1

SOLUTIONS

Section 1

- 1.2. (a) Only β is onto. (b) All are one-to-one. (c) $\alpha(\mathbb{N}) = \{2, 4, 6, \ldots\}; \beta(\mathbb{N}) = \{2, 3, 4, \ldots\}; \gamma(\mathbb{N}) = \{1, 8, 27, \ldots\}.$
- 1.6. 6 6 1.4.
- ...there exist $x_1, x_2 \in S$ such that $x_1 \neq x_2$ and $\alpha(x_1) = \alpha(x_2)$. 1.8.
- 1.10. ...there is exactly one $x \in S$ such that $\beta = y$.
- 1.12.Onto. One-to-one. $f(P) = \{x : x > -4\}.$
- Not onto. Not one-to-one. f(P) = P. 1.14.
- 1.16. Onto. Not one-to-one. $f(P) = \mathbb{R}$.
- 1.18. $\beta(A) = \mathbb{N}. \ \beta(B) = \mathbb{N}. \ \beta(C) = B.$
- 1.20. All non-zero n.
- 1.21. (a) n^{m} .
 - (b) If m > n, there are none. If $m \le n$, there are $n(n-1)(n-2)\cdots(n-m+1)$.
- (a) 2. (b) 6. (c) $2^n 2$. 1.22.
- 1.23. (a) ... iff each horizontal line intersects the graph of f at most once.
 - (b) ... iff each horizontal line intersects the graph of f exactly once.
- 1.24.(a) $\{(a, b) : a = 1 \text{ or } a = -1\}$ (b) $\{(a, b) : a \neq 0\}$

$$1.25.$$
 (a)

$$\gamma(n) = \begin{cases} (n+2)/3 & \text{for } n = 1, 4, 7, \dots \\ (n+1)/3 & \text{for } n = 2, 5, 8, \dots \\ n/3 & \text{for } n = 3, 6, 9, \dots \end{cases}$$

(b) $\gamma(1) = 1$, $\gamma(2) = \gamma(3) = 2$, $\gamma(4) = \gamma(5) = \gamma(6) = 3$, and so on. A formula is $\gamma(k) = n$ for $(n-1)n/2 < k \le n(n+1)/2$, for each $n \in \mathbb{N}$.

(c) Let p_n denote the n^{th} prime $(p_1 = 2, p_2 = 3, ...)$. Define γ by $\gamma(p_n^k) = n$ for $k = 1, 2, 3, \ldots; \gamma(m)$ can then be anything for m not a prime power. (There are many other solutions of course.)

 $\mathbf{2}$

Assume that $\alpha : S \to S$ is one-to-one but not onto. Choose $a \in S$, and 1.26. define $\beta: S \to S$ by $\beta(x) = y$ iff $\alpha(y) = x$, for each $x \in \alpha(S)$, and $\beta(x) = a$ for $x \neq \alpha(S)$. Then β is onto but not one-to-one.

Assume that $\alpha: S \to S$ is onto but not one-to-one. For each $x \in S$, choose exactly one $y_x \in S$ such that $\alpha(y_x) = x$.

Define $\beta: S \to S$ by $\beta(x) = y_x$ for each $x \in S$. Then β is one-to-one but not onto.

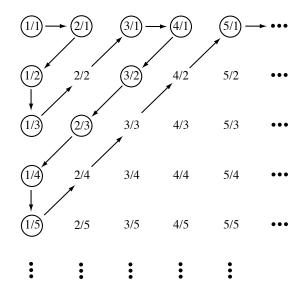
- For $y \in T$, $y \in \alpha(A \cup B)$ iff $y = \alpha(x)$ for some $x \in A \cup B$ iff $y = \alpha(x)$ for 1.27. some $x \in A$ or some $x \in B$ iff $y \in \alpha(A) \cup \alpha(B)$.
- (a) For $y \in T$, if $y \in \alpha(A \cap B)$ then y = a(x) for some $x \in A \cap B$ and so 1.28. $y \in \alpha(A)$ and $y \in \alpha(B)$, that is, $y \in \alpha(A) \cap \alpha(B)$.

