
2 APPENDIX A. SOLUTIONS TO EXERCISES

A.1 Solutions for Chapter 1

Exercise 1.1: Let A1 and A2 be arbitrary events and show that Pr{A1
S

A2}+ Pr{A1A2} = Pr{A1}+

Pr{A2}. Explain which parts of the sample space are being double-counted on both sides of this equation

and which parts are being counted once.

Solution: As shown in the figure below, A1A2 is part of A1
S

A2 and is thus being double
counted on the left side of the equation. It is also being double counted on the right (and
is in fact the meaning of A1A2 as those sample points that are both in A1 and in A2).
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Exercise 1.2: This exercise derives the probability of an arbitrary (non-disjoint) union of events, derives
the union bound, and derives some useful limit expressions.

a) For 2 arbitrary events A1 and A2, show that

A1

[
A2 = A1

[
(A2�A1), (A.1)

where A2�A1 = A2A
c
1. Show that A1 and A2 � A1 are disjoint. Hint: This is what Venn diagrams were

invented for.

Solution: Note that each sample point ! is in A1 or Ac
1, but not both. Thus each ! is in

exactly one of A1, Ac
1A2 or Ac

1A
c
2. In the first two cases, ! is in both sides of (A.1) and in

the last case it is in neither. Thus the two sides of (A.1) are identical. Also, as pointed out
above, A1 and A2 � A1 are disjoint. These results are intuitively obvious from the Venn
diagram,
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b) For any n � 2 and arbitrary events A1, . . . , An, define Bn = An �
Sn�1

i=1 Ai. Show that B1, B2, . . . are

disjoint events and show that for each n � 2,
Sn

i=1 Ai =
Sn

i=1 Bi. Hint: Use induction.

Solution: Let B1 = A1. From (a) B1 and B2 are disjoint and (from (A.1)), A1
S

A2 =
B1
S

B2. Let Cn =
Sn

i=1 Ai. We use induction to prove that Cn =
Sn

i=1 Bi and that the
Bn are disjoint. We have seen that C2 = B1

S
B2, which forms the basis for the induction.

We assume that Cn�1 =
Sn�1

i=1 Bi and prove that Cn =
Sn

i=1 Bi.

Cn = Cn�1

[
An = Cn�1

[
AnCc

n�1

= Cn�1

[
Bn =

[n

i�1
Bi.

In the second equality, we used (A.1), letting Cn�1 play the role of A1 and An play the role
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A.1. SOLUTIONS FOR CHAPTER 1 3

of A2. From this same application of (A.1), we also see that Cn�1 and Bn = An�Cn�1 are
disjoint. Since Cn�1 =

Sn�1
i=1 Bi, this also shows that Bn is disjoint from B1, . . . , Bn�1.

c) Show that

Pr
n[1

n=1
An

o
= Pr

n[1

n=1
Bn

o
=
X1

n=1
Pr{Bn} .

Solution: If ! 2
S1

n=1 An, then it is in An for some n � 1. Thus ! 2
Sn

i=1 Bi, and thus
! 2

S1
n=1 Bn. The same argument works the other way, so

S1
n=1 An =

S1
n=1 Bn. This

establishes the first equality above, and the second is the third axiom of probability.

d) Show that for each n, Pr{Bn}  Pr{An}. Use this to show that

Pr
n[1

n=1
An

o

X1

n=1
Pr{An} .

Solution: Since Bn = An �
Sn�1

i=1 Ai, we see that ! 2 Bn implies that ! 2 An, i.e., that
Bn ✓ An. From (1.5), this implies that Pr{Bn}  Pr{An} for each n. Thus

Pr
n[1

n=1
An

o
=
X1

n=1
Pr{Bn} 

X1

n=1
Pr{An} .

e) Show that Pr
�S1

n=1 An

 
= limn!1 Pr

�Sn
i=1 Ai

 
. Hint: Combine (c) and (b). Note that this says that

the probability of a limit is equal to the limit of the probabilities. This might well appear to be obvious

without a proof, but you will see situations later where similar appearing interchanges cannot be made.

Solution: From (c),

Pr
n[1

n=1
An

o
=
X1

n=1
Pr{Bn} = lim

k!1

Xk

n=1
Pr{Bn} .

From (b), however,

Xk

n=1
Pr{Bn} = Pr

(
k[

n=1

Bn

)
= Pr

(
k[

n=1

An

)
.

Combining the first equation with the limit in k of the second yields the desired result.

f) Show that Pr
�T1

n=1 An

 
= limn!1 Pr

�Tn
i=1 Ai

 
. Hint: Remember De Morgan’s equalities.

Solution: Using De Morgans equalities,

Pr

( 1\
n=1

An

)
= 1� Pr

( 1[
n=1

Ac
n

)
= 1� lim

k!1
Pr

(
k[

n=1

Ac
n

)

= lim
k!1

Pr

(
k\

n=1

An

)
.

Exercise 1.3: Find the probability that a five card poker hand, chosen randomly from a 52 card deck,

contains 4 aces. That is, if all 52! arrangements of a deck of cards are equally likely, what is the probability

that all 4 aces are in the first 5 cards of the deck.

Solution: The ace of spades can be in any of the first 5 positions, the ace of hearts in any
of the 4 remaining positions out of the first 5, and so forth for the other two aces. The
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4 APPENDIX A. SOLUTIONS TO EXERCISES

remaining 48 cards can be in any of the remaining 48 positions. Thus there are (5 ·4 ·3 ·2)48!
permutations of the 52 cards for which the first 5 cards contain 4 aces. Thus

Pr{4 aces} = =
5!48!
52!

=
5 · 4 · 3 · 2

52 · 51 · 50 · 49
= 1.847⇥ 10�5.

Exercise 1.4: Consider a sample space of 8 equiprobable sample points and let A1, A2, A3 be three
events each of probability 1/2 such that Pr{A1A2A3} = Pr{A1}Pr{A2}Pr{A3}.

a) Create an example where Pr{A1A2} = Pr{A1A3} = 1
4 but Pr{A2A3} = 1

8 . Hint: Make a table with a

row for each sample point and a column for each of the above 3 events and try di↵erent ways of assigning

sample points to events (the answer is not unique).

Solution: Note that exactly one sample point must be in A1, A2, and A3 in order to make
Pr{A1A2A3} = 1/8. In order to make Pr{A1A2} = 1/4, there must be one additional
sample point that contains A1 and A2 but not A3. Similarly, there must be one sample
point that contains A1 and A3 but not A2. These points give rise to the first three rows
in the table below. There can be no additional sample point containing A2 and A3 since
Pr{A2A3} = 1/8. Thus each remaining sample point can be in at most 1 of the events
A1, A2, and A3. Since Pr{Ai} = 1/2 for 1  i  3 two sample points must contain A2

alone, two must contain A3 alone, and a single sample point must contain A1 alone. This
uniquely specifies the table below except for which sample point lies in each event.

