-aM)$$

where *a* and *b* are adjustable parameters (*b* is a positive real number) and Γ is the gamma function (see Appendix E) which is used to normalize the weight fraction.

(a) Using this relationship, obtain expressions for \overline{M}_n and \overline{M}_w in terms of *a* and *b* and an expression for M_{max} , the molecular weight at the peak of the W(M) curve, in terms of \overline{M}_n .

Solution

$$\overline{M}_{n} = \frac{\int_{0}^{\infty} W dM}{\int_{0}^{\infty} (W/M) dM}$$

let $t = aM$

https://ebookyab.ir/solution-manual-polymer-science-and-technology-fried/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

$$\int_{0}^{\infty} W dM = \frac{a^{b+1}}{\Gamma(b+1)} \int_{0}^{\infty} (t/a)^{b} \exp(-t) d(t/a) = \frac{a^{b+1}}{\Gamma(b+1)} \frac{1}{a^{b+1}} \int_{0}^{\infty} t^{b} \exp(-t) dt = \frac{1}{\Gamma(b+1)} \Gamma(b+1) = 1$$

$$\int_{0}^{\infty} (W/M) dM = \frac{a^{b+1}}{\Gamma(b+1)} \int_{0}^{\infty} (t/a)^{b-1} \exp(-t) d(t/a) = \frac{a^{b+1}}{\Gamma(b+1)} \frac{1}{a^{b}} \int_{0}^{\infty} t^{b-1} \exp(-t) dt = \frac{a^{b+1}}{\Gamma(b+1)} \frac{1}{a^{b}} \Gamma(b) = \frac{a}{\Gamma(b+1)} \frac{1}{a^{b}} \int_{0}^{\infty} t^{b-1} \exp(-t) dt = \frac{a^{b+1}}{\Gamma(b+1)} \frac{1}{a^{b}} \Gamma(b) = \frac{a}{\Gamma(b+1)} \frac{1}{a^{b}} \frac{1}{\sigma(b+1)} \frac{1}{a^{b}} \frac{1}{\sigma(b+1)} \frac{1}{a^{b}} \frac{1}{\sigma(b+1)} \frac{1}{a^{b}} \frac{1}{\sigma(b+1)} \frac{1}{a^{b}} \frac{1}{\sigma(b+1)} \frac{1}{\sigma(b+1)}$$

(b) Derive an expression for M_{max} , the molecular weight at the peak of the W(M) curve, in terms of \overline{M}_{n} .

Solution

$$\frac{dW}{dM} = \frac{a^{b+1}}{\Gamma(b+1)} \Big[bM^{b-1} \exp(-aM) + M^b(-a) \exp(-aM) \Big] = 0$$
$$bM^{b-a} = aM^b$$
$$\frac{b}{a} = M^a = \overline{M}_n \text{ (i.e., the maximum occurs at } \overline{M}_n)$$

(c) Show how the value of b affects the molecular weight distribution by graphing W(M) versus M on the same plot for b = 0.1, 1, and 10 given that $\overline{M}_n = 10,000$ for the three distributions.

Solution

$$a = \frac{b}{10,000}$$

$$\frac{b}{0.1} \frac{1}{1 \times 10^{-5}} \frac{10}{1 \times 10^{-4}}$$

$$W = \frac{a^{b+1}}{\Gamma(b+1)} M^{b} \exp(-aM) dM$$
where $\Gamma(b+1) = \int_{0}^{\infty} (aM)^{b} \exp(-aM) dM$.
Plot $W(M)$ versus M
Hint: $\int_{0}^{\infty} x^{n} \exp(-ax) dx = \Gamma(n+1)/a^{n+1} = n!/a^{n+1}$ (if n is a positive interger).

Solution

$$\overline{M}_{z} = \frac{\sum_{i=1}^{3} W_{i} M_{i}^{2}}{\sum_{i=1}^{3} W_{i} M_{i}} = \frac{1(10,000)^{2} + 2(50,000)^{2} + 2(100,000)^{2}}{1(10,000) + 2(50,000) + 2(100,000)} = 80,968$$

(b) Calculate the z-average molecular weight, \overline{M}_z , of the continuous molecular weight distribution shown in Example 1.2.

Solution

$$\overline{M}_{z} = \frac{\int_{10^{3}}^{10^{5}} M^{2} dM}{\int_{10^{3}}^{10^{5}} M dM} = \frac{\left(M^{3}/3\right)_{10^{3}}^{10^{5}}}{\left(M^{2}/2\right)_{10^{3}}^{10^{5}}} = 66,673$$

(c) Obtain an expression for the z-average degree of polymerization, \overline{X}_z , for the Flory distribution described in Example 1.3.