(b) Let $S = T = \{1, 2\}, A = \{1\}, B = \{2\}, \text{ and } \alpha(1) = \alpha(2) = 1.$

Assume that α is one-to-one; by Problem 1.28(a) it suffices to prove that 1.29. $\alpha(A \cap B) \supseteq \alpha(A) \cap \alpha(B)$ for every pair of subsets A and B of S. If $y \in \alpha(A)$ $\alpha(A) \cap \alpha(B)$, then $y = \alpha(x_1)$ for some $x_1 \in A$ and $y = \alpha(x_2)$ for some $x_2 \in B$. But α is one-to-one so $x_1 = x_2$. Therefore $y \in \alpha(A \cap B)$.

Assume, conversely, that $\alpha(A \cap B) = \alpha(A) \cap \alpha(B)$ for every pair of subsets A and B of S. If $\alpha(x_1) = \alpha(x_2)$ for $x_1, x_2 \in S$, then with $A = \{x_1\}$ and $B = \{x_2\}$ we have $\alpha(A) \cap \alpha(B) = \{\alpha(x_1)\} = \{\alpha(x_2)\}$, and so $\alpha(A \cap B) = \{\alpha(x_2)\}$ $\{a(x_1)\} = \{\alpha(x_2)\}$, whence A = B and $x_1 = x_2$; therefore α is one-to-one.

- Let T denote an infinite subset of S, and let $\alpha: T \to T$ be one-to-one but 1.30. not onto. Define $\beta: S \to S$ by $\beta(t) = \alpha(t)$ for each $t \in T$, and $\beta(s) = s$ for all other $s \in S$.
- 1.31. List the positive fractions systematically, as shown.



3

Now follow the path indicated, circling an entry if it is not equal to some entry previously circled. Finally, write down the circled entries, in order, to obtain the one-to-one correspondence with the natural numbers.

Section 2

- 2.2. $(\gamma \circ \alpha)(n) = 4n^2$. Image = $\{4n^2 : n \in \mathbb{Z}\}.$
- 2.4. $(\beta \circ \beta)(n) = n + 2$. Image = \mathbb{Z} .
- 2.6. $(\gamma \circ \gamma)(n) = n^4$. Image = $\{n^4 : n \in \mathbb{Z}\}.$
- 2.8. Denote it by γ . Then $\gamma(a) = 3$, $\gamma(b) = 1$, $\gamma(c) = 2$.
- 2.10. (a) g(x) = -2x. (b) $g(x) = \sqrt[3]{x}$. (c) $g(x) = e^x$.
- 2.12. (a) True. (b) False. (c) True. (d) False.
- 2.14. None is invertible. (This can motivate a discussion of the inverse trigonometric functions.)

2.16.
$$\alpha \circ \beta = \iota_T$$
.

2.18. (a) Yes. Theorem 2.2 and Theorem 2.1(d).

(b) "If $\beta \circ \alpha$ is not invertible, then α is not one-to-one." False. For an example, see the answer to Problem 2.17(a) in Appendix E.

(c) "If $\beta \circ \alpha$ is invertible, then α is one-to-one." True. Theorem 2.2 and Theorem 2.1(d).