Sample points A1 A2 A3

1 1 1 1
2 1 1 0
3 1 0 1
4 1 0 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1

b) Show that, for your example, A2 and A3 are not independent. Note that the definition of statistical inde-

pendence would be very strange if it allowed A1, A2, A3 to be independent while A2 and A3 are dependent.

This illustrates why the definition of independence requires (1.14) rather than just (1.15).

Solution: Note that Pr{A2A3} = 1/8 6= Pr{A2}Pr{A3}, so A2 and A3 are dependent.
We also note that Pr{Ac

1A
c
2A

c
3} = 0 6= Pr{Ac

1}Pr{Ac
2}Pr{Ac

3}, further reinforcing the
conclusion that A1, A2, A3 are not statistically independent. Although the definition in
(1.14) of statistical independence of more than 2 events looks strange, it is clear from this
example that (1.15) is insu�cient in the sense that it only specifies part of the above table.

Exercise 1.5: This exercise shows that for all rv’s X, FX(x) is continuous from the right.

a) For any given rv X, any real number x, and each integer n � 1, let An = {! : X > x + 1/n},
and show that A1 ✓ A2 ✓ · · · . Use this and the corollaries to the axioms of probability to show that

Pr
nS

n�1 An

o
= limn!1 Pr{An}.
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A.1. SOLUTIONS FOR CHAPTER 1 5

Solution: If X(!) > x + 1
n , then (since 1

n > 1
n+1), we also have X(!) > x + 1

n+1 . Thus

An ✓ An+1 for all n � 1. Thus from (1.9), Pr
nS

n�1 An

o
= limn!1 Pr{An}.

b) Show that Pr
nS

n�1 An

o
= Pr{X > x} and that Pr{X > x} = limn!1 Pr{X > x + 1/n}.

Solution: If X(!) > x, then there must be an n su�ciently large that X(!) > x + 1/n.
Thus {! : X > x} ✓

S
n�1 An}. The subset inequality goes the other way also since

X(!) > x + 1/n for any n � 1 implies that X(!) > x. Since these represent the same
events, they have the same probability and Pr

nS
n�1 An

o
= Pr{X > x}. Then from (a)

we also have

Pr{X > x} = lim
n!1

Pr{An} = lim
n!1

Pr{X > x + 1/n} .

c) Show that for ✏ > 0, lim✏!0 Pr{X  x + ✏} = Pr{X  x}.

Solution: Taking the complement of both sides of the above equation, Pr{X  x} =
limn!1 Pr{X  x + 1/n}. Since Pr{X  x + ✏} is non-decreasing in ✏, it also follows that
for ✏ > 0, Pr{X  x} = lim✏!0 Pr{X  x + ✏}.

Exercise 1.6: Show that for a continuous nonnegative rv X,Z 1

0

Pr{X > x} dx =

Z 1

0

xfX(x) dx. (A.2)

Hint 1: First rewrite Pr{X > x} on the left side of (A.2) as
R1

x
fX(y) dy. Then think through, to your level

of comfort, how and why the order of integration can be interchnged in the resulting expression.

Solution: We have Pr{X > x} =
R1
x fX(y) dy from the definition of a continuous rv.

We look at E [X] =
R1
0 Pr{X > x} dx as lima!1

R a
0 Fc(x) dx since the limiting operation

a !1 is where the interesting issue is.
Z a

0
Fc(x) dx =

Z a

0

Z 1

x
fX(y) dy dx

=
Z a

0

Z a

x
fX(y) dy dx +

Z a

0

Z 1

a
fX(y) dy dx

=
Z a

0

Z y

0
fX(y) dx dy + aFc

X(a).

We first broke the integral on the right into two parts, one for y < x and the other for y � x.
Since the limits of integration on the first part were finite, they could be interchanged. The
inner integral of the first part is yfX(y), so

lim
a!1

Z a

0
Fc

X(x) dx = lim
a!1

Z a

0
yfX(y) dy + lim

a!1
aFc

X(a).

Assuming that E [X] exists, the integral on the left is nondecreasing in A and has the finite
limit X. The first integral on the right is also nondecreasing and upper bounded by the
first integral, so it also has a limit. This means that lima!1 aFc

X(a) must also have a limit,
say �. Now if � > 0, then for any ✏ 2 (0, a), aFX(a) > � � ✏ for all su�ciently large a. For
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6 APPENDIX A. SOLUTIONS TO EXERCISES

all such a, then Fc
X(a) > (� � ✏)/a. This would imply that X =

R1
0 Fc

X(x) dx = 1, which
is a contradiction. Thus � = 0, i.e., lima!1 aFc

X(a) = 0, establishing (A.2) for the case
where E [X] is finite. The case where E [X] is infinite is a minor perturbation.

The result that lima!1 aF c
X(a) = 0 is also important and can be seen intuitively from

Figure 1.3.

Hint 2: As an alternate approach, derive (A.2) using integration by parts.

Solution: Using integration by parts and being less careful,

Z 1

0
d
�
xFc

X(x)
�

= �
Z 1

0
xfX(x) dx +

Z 1

0
Fc

X(x) dx.

The left side is lima!1 aFc
X(a)� 0FX(0) so this shows the same thing, again requiring the

fact that lima!1 aFc
X(a) = 0 when E [X] exists.

Exercise 1.7: Suppose X and Y are discrete rv’s with the PMF pXY (xi, yj). Show (a picture will
help) that this is related to the joint CDF by

pXY (xi, yj) = lim
�>0,�!0

[F(xi, yj)� F(xi � �, yj)� F(xi, yj � �) + F(xi � �, yj � �)] .

Solution: The picture below makes this equation obvious. Note that F(xi, yj) is the
probability of the quadrant of joint sample values (x, y) that satisfy (x, y)  (xi, yj). The
term FXY (xi��, yj) is the probability of the hatched region on the left and FXY (xi, yj��)�
FXY (xi��, yj��) is the probability of the hatched region on the right. Thus the expres-
sion on the right of the equation is the probability of the � by � square to the left and
below (xi, yj). When this square becomes too small to include any other sample point, the
probability of the square is pXY (xi, yj).
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FXY (xi � �, yj)

(xi, yj)

FXY (xi, yj � �)
�FXY (xi � �, yj � �)

Exercise 1.8: A variation of Example 1.5.1 is to let M be a random variable that takes on both positive
and negative values with the PMF

pM (m) =
1

2|m| (|m|+ 1)
.

In other words, M is symmetric around 0 and |M | has the same PMF as the nonnegative rv N of Example
1.5.1.

a) Show that
P

m�0 mpM (m) = 1 and
P

m<0 mpM (m) = �1. (Thus show that the expectation of M not

only does not exist but is undefined even in the extended real number system.)
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Solution:
X

m�0
mpM (m) =

X
m�0

1
2(|m|+ 1)

= 1
X

m<0
mpM (m) =

X
m<0

�1
2(|m|+ 1)

= �1.

b) Suppose that the terms in
P1

m=�1mpM (m) are summed in the order of 2 positive terms for each negative
term (i.e., in the order 1, 2,�1, 3, 4,�2, 5, · · · ). Find the limiting value of the partial sums in this series.
Hint: You may find it helpful to know that

lim
n!1

Xn

i=1

1
i
�
Z n

1

1
x

dx

�
= �,

where � is the Euler-Mascheroni constant, � = 0.57721 · · · .

Solution: The sum after 3n terms is

2nX
m=1

1
2(m + 1)

�
nX

m=1

1
2(m + 1)

=
1
2

2n+1X
i=n+2

1
i
.

Taking the limit as n !1, the Euler-Mascheroni constant cancels out and

lim
n!1

1
2

2n+1X
i=n+2

1
i

= lim
n!1

1
2

Z 2n+1

n+2

1
x

dx = =
1
2

ln 2.

c) Repeat (b) where, for any given integer k > 0, the order of summation is k positive terms for each negative

term.

Solution: This is done the same way, and the answer is 1
2 ln k. What the exercise essentially

shows is that in a sum for which both the positive terms sum to infinity and the negative
terms sum to �1, one can get any desired limit by summing terms in an appropriate order.
In fact, to reach any desired limit, one alternates between positive terms until exceeding the
desired limit, then negative terms until falling below the desired limit, then positive terms
again, etc.

Exercise 1.9: (Proof of Theorem 1.4.1) The bounds on the binomial in this theorem are based on
the Stirling bounds. These say that for all n � 1, n! is upper and lower bounded by

p
2⇡n

⇣n
e

⌘n
< n! <

p
2⇡n

⇣n
e

⌘n
e1/12n. (A.3)

The ratio,
p

2⇡n(n/e)n/n!, of the first two terms is monotonically increasing with n toward the limit 1,
and the ratio

p
2⇡n(n/e)n exp(1/12n)/n! is monotonically decreasing toward 1. The upper bound is more

accurate, but the lower bound is simpler and known as the Stirling approximation. See [8] for proofs and
further discussion of the above facts.

a) Show from (A.3) and from the above monotone property that
 

n
k

!
<
r

n
2⇡k(n� k)

nn

kk(n�k)n�k
.

Hint: First show that n!/k! <
p

n/k nnk�ke�n+k for k < n.
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Solution: Since the ratio of the first two terms of (A.3) is increasing in n, we have
p

2⇡k(k/e)k/k! <
p

2⇡n(n/e)n/n!.

Rearranging terms, we have the result in the hint. Applying the first inequality of (A.3) to
n� k and combining this with the result on n!/k! yields the desired result.
b) Use the result of (a) to upper bound pSn(k) by

pSn(k) <
r

n
2⇡k(n� k)

pk(1� p)n�knn

kk(n�k)n�k
.

Show that this is equivalent to the upper bound in Theorem 1.4.1.

Solution: Using the binomial equation and then (a),

pSn(k) =
✓

n

k

◆
pk(1� p)n�k <

r
n

2⇡k(n� k)
nn

kk(n�k)n�k
pk(1� p)n�k.

This is the the desired bound on pSn(k). Letting p̃ = k/n, this becomes

pSn(p̃n) <

s
1

2⇡np̃(1� p̃)
pp̃n(1� p)n(1�p̃)

p̃p̃n(1� p̃)n(1�p̃)

=

s
1

2⇡np̃(1� p̃)
exp

✓
n


p̃ ln

p

p̃
+ p̃ ln

1� p

1� p̃

�◆
,

which is the same as the upper bound in Theorem 1.4.1.
c) Show that  

n
k

!
>
r

n
2⇡k(n� k)

nn

kk(n�k)n�k


1� n

12k(n� k)

�
.

Solution: Use the factorial lower bound on n! and the upper bound on k and (n � k)!.
This yields ✓

n

k

◆
>

r
n

2⇡k(n� k)
nn

kk(n�k)n�k
exp

✓
� 1

12k
� 1

12(n� k)

◆

>

r
n

2⇡k(n� k)
nn

kk(n�k)n�k


1� n

12k(n� k)

�
,

where the latter equation comes from combining the two terms in the exponent and then
using the bound e�x > 1� x.

d) Derive the lower bound in Theorem 1.4.1.

Solution: This follows by substituting p̃n for k in the solution to c) and substituting this
in the binomial formula.

e) Show that �(p, p̃) = p̃ ln( p̃
p ) + (1� p̃) ln( 1�p̃

1�p ) is 0 at p̃ = p and nonnegative elsewhere.

Solution: It is obvious that �(p, p̂) = 0 for p̃ = p. Taking the first two derivatives of �(p, p̃)
with respect to p̃,

@�(p, p̃)
@p̃

= � ln
✓

p(1� p̃)
p̃(1� p)

◆
@f2(p, p̃)
@p̃2

=
1

p̃(1� p̃)
.
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Since the second derivative is positive for 0 < p̃ < 1, the minimum of �(p, p̃) with respect to
p̃ is 0, is achieved where the first derivative is 0, i.e., at p̃ = p. Thus �(p, p̃) > 0 for p̃ 6= p.
Furthermore, �(p, p̃) increases as p̃ moves in either direction away from p.

Exercise 1.10: Let X be a ternary rv taking on the 3 values 0, 1, 2 with probabilities p0, p1, p2

respectively. Find the median of X for each of the cases below.

a) p0 = 0.2, p1 = 0.4, p2 = 0.4.

b) p0 = 0.2, p1 = 0.2, p2 = 0.6.

c) p0 = 0.2, p1 = 0.3, p2 = 0.5.

Note 1: The median is not unique in (c). Find the interval of values that are medians. Note 2: Some people

force the median to be distinct by defining it as the midpoint of the interval satisfying the definition given

here.

Solution: The median of X is 1 for (a), 2 for (b), and the interval [1, 2) for (c).

d) Now suppose that X is nonnegative and continuous with the density fX(x) = 1 for 0  x  0.5 and
fX(x) = 0 for 0.5 < x  1. We know that fX(x) is positive for all x > 1, but it is otherwise unknown. Find
the median or interval of medians.

The median is sometimes (incorrectly) defined as that ↵ for which Pr{X > ↵} = Pr{X < ↵}. Show that it

is possible for no such ↵ to exist. Hint: Look at the examples above.

Solution: The interval of medians is [0.5, 1]. In particular, Pr{X  x} = 1/2 for all x in
this interval and Pr{X � x} = 1/2 in this interval.