- 2.19. Assume S < T and T < U. If $\alpha : T \to S$ is onto and $\beta : U \to T$ is onto, then $\alpha \circ \beta : U \to S$ is onto. However, if $S \not\leq U$, then there also exists $\gamma : S \to U$ that is onto; this yields an onto mapping $\beta \circ \gamma : S \to T$, contradicting S < T. (Remark: This makes use of ideas from Section 2. The problem is in Section 1 as a special challenge. The proof given can be conveyed without the notation for composition, of course. Or the problem can be assigned after Section 2 has been covered.)
- 2.20. The same equations that show β is an inverse of α show that α is an inverse of β .
- 2.21. If $S = T = \{1, 2\}$, $U = \{a\}$, $\alpha(1) = \alpha(2) = 1$, and $\beta(1) = \beta(2) = a$, then $\beta \circ \alpha$ is onto but α is not onto.
- 2.22. If $S = \{1\}$, $T = U = \{a, b\}$, $\alpha(1) = a$, and $\beta(a) = \beta(b) = a$, then $\beta \circ \alpha$ is one-to-one but β is not one-to-one.
- 2.23. If $y \in T$, then $y = \alpha(x)$ for some $x \in S$ because α is onto. Therefore $\beta(y) = (\beta \circ \alpha)(x) = (\gamma \circ \alpha)(x) = \gamma(y)$ because $\beta \circ \alpha = \gamma \circ \alpha$. Thus $\beta = \gamma$.

4

- If $x \in S$, then $\alpha(\beta(x)) = \alpha(\gamma(x))$ because $\alpha \circ \beta = \alpha \circ \gamma$. Therefore $\beta(x) = \alpha \circ \gamma$. 2.24. $\gamma(x)$ because α is one-to-one. Thus $\beta = \gamma$.
- Let $S = \{1\}, T = U = \{a, b\}, \alpha(1) = a, \beta(a) = \gamma(a) = a, \beta(b) = b$, and 2.25. $\gamma(b) = a.$
- Let $S = U = \{1\}, T = \{a, b\}, \alpha(a) = \alpha(b) = 1, \beta(1) = a, \text{ and } \gamma(1) = b.$ 2.26.
- 2.27.(a) If α and β are invertible, then both are one-to-one and onto by Theorem 2.2. Then $\beta \circ \alpha$ is one-to-one and onto by Theorem 2.1, parts (c) and (a). Therefore $\beta \circ \alpha$ is invertible by Theorem 2.2.

(b) If $\beta \circ \alpha$ is invertible, then it is one-to-one and onto by Theorem 2.2. Therefore β is onto by Theorem 2.1(b), and α is one-to-one by Theorem 2.1(d).

Section 3

- 3.2. Not an operation.
- Operation. Neither associative nor commutative. No identity. 3.4.
- 3.6. Not an operation.
- 3.8. Not an operation.
- 3.10. The identity mapping from S to S.
- 3.12. (b) Let u * v = v.
- 3.14. ...for some $a, b, c, \in S$.
- 3.16. $\dots e * a \neq a \text{ or } a * e \neq a \text{ for some } a \in S.$
- a * c = c, b * a = b, b * c = d, b * d = a, d * a = d, d * c = b.3.18.
- The positive rational numbers. (Since $2 \in B$, $2/2 = 1 \in B$. Therefore each 3.20. positive integer is in B, and so, by division again, each positive rational number is in B.)
- In order, the answers are 1, 2^4 , 3^9 , and n^{n^2} . 3.21.
- In order, the answers are 1, 2^3 , 3^6 , and $n^{n(n+1)/2}$. (There is complete freedom) 3.22. of choice everywhere on and above the main diagonal of the Cayley table. This gives $1 + 2 + \cdots + n = n(n+1)/2$ choices.)
- 3.23. (a) Let u * u = u and u * v = v * u = v. Then v * v can be either u or v, so it can be done in two ways.
 - (b) No, because otherwise u = u * v = v.
 - (c) If e and f were both identity elements, then e = e * f = f.

5

- 3.24.w * x = z, w * y = w, x * y = x, x * z = y, y * w = w, y * x = x,y * y = y, y * z = z, z * w = x, z * x = y, z * y = z.
- Straightforward, using commutativity of addition of real numbers. 3.25.
- One example: 3.26.