For each of the first 3 examples, there is no ↵ for which Pr{X < ↵} = Pr{X > ↵}.
One should then ask why there must always be an x such that Pr{X � x} � 1/2 and
Pr{X  x} � 1/2. To see this, let xo = inf{x : FX(x) � 1/2}. We must have FX(xo) � 1/2
since FX is continuous on the right. Because of the infimum, we must have FX(xo�✏) < 1/2
for all ✏ > 0, and therefore Pr{X � xo � ✏} � 1/2. But Pr{X � x} is continuous on the
left for the same reason that FX(x) is continuous on the right, and thus xo is a median of
X. This is the kind of argument that makes many people hate analysis.

Exercise 1.11: a) For any given rv Y , express E [|Y |] in terms of
R

y<0
FY (y) dy and

R
y�0

Fc
Y

(y) dy. Hint:

Review the argument in Figure 1.4.

Solution: We have seen in (1.34) that

E [Y ] = �
Z

y<0
FY (y) dy +

Z
y�0

Fc
Y
(y) dy.

Since all negative values of Y become positive in |Y |,

E [|Y |] = +
Z

y<0
FY (y) dy +

Z
y�0

Fc
Y
(y) dy.

To spell this out in greater detail, let Y = Y + + Y � where Y + = max{0, Y } and Y � =
min{Y, 0}. Then Y = Y + + Y � and |Y | = Y + � Y � = Y + + |Y �|. Since E [Y +] =R
y�0 Fc

Y
(y) dy and E [Y �] = �

R
y<0 FY (y) dy, the above results follow.
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10 APPENDIX A. SOLUTIONS TO EXERCISES

b) For some given rv X with E [|X|] < 1, let Y = X � ↵. Using (a), show that

E [|X � ↵|] =

Z ↵

�1
FX(x) dx +

Z 1

↵

Fc
X(x) dx.

Solution: This follows by changing the variable of integration in (a). That is,

E [|X � ↵|] = E [|Y |] = +
Z

y<0
FY (y) dy +

Z
y�0

Fc
Y
(y) dy

=
Z ↵

�1
FX(x) dx +

Z 1

↵
Fc

X(x) dx,

where in the last step, we have changed the variable of integration from y to x� ↵.

c) Show that E [|X � ↵|] is minimized over ↵ by choosing ↵ to be a median of X. Hint: Both the easy way

and the most instructive way to do this is to use a graphical argument illustrating the above two integrals

Be careful to show that when the median is an interval, all points in this interval achieve the minimum.

Solution: As illustrated in the picture, we are minimizing an integral for which the inte-
grand changes from FX(x) to Fc

X(x) at x = ↵. If FX(x) is strictly increasing in x, then
Fc

X = 1� FX is strictly decreasing. We then minimize the integrand over all x by choosing
↵ to be the point where the curves cross, i.e., where FX(x) = .5. Since the integrand has
been minimized at each point, the integral must also be minimized.

0.5

1

0

FX(x)

Fc
X(x)

↵

If FX is continuous but not strictly increasing, then there might be an interval over which
FX(x) = .5; all points on this interval are medians and also minimize the integral; Exercise
1.10 (c) gives an example where FX(x) = 0.5 over the interval [1, 2). Finally, if FX(↵) � 0.5
and FX(↵ � ✏) < 0.5 for some ↵ and all ✏ > 0 (as in parts (a) and (b) of Exercise 1.10),
then the integral is minimized at that ↵ and that ↵ is also the median.

Exercise 1.12: Let X be a rv with CDF FX(x). Find the CDF of the following rv’s.

a) The maximum of n IID rv’s, each with CDF FX(x).

Solution: Let M+ be the maximum of the n rv’s X1, . . . ,Xn. Note that for any real x,
M+ is less than or equal to x if and only if Xj  x for each j, 1  j  n. Thus

Pr{M+  x} = Pr{X1  x,X2  x, . . . ,Xn  x} =
nY

j=1

Pr{Xj  x} ,

where we have used the independence of the Xj ’s. Finally, since Pr{Xj  x} = FX(x) for
each j, we have FM+(x) = Pr{M+  x} =

�
FX(x)

�n.

b) The minimum of n IID rv’s, each with CDF FX(x).
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A.1. SOLUTIONS FOR CHAPTER 1 11

Solution: Let M� be the minimum of X1, . . . ,Xn. Then, in the same way as in ((a),
M� > y if and only if Xj > y for 1  j  n and for all choice of y. We could make the
same statement using greater than or equal in place of strictly greater than, but the strict
inequality is what is needed for the CDF. Thus,

Pr{M� > y} = Pr{X1 > y,X2 > y, . . . ,Xn > y} =
nY

j=1

Pr{Xj > y} .

It follows that 1� FM�(y) =
⇣
1� FX(y)

⌘n
.

c) The di↵erence of the rv’s defined in a) and b); assume X has a density fX(x).

Solution: There are many di�cult ways to do this, but also a simple way, based on first
conditioning on the event that X1 = x. Then X1 = M+ if and only if Xj  x for 2  j  n.
Also, given X1 = M+ = x, we have R = M+ � M�  r if and only if Xj > x � r for
2  j  n. Thus, since the Xj are IID,

Pr{M+=X1, R  r | X1 = x} =
nY

j=2

Pr{x�r < Xj  x}

= [Pr{x�r < X  x}]n�1 = [FX(x)� FX(x� r)]n�1 .

We can now remove the conditioning by averaging over X1 = x. Assuming that X has the
density fX(x),

Pr{X1 = M+, R  r} =
Z 1

�1
fX(x) [FX(x)� FX(x� r)]n�1 dx.

Finally, we note that the probability that two of the Xj are the same is 0 so the events
Xj = M+ are disjoint except with zero probability. Also we could condition on Xj = x
instead of X1 with the same argument (i.e., by using symmetry), so Pr{Xj = M+, R  r} =
Pr{X1 = M+ R  r} It follows that

Pr{R  r} =
Z 1

�1
nfX(x) [FX(x)� FX(x� r)]n�1 dx.

The only place we really needed the assumption that X has a PDF was in asserting that
the probability that two or more of the Xj ’s are jointly equal to the maximum is 0. The
formula can be extended to arbitrary CDF’s by being careful about this possibility.

These expressions have a simple form if X is exponential with the PDF �e��x for x � 0.
Then

Pr{M� � y} = e�n�y; Pr{M+  y} =
�
1� e��y

�n; Pr{R  y} =
�
1� e��y

�n�1
.

We will see how to derive the above expression for Pr{R  y} in Chapter 2.

Exercise 1.13: Let X and Y be rv’s in some sample space ⌦ and let Z = X + Y , i.e., for each
! 2 ⌦, Z(!) = X(!) + Y (!). The purpose of this exercise is to show that Z is a rv. This is a mathematical
fine point that many readers may prefer to simply accept without proof.
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a) Show that the set of ! for which Z(!) is infinite or undefined has probability 0.

Solution: Note that Z can be infinite (either ±1) or undefined only when either X or
Y are infinite or undefined. Since these are events of zero probability, Z can be infinite or
undefined only with probability 0.

b) We must show that {! 2 ⌦ : Z(!)  ↵} is an event for each real ↵, and we start by approximating

that event. To show that Z = X + Y is a rv, we must show that for each real number ↵, the set {! 2 ⌦ :

X(!) + Y (!)  ↵} is an event. Let B(n, k) = {! : X(!)  k/n}
T
{Y (!)  ↵ + (1�k)/n} for integer k > 0.

Let D(n) =
S

k B(n, k), and show that D(n) is an event.

Solution: We are trying to show that {Z  ↵} is an event for arbitrary ↵ and doing this
by first quantizing X and Y into intervals of size 1/n where k is used to number these
quantized elements. Part (c) will make sense of how this is related to {Z  ↵, but for
now we simply treat the sets as defined. Each set B(n, k) is an intersection of two events,
namely the event {! : X(!)  k/n} and the event {! : Y (!)  ↵+ (1�k)/n}; these must
be events since X and Y are rv’s. For each n, D(n) is a countable union (over k) of the
sets B(n, k), and thus D(n) is an event for each n and each ↵

c) On a 2 dimensional sketch for a given ↵, show the values of X(!) and Y (!) for which ! 2 D(n). Hint:

This set of values should be bounded by a staircase function.

Solution:

x

y

@
@
@
@
@
@
@

@
@
@
@

� 1
n 0

1
n

2
n

3
n

↵

↵�1/n

↵�2/n

↵

The region D(n) is sketched for ↵n = 5; it is the region below the staircase function above.
The kth step of the staircase, extended horizontally to the left and vertically down is the
set B(n, k). Thus we see that D(n) is an upper bound to the set {Z  ↵}, which is the
straight line of slope -1 below the staircase.
d) Show that

{! : X(!) + Y (!)  ↵} =
\

n�1
D(n). (A.4)

Explain why this shows that Z = X + Y is a rv.

Solution: The region {! : X(!) + Y (!)  ↵} is the region below the diagonal line of
slope -1 that passes through the point (0, ↵). This region is thus contained in D(n) for
each n � 1 and is thus contained in

T
n�1 D(n). On the other hand, each point ! for which

X(!)+Y (!) > ↵ is not contained in D(n) for su�ciently large n. This verifies (A.4). Since
D(n) is an event, the countable intersection is also an event, so {! : X(!) + Y (!)  ↵} is
an event. This applies for all ↵. This, in conjunction with (a), shows that Z is a rv.

e) Explain why this implies that if X1, X2, . . . , Xn are rv’s, then Y = X1 + X2 + · · · + Xn is a rv. Hint:
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Only one or two lines of explanation are needed.

Solution: We have shown that X1 + X2 is a rv, so (X1 + X2) + X3 is a rv, etc.

Exercise 1.14: a) Let X1, X2, . . . , Xn be rv’s with expected values X1, . . . , Xn. Show that E [X1 + · · ·+ Xn] =

X1 + · · ·+Xn. You may assume that the rv’s have a joint density function, but do not assume that the rv’s

are independent.

Solution: We assume that the rv’s have a joint density, and we ignore all mathematical
fine points here. Then

E [X1 + · · ·+ Xn] =
Z 1

�1
· · ·
Z 1

�1
(x1 + · · ·+ xn)fX1···Xn(x1, . . . , xn) dx1 · · · dxn

=
nX

j=1

Z 1

�1
· · ·
Z 1

�1
xj fX1···Xn(x1, . . . , xn) dx1 · · · dxn

=
nX

j=1

Z 1

�1
xjfXj (xj) dxj =

nX
j=1

E [Xj ] .

Note that the separation into a sum of integrals simply used the properties of integration
and that no assumption of statistical independence was made.

b) Now assume that X1, . . . , Xn are statistically independent and show that the expected value of the

product is equal to the product of the expected values.

Solution: From the independence, fX1···Xn(x1, . . . , xn) =
Qn

j=1 fXj (xj). Thus

E [X1X2 · · ·Xn] =
Z 1

�1
· · ·
Z 1

�1

nY
j=1

xj

nY
j=1

fXj (xj) dx1 · · · dxn

=
nY

j=1

Z 1

�1
xj fXj (xj) dxj =

nY
j=1

E [Xj ] .

c) Again assuming that X1, . . . , Xn are statistically independent, show that the variance of the sum is equal

to the sum of the variances.

Solution: Since (a) shows that E
hP

j Xj

i
=
P

j Xj , we have

VAR

2
4 nX

j=1

Xj

3
5 = E

2
4
0
@ nX

j=1

Xj �
nX

j=1

Xj

1
A

23
5

= E

2
4 nX

j=1

nX
i=1

(Xj �Xj)(Xi �Xi)

3
5

=
nX

j=1

nX
i=1

E
⇥
(Xj �Xj)(Xi �Xi)

⇤
, (A.5)
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where we have again used (a). Now from (b) (which used the independence of the Xj),
E
⇥
(Xj �Xj)(Xi �Xi)

⇤
= 0 for i 6= j. Thus(A.5) simplifies to

VAR

2
4 nX

j=1

Xj

3
5 =

nX
j=1

E
⇥
(Xj �Xj)2

⇤
=

nX
j=1

VAR [Xj ] .

Exercise 1.15: (Stieltjes integration) a) Let h(x) = u(x) and FX(x) = u(x) where u(x) is the unit

step, i.e., u(x) = 0 for �1 < x < 0 and u(x) = 1 for x � 0. Using the definition of the Stieltjes integral

in Footnote 19, show that
R 1

�1
h(x)dFX(x) does not exist. Hint: Look at the term in the Riemann sum

including x = 0 and look at the range of choices for h(x) in that interval. Intuitively, it might help initially

to view dFX(x) as a unit impulse at x = 0.

Solution: The Riemann sum for this Stieltjes integral is
P

n h(xn)[F(yn)� F(yn�1)] where
yn�1 < xn  yn. For any partition {yn; n � 1}, consider the k such that yk�1 < 0  yk and
consider choosing either xn < 0 or xn � 0. In the first case h(xn)[F(yn)� F(yn�1)] = 0 and
in the second h(xn)[F(yn) � F(yn�1)] = 1. All other terms are 0 and this can be done for
all partitions as � ! 0, so the integral is undefined.

b) Let h(x) = u(x � a) and FX(x) = u(x � b) where a and b are in (�1, +1). Show that
R 1

�1
h(x)dFX(x)

exists if and only if a 6= b. Show that the integral has the value 1 for a < b and the value 0 for a > b. Argue

that this result is still valid in the limit of integration over (�1, 1).