 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$

- 3.27. Straightforward; verify that the product of the given matrix and the matrix on the right-hand side of equation is the identity matrix.
- If a = e, then e * (b * c) = b * c and (e * b) * c = b * c for all b and c. The 3.28. cases b = e and c = e are similar.
- If $x \in C(a)$ and $y \in C(a)$, then a * (x * y) = (a * x) * y = (x * a) * y =3.29. x * (a * y) = x * (y * a) = (x * y) * a, so $x * y \in C(a)$.
- 3.30. For a * (b * (c * d)) = (a * b) * (c * d), see the second paragraph of Section 14. The other cases are similar.
- If $y, z \in S$, then y * z = e * (y * z) = (e * z) * y = z * y, where the middle 3.31.equality is the given condition with x = e; thus y * z = z * y and * is commutative. Using commutativity, we can write x * (y * z) = (x * z) * y as x * (z * y) = (x * z) * y, so * is associative.

3.32.
$$b = b * e = b * (a * c) = (b * a) * c = e * c = c$$

Section 4

4.2. (a)
$$\begin{array}{c|c} \circ & \alpha & \beta & \gamma & \delta \\ \hline \alpha & \alpha & \beta & \gamma & \delta \\ \beta & \beta & \alpha & \delta & \gamma \\ \gamma & \gamma & \gamma & \gamma & \gamma \\ \delta & \delta & \delta & \delta \end{array}$$
 (b) Theorem 4.1(a).
(c) No. For example, $\beta \circ \gamma \neq \gamma \circ \beta$.
(d) α .

(a) Theorem 2.1(c) proves that composition is an operation on N(S), and 4.4. Theorem 4.1(a) proves that it is associative.

(b) Yes. (The identity mapping is one-to-one.)

- (c) S finite.
- (a) $\{\alpha, \alpha^2, \alpha^3, \alpha^4\}$, where $\alpha^2 = \alpha \circ \alpha$ and so on. 4.5.
 - (b) $\{\alpha, \alpha^2, \dots, \alpha^{12}\}$
 - (c) $\{\alpha, \alpha^2, \ldots, \alpha^{2k}\}$. These 2k elements are distinct.
- 4.6. (a) $\alpha_{1,0} \circ \alpha_{a,b} = \alpha_{a,b} = \alpha_{a,b} \circ \alpha_{1,0}$, because $\alpha_{a,b} \circ \alpha_{c,d} = \alpha_{ac,ad+b}$.

6

(b) One-to-one: $\alpha_{a,b}(x_1) = \alpha_{a,b}(x_2)$ iff $ax_1 + b = ax_2 + b$ iff $x_1 = x_2$. Onto: If $y \in \mathbb{R}$, then $\alpha_{a,b}[(1/a)(y-b)] = y$.

(c)
$$(c,d) = (1/a, -b/a).$$

4.7.(a) $\alpha_{a,b}$ is a dilation; the line shrinks toward the origin by a factor of a.

(b) $\alpha_{a,b}$ reflects points through the origin and also magnifies or dilates if |a| > 1 or |a| < 1, respectively.

- (c) $\alpha_{a,b}$ translates each point |b| units to the left.
- 4.8. (a) The operation is associative and commutative and $\alpha_{1,0}$ is an identity element.
 - (b) Same as (a).
 - (c) $\alpha_{a,b} = \alpha_{1,b} \circ \alpha_{a,0}$.

4.9.
$$D = \{ \alpha_{1,n} : n \in \mathbb{N} \}$$

Let $S = \{a, b, ...\}$, and define π and τ in M(S) by $\pi(x) = a$ for all $x \in S$ 4.10. and $\tau(x) = b$ for all $x \in S$. Then $\pi \circ \tau = \pi$ but $\tau \circ \pi = \tau$.