Solution: Using the same argument as in (a) for any given partition {yn; n � 1}, consider
the k such that yk�1 < b  yk. If a = b, xk can be chosen to make h(xk) either 0 or 1,
causing the integral to be undefined as in (a). If a < b, then for a su�ciently fine partion,
h(xk) = 1 for all xk such that yk�1 < xk  yk. Thus that term in the Riemann sum is
1. For all other n, FX(yn) � FX(yn�1) = 0, so the Riemann sum is 1. For a > b and k
as before, h(xk) = 0 for a su�ciently fine partition, and the integral is 0. The argument
does not involve the finite limits of integration, so the integral remains the same for infinite
limits.

c) Let X and Y be independent discrete rv’s, each with a finite set of possible values. Show that
R1
�1 FX(z�

y)dFY (y), defined as a Stieltjes integral, is equal to the distribution of Z = X + Y at each z other than the

possible sample values of Z, and is undefined at each sample value of Z. Hint: Express FX and FY as sums

of unit steps. Note: This failure of Stieltjes integration is not a serious problem; FZ(z) is a step function,

and the integral is undefined at its points of discontinuity. We automatically define FZ(z) at those step

values so that FZ is a CDF (i.e., is continuous from the right). This problem does not arise if either X or

Y is continuous.

Solution: Let X have the PMF {p(x1), . . . , p(xK)} and Y have the PMF {pY (y1), . . . , pY (yJ)}.
Then FX(x) =

PK
k=1 p(xk)u(x� xk) and FY (y) =

PJ
j=1 q(yj)u(y � yj). Then

Z 1

�1
FX(z � y)dFY (y) =

KX
k=1

JX
j=1

Z 1

�1
p(xk)q(yj)u(z � yj � xk)du(y � yj).

From (b), the integral above for a given k, j exists unless z = xk + yj . In other words, the
Stieltjes integral gives the CDF of X + Y except at those z equal to xk + yj for some k, j,
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A.1. SOLUTIONS FOR CHAPTER 1 15

i.e., equal to the values of Z at which FZ(z) (as found by discrete convolution) has step
discontinuities.

To give a more intuitive explanation, FX(x) = Pr{X  x} for any discrete rv X has jumps
at the sample values of X and the value of FX(xk) at any such xk includes p(xk), i.e., FX

is continuous to the right. The Riemann sum used to define the Stieltjes integral is not
sensitive enough to ‘see’ this step discontinuity at the step itself. Thus, the stipulation that
Z be continuous on the right must be used in addition to the Stieltjes integral to define FZ

at its jumps.

Exercise 1.16: Let X1, X2, . . . , Xn, . . . be a sequence of IID continuous rv’s with the common probability
density function fX(x); note that Pr{X=↵} = 0 for all ↵ and that Pr{Xi=Xj} = 0 for all i 6= j. For n � 2,
define Xn as a record-to-date of the sequence if Xn > Xi for all i < n.

a) Find the probability that X2 is a record-to-date. Use symmetry to obtain a numerical answer without

computation. A one or two line explanation should be adequate).

Solution: X2 is a record-to-date with probability 1/2. The reason is that X1 and X2 are
IID, so either one is larger with probability 1/2; this uses the fact that they are equal with
probability 0 since they have a density.

b) Find the probability that Xn is a record-to-date, as a function of n � 1. Again use symmetry.

Solution: By the same symmetry argument, each Xi, 1  i  n is equally likely to be the
largest, so that each is largest with probability 1/n. Since Xn is a record-to-date if and
only if it is the largest of X1, . . . ,Xn, it is a record-to-date with probability 1/n.

c) Find a simple expression for the expected number of records-to-date that occur over the first m trials for

any given integer m. Hint: Use indicator functions. Show that this expected number is infinite in the limit

m !1.

Solution: Let In be 1 if Xn is a record-to-date and be 0 otherwise. Thus E [Ii] is the
expected value of the ‘number’ of records-to-date (either 1 or 0) on trial i. That is

E [In] = Pr{In = 1} = Pr{Xn is a record-to-date} = 1/n.

Thus

E [records-to-date up to m] =
mX

n=1

E [In] =
mX

n=1

1
n

.

This is the harmonic series, which goes to 1 in the limit m ! 1. If you are unfamiliar
with this, note that

P1
n=1 1/n �

R1
1

1
x dx = 1.

Exercise 1.17: (Continuation of Exercise 1.16) a) Let N1 be the index of the first record-to-date

in the sequence. Find Pr{N1 > n} for each n � 2. Hint: There is a far simpler way to do this than working

from (b) in Exercise 1.16.

Solution: The event {N1 > n} is the event that no record-to-date occurs in the first n
trials, which means that X1 is the largest of {X1,X2, . . . ,Xn}. By symmetry, this event
has probability 1/n. Thus Pr{N1 > n} = 1/n.
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b) Show that N1 is a rv (i.e., that N1 is not defective).

Solution: Every sample sequence for X1,X2, . . . , maps into either a positive integer or
infinity for N1. The probability that N1 is infinite is limn!1 Pr{N1 > n} = limn!1(1/n),
which is 0. Thus N1 is finite with probability 1 and is thus a rv.

c) Show that E [N1] = 1.

Solution: Since N1 is a nonnegative rv,

E [N1] =
Z 1

0
Pr{N1 > x} dx = 1 +

1X
n=1

1
n

= 1.

d) Let N2 be the index of the second record-to-date in the sequence. Show that N2 is a rv. You need not

find the CDF of N2 here.

Solution: For any given n1 and n2, 2  n1  n2, we start by finding Pr{N1 = n1, N2 > n2},
which we show can be expressed as

{N1 = n1, N2 > n2} = {Xn1=max(X1, . . . ,Xn2)}
\
{X1=max(X1, . . . ,Xn1�1)}. (A.6)

The first of these events, {Xn1 = max(X1, . . . ,Xn2)}, means that Xn1 must be a record-
to-date and also must be the last record to date up to and including n2. The second event,
{X1=max(X1, . . . ,Xn1�1)} ensures that Xn1 is the first record-to-date. The first event
has probability 1/n2. The second event has to do only with the ordering of the first n1�1
terms, and thus is independent of the first event and has probability 1/n1. Thus,

Pr{{N1 = n1, N2 > n2}} =
1

n2(n1�1)
.

The marginal probability Pr{N2 > n2} can now be found by summing over n1 and including
the event {N1 > n2, N2 > n2}, which has probability 1/n2.

Pr{N2 > n2} =
1
n2

+
n2X

n1=2

1
n2(n1 � 1)

This approaches 0 with increasing n2, so N2 is a rv. More precisely, we see that for large
n2, Pr{N2 > n2} ⇡ (lnn2)/n2, so that this approaches 0 somewhat more slowly than
Pr{N1 > n2}, which is not surprising. These results do not depend on the CDF of X
beyond the assumption that X is continuous since they are purely ordering results.

e) Contrast your result in (c) to the result from (c) of Exercise 1.16 saying that the expected number of

records-to-date is infinite over an an infinite number of trials. Note: this might be a shock to your intuition

— there is an infinite expected wait for the first of an infinite sequence of occurrences.