4.11. (a)

$$\circ$$
 α_1 α_2 α_3 α_4 α_5 α_6
 α_1 α_1 α_2 α_3 α_4 α_5 α_6
 α_2 α_2 α_1 α_5 α_6 α_3 α_4
 α_3 α_3 α_4 α_1 α_2 α_6 α_5
 α_4 α_4 α_3 α_6 α_5 α_1 α_2
 α_5 α_5 α_6 α_2 α_1 α_4 α_3
 α_6 α_6 α_5 α_4 α_3 α_2 α_1

(b) α_1

(c) The inverse of α_4 is α_5 , the inverse of α_5 is α_4 , and each of the other elements is its own inverse.

(d) No.

(e) Theorem 4.1.

4.12. Use the calculation in the proof of Theorem 4.1.

4.13.
$$\beta = \beta \circ \iota_T = \beta \circ (\alpha \circ \gamma) = (\beta \circ \alpha) \circ \gamma = \iota_S \circ \gamma = \gamma.$$

- 4.14. Yes.
- If α and β are linear, $x, y \in V$, and a and b are scalars, then $(\alpha \circ \beta)(ax+by) =$ 4.15. $\alpha[\beta(ax+by)] = \alpha[\alpha\beta(x)+b\beta(y)] = \alpha\alpha[\beta(x)]+b\alpha[\beta(y)] = \alpha(\alpha\circ\beta)(x)+b(\alpha\circ\beta)(x)$ $(\beta)(y)$, and so $\alpha \circ \beta$ is linear.

7

(a) If $\beta \circ \alpha = \iota_S$, then α is one-to-one by Theorem 2.1(c). If α is one-to-one, 4.16. define β by $\beta(x) = y$ iff $\alpha(y) = x$ for each x in the image of α , and define β arbitrarily for the other elements of S (if there are any); then $\beta \circ \alpha = \iota_S$.

(b) If $\alpha \circ \beta = \iota_S$, then α is onto by Theorem 2.1(b). If α is onto, then for each $y \in S$ choose $x \in S$ such that $\alpha(x) = y$ and let $\beta(y) = x$; then $\alpha \circ \beta = \iota_S.$

Section 5

- 5.2.Group; 1 is the identity, and s/r is the inverse of r/s.
- 5.4.Not a group, because 0 has no inverse.
- 5.6.Not a group, because of lack of closure.
- Group, 0 is the identity, and -n is the inverse of n. 5.8.
- 5.10.Not a group, because subtraction is not associative (also, there is no identity).
- $1 = 2^0 3^0$ is the identity and $2^{-m} 3^{-n}$ is the inverse of $2^m 3^n$. 5.12.
- 5.14. Associativity is similar to that in Problem 5.13. The identity here is e defined by e(x) = 1 for each $x \in \mathbb{R}$. The inverse of f is q, defined by q(x) = 1/f(x)for each $x \in \mathbb{R}$. The operation in Example 5.6 is composition.
- If |S| > 1, then M(S) contains elements without inverses. (See Problem 4.1, 5.15.for example.)
- 5.16.The elements of the identity matrix are obviously rational. And it follows from equation (3.13) that if a matrix has rational entries, then so does its inverse. The group is non-Abelian.
- Associativity is proved in linear algebra. The identity is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and the 5.17.inverse of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
- 5.18.Here is a typical calculation involving a (there are 19 such products): b *(a * c) = b * c = (b * a) * c. Here is a typical calculation without a (there are 8 such products): b * (c * b) = b * a = b and (b * c) * b = a * b = b.
- 5.19.(a) $\alpha_{a,b} \circ \alpha_{a^{-1},-a^{-1}b} = \alpha_{aa^{-1},a(-a^{-1}b)+b} = \alpha_{1,0}$; the composition in the other order is similar.

(b) One example: $\alpha_{1,1} \circ \alpha_{0,1} \neq \alpha_{0,1} \circ \alpha_{1,1}$.

8

- 5.22.Let c denote the inverse of b, and let e denote the identity element. Then a = a * e = a * (b * c) = (a * b) * c = b * c = e.
- 5.23.e * a = a for each $a \in G$ and a * f = a for each $a \in G$. The proof also assumes the existence of at least one identity element. (Properties of equality are used also. See Section 9.)
- For $\alpha, \beta \in G^S$, define $\alpha\beta$ by $(\alpha\beta)(x) = \alpha(x)\beta(x)$ for each $x \in S$. 5.24.