Solution: Even though the expected wait for the first record-to-date is infinite, it is still
a random variable, and thus the first record-to-date must eventually occur. We have also
shown that the second record-to-date eventually occurs, and it can be shown that the nth
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eventually occurs for all n. This makes the result in Exercise 1.16 unsurprising once it is
understood.

Exercise 1.18: (Another direction from Exercise 1.16) a) For any given n � 2, find the probability

that Xn and Xn+1 are both records-to-date. Hint: The idea in Exercise 1.16 (b) is helpful here, but the

result is not.

Solution: For both Xn+1 and Xn to be records-to-date it is necessary and su�cient for
Xn+1 to be larger than all the earlier Xi (including Xn) and for Xn to be larger than all of
the Xi earlier than it. Since any one of the first n + 1 Xi is equally likely to be the largest,
the probability that Xn+1 is the largest is 1/(n + 1). For Xn to also be a record-to-date, it
must be the second largest of the n + 1. Since all the first n terms are equally likely to be
the second largest (given that Xn+1 is the largest), the conditional probability that Xn is
the second largest is 1/n. Thus,

Pr{Xn+1 andXn are records-to-date} =
1

n(n + 1)
.

Note that there might be earlier records-to-date before n; we have simply calculated the
probability that Xn and Xn+1 are records-to-date.

b) Is the event that Xn is a record-to-date statistically independent of the event that Xn+1 is a record-to-

date?

Solution: Yes, we have found the joint probability that Xn and Xn+1 are records, and it
is the product of the events that each are records individually.

c) Find the expected number of adjacent pairs of records-to-date over the sequence X1, X2, . . . . Hint: A

helpful fact here is that 1
n(n+1) = 1

n �
1

n+1 .

Solution: Let In be the indicator function of the event that Xn and Xn+1 are records-to-
date. Then E [In] = Pr{In = 1} = 1

n(n+1) . The expected number of pairs of records (where,
for example, records at 2, 3, and 4 are counted as two pairs of records), the expected number
of pairs over the sequence is

E [Number of pairs] =
1X

n=2

1
n(n + 1)

=
1X

n=2

✓
1
n
� 1

n + 1

◆

=
1X

n=2

1
n
�

1X
n=3

1
n

=
1
2
,

where we have used the hint and then summed the terms separately. This hint is often
useful in analyzing stochastic processes.

The intuition here is that records-to-date tend to become more rare with increasing n (Xn

is a record with probability 1/n). As we have seen, the expected number of records from
2 to m is on the order of lnm, which grows very slowly with m. The probability of an
adjacent pair of records, as we have seen, decreases as 1/n(n+1) with n, which means that
if one does not occur for small n, it will probably not occur at all. It can be seen from this
that the time until the first pair of records is a defective random variable.
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Exercise 1.19: a) Assume that X is a nonnegative discrete rv taking on values a1, a2, . . . , and let

Y = h(X) for some nonnegative function h. Let bi = h(ai), i�1 be the ith value taken on by Y . Show that

E [Y ] =
P

i bipY (bi) =
P

i h(ai)pX(ai). Find an example where E [X] exists but E [Y ] = 1.

Solution: If we make the added assumption that bi 6= bj for all i 6= j, then Y has the
sample value bi if and only if X has the sample value ai; thus pY (bi) = pX(ai) for each i. It
then follows that

P
i bipY (bi) =

P
i h(ai)pX(ai). This must be E [Y ] (which might be finite

or infinite). The idea is the same without the assumption that bi 6= bj for i 6= j, but now the
more complicated notation Pr{b} =

P
i:h(ai)=b Pr{ai} must be used for each sample value

b of Y .

A simple example where E [X] is finite and E [Y ] = 1 is to choose a1, a2, . . . , to be 1, 2,
. . . and choose pX(i) = 2�i. Then E [X] = 2. Choosing h(i) = 2i, we have bi = 2i and
E [Y ] =

P
i 2

i · 2�i = 1. Without the assumption that bi 6= bj , the set of sample points of
Y is the set of distinct values of bi.

b) Let X be a nonnegative continuous rv with density fX(x) and let h(x) be di↵erentiable, nonnegative,

and nondecreasing in x. Let A(�) =
P

n�1 h(n�)[F(n�)� F(n� � �)], i.e., A(�) is a �th order approximation

to the Stieltjes integral
R

h(x)dF(x). Show that if A(1) < 1, then A(2�k)  A(2�(k�1)) < 1 for k � 1.

Show from this that
R

h(x) dF(x) converges to a finite value. Note: this is a very special case, but it can

be extended to many cases of interest. It seems better to consider these convergence questions as required

rather than consider them in general.

Solution: Let � = 2�k for k � 1. We take the expression for A(2�) and break each interval
of size 2� into two intervals each of size �; we use this to relate A(2�) to A(�).

A(2�) =
X
n�1

h(2n�)
h
F(2n�)� F(2n� � 2�)

i

=
X
n�1

h(2n�)
h
F(2n�)� F(2n� � �)

i
+
X
n�1

h(2n�)
h
F(2n� � �)� F(2n� � 2�)

i

�
X
n�1

h(2n�)
h
F(2n�)� F(2n� � �)

i
+
X
n�1

h(2n� � �)
h
F(2n� � �)� F(2n� � 2�)

i

=
X
m�1

h(m�)
h
F(m�)� F(m� � �)

i
= A(�),

where to get the final line, we substituted m for 2n in the first term of the preceding line
and m for 2n�1 in the second term, resulting in A(�). Thus A(2�k) is nonnegative and
nonincreasing in k. Since A(1)is finite y definition, limk!1A(2�k) has a limit, which must
be the value of the Stieltjes integral.

To be a little more precise about the Stieltjes integral, we see that A(�) as defined above
uses the largest value, h(n�), of h(x) over the interval x 2 [n���, n�]. By replacing h(n�) by
h(n���), we get the smallest value in each interval, and then the sequence is nonincreasing
with the same limit. For an arbitrary partition of the real line, rather than the equi-spaced
partition here, the argument here would have to be further extended.

Exercise 1.20: a) Consider a positive, integer-valued rv whose CDF is given at integer values by

FY (y) = 1� 2
(y + 1)(y + 2)

for integer y � 0.
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Use (1.31) to show that E [Y ] = 2. Hint: Note that 1/[(y + 1)(y + 2)] = 1/(y + 1)� 1/(y + 2).

Solution: Combining (1.31) with the hint, we have

E [Y ] =
X
y�0

F c
Y (y) =

X
y�0

2
y + 1

�
X
y�0

2
y + 2

=
X
y�0

2
y + 1

�
X
y�1

2
y + 1

= 2,

where the second sum in the second line eliminates all but the first term of the first sum.

b) Find the PMF of Y and use it to check the value of E [Y ].