Section 6

6.2. (a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$
(d) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$ (f) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$
(g) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$ (h) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$

6.4. (a)
$$(1)(2 \ 6)(3 \ 4 \ 5)$$
 or $(2 \ 6)(3 \ 4 \ 5)$
(b) $(1 \ 2 \ 3 \ 4)$ (c) $(1 \ 2)$ (d) $(1 \ 4)(2 \ 5 \ 3)$

6.5.(a) (1), (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4),(2 4 3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)(b) The first ten elements, as listed in rt (a).

6.6. (a) 2 (b)
$$(n-1)!$$

6.7. (a) $(a_k a_{k-1} \cdots a_2 a_1)$ (b) Only k = 1 and k = 2.

6.8.
$$\alpha = (2 \ 3), \beta = (1 \ 3), \beta \alpha = (1 \ 3 \ 2), \text{ and } \alpha \beta = (1 \ 2 \ 3).$$

- 6.9. Use the suggestion and the fact that every element is a product of cycles.
- 6.10. ...for some $a, b \in G$.
- Let $S = \{x, y, z, \dots\}$, and define α and β in Sym(S) by $\alpha(x) = x$, $\alpha(y) = z$, 6.11. $\alpha(z) = y, \ \beta(x) = z, \ \beta(y) = y, \ \beta(z) = x, \ \text{and} \ \alpha(s) = \beta(s) = s \ \text{for all other}$ $s \in S$. Then $\alpha \circ \beta \neq \beta \circ \alpha$.
- 6.12. M(S) contains all four mappings from S to S, while Sym(S) contains only the two invertible mappings.
- 6.13. $\alpha = (1 \ 2 \ \cdots \ k)$ for small k will reveal the idea.

9

- 6.14. $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$
- 6.15. n(n-1)(n-2)/3
- 6.16. (a) a_{k+1} for k < s, and a_1 for k = s.
 - (b) b_{k+1} for k < t, and b_1 for k = t.
 - (c) m (d) $\alpha \circ \beta = \beta \circ \alpha$.

Section 7

7.2.(a), (b), and (d) are subgroups, (c) is not.

7.4. (a)
$$G_T = G_{(T)} = \{(1), (2 \ 3 \ 4), (2 \ 4 \ 3), (2 \ 3), (2 \ 4), (3 \ 4)\}$$

(b) $G_T = \{(1)\}.$ $G_{(T)} = \{(1), (1 \ 2 \ 3), (1 \ 3 \ 2), (1 \ 2), (1 \ 3), (2 \ 3)\}$

- 7.6. This group consists of all translations.
- θ is one-to-one: if $\theta(a) = \theta(b)$, then $a(1 \ 2) = b(1 \ 2)$ so a = b by right 7.7. cancellation. If b is odd, then $b(1 \ 2) \in A_n$ and $\theta(b(1 \ 2)) = b$.
- 7.8. $(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$
- 7.9. Only (a) and (c) are subgroups.
- 7.10. Straightforward, using Theorem 7.1.
- 7.11. (a) Straightforward, using Theorem 7.1.

(b) For example, use all the 2×2 matrices with even integers as entries.

- 7.12. $\{n/2: n \in \mathbb{Z}\}$ would do.
- 7.13. Use Theorem 7.1. (Modify the proof of Theorem 15.1.)
- $(1\ 2)(1\ 2\ 3) = (2\ 3) \notin H \cup K$ 7.14.
- Follow the suggestion at the end of the proof of Theorem 7.2. (Replace 7.15. " $(\alpha \circ \beta)(t) = t$ for every $t \in T$ " by " $(\alpha \circ \beta)(T) = T$ ", and so on.)
- |T| = 0 or |T| = 1. 7.16.
- 7.17. Since $G = S_n$, $G_{(T)}$ consists precisely of all the permutations that can be written as $\beta \circ \gamma$, when β is a permutation of T (leaving the elements of T' fixed) and γ is a permutation of T' (leaving the elements of T fixed). The symmetry of this characterization shows that $G_{(T)} = G_{(T')}$.
- n = 1 and $T = \phi$ or T = S, or n = 2 and |T| = 1. 7.18.

10

- |T| = n or |T| = n 1. 7.19.
- (a) (n-k)! (b) k!(n-k)! (See 7.17.) 7.20.
- If x * x = x, then $x^{-1} * (x * x) = x^{-1} * x = e$, and therefore $(x^{-1} * x) * x = e^{-1}$ 7.21. $e \ast x = x = e.$
- 7.22. Assume first that H is a subgroup. Then (a) here is true by (a) of Theorem 7.1. Moreover, if $a, b \in H$, then $b^{-1} \in H$ by (c) of Theorem 7.1, and then $a * b^{-1} \in H$ by (b) of Theorem 7.1; therefore (b) here is true. Now assume that (a) and (b) here are true; it suffices to show that (a), (b), and (c) of Theorem 7.1 must be true as a consequence. By (a) here, condition (a) of Theorem 7.1 is true. If $a, b \in H$, then $e = a * a^{-1} \in H$ by condition (b) here; therefore $b^{-1} = e * b^{-1} \in H$ by condition (b) here; $a * b = a * (b^{-1})^{-1} \in H$ by condition (b) here; this gives condition (b) of Theorem 7.1. The preceding argument also shows why (c) of Theorem 7.1 is true.
- Use Theorem 7.1. First, a * e = e * a, so $e \in C(a)$ and $C(a) \neq \phi$. Second, 7.23. if $x, y \in C(a)$, then a * (x * y) = (a * x) * y = (x * a) * y = x * (a * y) =x * (y * a) = (x * y) * a, so $x * y \in C(a)$. Finally, if $x \in C(a)$, then a * x = x * a, so $x^{-1} * (a * x) * x^{-1} = x^{-1} * (x * a) * x^{-1}$, $x^{-1} * a = a * x^{-1}$, and $x^{-1} \in C(a)$.
- Similar to Problem 7.23. 7.24.
- 7.25.(a) Let $S = \mathbb{Z}$, $T = \mathbb{N}$, and define α by $\alpha(n) = n + 1$ for each $n \in S$.

(b) Let $S = \mathbb{Z}$, $T = \mathbb{N}$, and G = Sym(S). With α defined as in part (a), $\alpha \in G_{[T]}$ but $\alpha^{-1} \notin G_{[T]}$, so $G_{[T]}$ is not a subgroup of G.

Section 8

- 8.2. Similar to 8.1. (Table 8.1 provides a check.)
- 8.4. The group contains only the identity and reflection through the bisector of the odd angle (the one unequal to the other two).
- 8.5. There will be five rotations (including the identity) and five reflections.
- 8.6. $\mu_0 \mapsto (a)$ $\mu_H \mapsto (a \ d)(b \ c)$ $\mu_{90} \mapsto (a \ b \ c \ d)$ $\mu_V \mapsto (a \ b)(c \ d)$ $\mu_{180} \mapsto (a \ c)(b \ d)$ $\mu_1 \mapsto (b \ d)$ $\mu_{270} \mapsto (a \ d \ c \ b)$ $\mu_2 \mapsto (a \ c)$
- Denote $(a \ b)(c)(d)$ by α , and use the notation of Theorem 8.1. 8.7. Then $d(\alpha(a), \alpha(c)) = d(b, c) \neq d(a, c).$
- 8.8. No. For example, any two concentric circles would have identical symmetry groups.
- 8.9. $\{\mu_0, \ \mu_{180}, \ \rho_1, \ \rho_2\}$