Solution: For y = 0, pY (0) = FY (0) = 0. For integer y � 1, pY (y) = FY (y) � FY (y � 1).
Thus for y � 1,

pY (y) =
2

y(y + 1)
� 2

(y + 1)(y + 2)
=

4
y(y + 1)(y + 2)

.

Finding E [Y ] from the PMF, we have

E [Y ] =
1X

y=1

y pY (y) =
1X

y=1

4
(y + 1)(y + 2)

=
1X

y=1

4
y + 1

�
1X

y=2

4
y + 1

= 2.

c) Let X be another positive, integer-valued rv. Assume its conditional PMF is given by

pX|Y (x|y) =
1
y

for 1  x  y.

Find E [X | Y = y] and use it to show that E [X] = 3/2. Explore finding pX(x) until you are convinced that

using the conditional expectation to calculate E [X] is considerably easier than using pX(x).

Solution: Conditioned on Y = y, X is uniform over {1, 2, . . . , y} and thus has the condi-
tional mean (y +1)/2. If you are unfamiliar with this fact, think of adding {1+2+ · · ·+ y}
to {y + (y�1) + · · ·+ 1}, getting y(y + 1). Thus {1 + 2 + · · ·+ y} = y(y + 1)/2. It follows
that

E [X] = E [E [X|Y ]] = E


Y + 1

2

�
= 3/2.

Calculating this expectation in the conventional way would require first calculating pX(x)
and then calculating the expectation. Calculating pX(x),

pX(x) =
1X

y=x

pY (y)pX|Y (x|y) =
1X

y=x

4
y(y + 1)(y + 2)

1
y
.

It might be possible to calculate this in closed form, but it certainly does not look attractive.
Only a dedicated algebraic masochist would pursue this further given the other approach.
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d) Let Z be another integer-valued rv with the conditional PMF

pZ|Y (z|y) =
1
y2

for 1  z  y2.

Find E [Z | Y = y] for each integer y � 1 and find E [Z].

Solution: As in (c), E [Z|Y ] = Y 2+1
2 . Since pY (y) approaches 0 as y�3, we see that E

⇥
Y 2
⇤

is infinite and thus E [Z] = 1.

Exercise 1.21: a) Show that, for uncorrelated rv’s, the expected value of the product is equal to the

product of the expected values (by definition, X and Y are uncorrelated if E
⇥
(X �X)(Y � Y )

⇤
= 0).

Solution: This results from a straightforward computation.

0 = E
⇥
(X �X)(Y � Y )

⇤
= E [XY ]� E

⇥
XY

⇤
� E

⇥
XY

⇤
+ E

⇥
X Y

⇤
= E [XY ]�X Y .

b) Show that if X and Y are uncorrelated, then the variance of X + Y is equal to the variance of X plus

the variance of Y .

Solution: This is also straightforward, but a bit more tedious.

VAR [X + Y ] = E
⇥
(X + Y )2

⇤
� (E [X + Y ])2

= E
⇥
X2
⇤
+ 2E [XY ] + E

⇥
Y 2
⇤
�X

2 � 2XY � Y
2

= VAR [X] + VAR [Y ] + 2E [XY ]� 2X Y = VAR [X] + VAR [Y ] ,

where we used (a) in the last step.

c) Show that if X1, . . . , Xn are uncorrelated, then the variance of the sum is equal to the sum of the

variances.

Solution: If X1, . . . ,Xn are uncorrelated, then X1 + . . . ,Xn�1 is uncorrelated from Xn.
Thus, from (b),

VAR [X1 + · · ·+ Xn] = VAR [X1 + · · ·+ Xn�1] + VAR [Xn] .

Using this equation for n = 2 as the basis for induction, we see that VAR [X1 + · · ·+ Xn] =Pn
i=1 VAR [Xi].

d) Show that independent rv’s are uncorrelated.

Solution: If X and Y are independent, then E
⇥
(X �X)(Y � Y )

⇤
= 0, so X and Y are

uncorrelated

e) Let X, Y be identically distributed ternary valued random variables with the PMF pX(�1) = pX(1) =

1/4; pX(0) = 1/2. Find a simple joint probability assignment such that X and Y are uncorrelated but

dependent.

Solution: This becomes easier to understand if we express X as |X| ·Xs where |X| is the
magnitude of X and Xs is ±1 with equal probability. From the given PMF, we see that |X|
and Xs are independent. Similarly, let Y = |Y | · Ys. For reasons soon to be apparent, we
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construct a joint PMF by taking |Y | = |X| and by taking, Xs, Ys, and |X| to be statistically
independent.

Since X and Y are zero mean, they are uncorrelated if E [XY ] = 0. For the given joint
PMF, we have

E [XY ] = E [|X| ·Xs · |Y | · Ys] = E
⇥
|X|2

⇤
E [XsYs] = 0,

where we have used the fact that Xs and Ys are zero mean and independent. Thus X
and Y are uncorrelated. On the other hand, X and Y are certainly not independent since
|X| and |Y | are dependent and in fact identical. This should not be surprising since the
correlation of two rv’s is a single number, whereas many numbers are needed to specify
the joint distribution. This example was constructed through the realization that the type
of symmetry here between X and Y is su�cient to guarantee uncorrelatedness, but not
enough to cause independence.

f) You have seen that the moment generating function of a sum of independent rv’s is equal to the product

of the individual moment generating functions. Give an example where this is false if the variables are

uncorrelated but dependent.

Solution: We know (although we have not proven) that the MGF of a rv specifies the
distribution, and thus the MGF of a dependent sum cannot be the same as the MGF of an
independent sum with the same marginals. Thus any will work, but the one in (e) is quite
simple.

gX+Y (r) =
1
8
e�2r +

3
4

+
1
8
e2r

gX(r)gY (r) =
⇣1

4
e�r +

1
2

+
1
4
er
⌘2

=
1
16

e�2r +
1
4
e�r +

3
8

+
1
4
er +

1
16

e2r.

Exercise 1.22: Suppose X has the Poisson PMF, pX(n) = �n exp(��)/n! for n � 0 and Y has the

Poisson PMF, pY (n) = µn exp(�µ)/n! for n � 0. Assume that X and Y are independent. Find the

distribution of Z = X + Y and find the conditional distribution of Y conditional on Z = n.

Solution: The seemingly straightforward approach is to take the discrete convolution of
X and Y (i.e., the sum of the joint PMF’s of X and Y for which X + Y has a given value
Z = n). Thus

pZ(n) =
nX

k=0

pX(k)pY (n� k) =
nX

k=0

�ke��

k!
⇥ µn�ke�µ

(n� k)!

= e�(�+µ)
nX

k=0

�kµn�k

k!(n� k)!
.

At this point, one needs some added knowledge or luck. One might hypothesize (correctly)
that Z is also a Poisson rv with parameter � + µ; one might recognize the sum above, or
one might look at an old solution. We multiply and divide the right hand expression above
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