SOLUTIONS TO PROBLEMS 2

2.1 From (2.8),

$$x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)x + \left(\frac{1}{\alpha\beta}\right) = 0$$
, i.e. $\alpha\beta x^2 - (\alpha + \beta)x + 1 = 0$.

But $\alpha + \beta = 2$ and $\alpha\beta = -3$, so the required equation is $3x^2 + 2x - 1 = 0$.

2.2 Rearranging the expression for p, we have the equation

$$5x^2 - 3px + (p+10) = 0$$
.

Then using the general formula for the solution of a quadratic equation, (2.6b), real roots are only possible if $9p^2 \ge 20(p+10)$.

2.3 We need to solve the equation y = mx + c simultaneously with the equation for the circle. Substituting for y gives, after rearrangement,

$$(1+m^2)x^2 + 2mcx + (c^2 - r^2) = 0,$$

which is a quadratic of the form $\alpha x^2 + \beta x + \gamma = 0$. This will have a single real root if $\beta^2 = 4\alpha\gamma$, i.e.

$$4m^2c^2 = 4(1+m^2)(c^2-r^2), \quad \text{or} \quad m = \pm \left(\frac{c^2-r^2}{r^2}\right)^{1/2}.$$

Thus there are two tangents as shown in the figure below.

2.4 The equations of the two circles are

$$(x-1)^2 + (y+1)^2 = 4$$
, i.e. $x^2 + y^2 - 2x + 2y - 2 = 0$, (1)

https://ebookyab.ir/solution-manual-mathematics-for-physicists-martin-shaw/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

and

$$x^2 + y^2 = 4 (2)$$

respectively. Subtracting (2) from (1) gives

$$-2x + 2y = -2$$
, i.e. $y = x - 1$ (3)

and substituting in (2) gives $2x^2 - 2x - 3 = 0$, with solutions

$$x = (1 + \sqrt{7})/2$$
 and $x = (1 - \sqrt{7})/2$

respectively. From (3) the corresponding values of y are

$$y = (-1 + \sqrt{7})/2$$
 and $y = (-1 - \sqrt{7})/2$.

Hence the co-ordinates of the points of intersection are

$$(x,y) = \left(\frac{1}{2} + \frac{\sqrt{7}}{2}, -\frac{1}{2} + \frac{\sqrt{7}}{2}\right) \text{ and } \left(\frac{1}{2} - \frac{\sqrt{7}}{2}, -\frac{1}{2} - \frac{\sqrt{7}}{2}\right).$$

The length of the chord is $\sqrt{14}$ and the radius of the circle is 2 in each case. Hence the cosine rule (2.40a), with $a=\sqrt{14},\,b=c=2$, gives $\cos A=-6/8$ and $A=2.42\,\mathrm{rad}=139^\circ$.

2.5 (a) We have

$$(x^3 + x^2 - x - 4) = (x - 1)(ax^2 + bx + c) + R(x).$$

Setting x=1 gives R=-3; and multiplying out the bracket and equating powers of x gives $a=1,\,b=2,\,\,c=1$, so that

$$(x^3 + x^2 - x - 4) = (x - 1)(x^2 + 2x + 1) - 3$$
.

(b) By long division,

$$3x^{2} + 5x + 5$$

$$(x^{2} - 2x + 3) \overline{)3x^{4} - x^{3} + 4x^{2} + 5x + 15}$$

$$3x^{4} - 6x^{3} + 9x^{2}$$

$$5x^{3} - 5x^{2} + 5x + 15$$

$$5x^{3} - 10x^{2} + 15x$$

$$5x^{2} - 10x + 15$$

$$5x^{2} - 10x + 15$$

so that

$$3x^4 - x^3 + 4x^2 + 5x + 15 = (x^2 - 2x + 3)(3x^2 + 5x + 5),$$

with the remainder R(x) = 0. Since both $(x^2 - 2x + 3)$ and $(3x^2 + 5x + 5)$ are of the form $ax^2 + bx + c$ with $b^2 < 4ac$, both of them, and hence the quartic f(x) itself, have no real roots.

2.6 By inspection, one finds that x = 1 and x = 2 are roots. Hence, by the factor theorem,

$$x^{4} - 2x^{3} - 2x^{2} + 5x - 2 = (x - 1)(x - 2)(ax^{2} + bx + c).$$

By comparing powers of x^4 on both sides one finds a=1, and by comparing the constant term, c=-1. Hence

$$x^4 - 2x^3 - 2x^2 + 5x - 2 = (x - 1)(x - 2)(x^2 + bx - 1)$$
.

Also, comparing powers of x^3 gives b = 1 and hence

$$x^4 - 2x^3 - 2x^2 + 5x - 2 = (x - 1)(x - 2)(x^2 + x - 1)$$
.

The roots of $(x^2 + x - 1)$ are $(-1 \pm \sqrt{5})/2$, and so finally the four roots are

$$x = 1, 2, (-1 + \sqrt{5})/2, (-1 - \sqrt{5})/2$$
.

2.7 Using the bisection method gives,

n	\boldsymbol{x}_{n}		$f(x_n)$
1	$x_1 =$	1.500000000	-0.12500000
2	$x_{_{2}}=$	1.600000000	0.37600000
3	$x_3 = \frac{1}{2}(x_1 + x_2) =$	1.550000000	0.11888000
4	$x_4 = \frac{1}{2}(x_1 + x_3) =$	1.525000000	-0.00467200
5	$x_5 = \frac{1}{2}(x_3 + x_4) =$	1.537500000	0.05669000
6	$x_6 = \frac{1}{2}(x_4 + x_5) =$	1.531250000	0.02591100
7	$x_7 = \frac{1}{2}(x_4 + x_6) =$	1.528125000	0.01059000
8	$x_8 = \frac{1}{2}(x_4 + x_7) =$	1.526562500	0.00295500
9	$x_9 = \frac{1}{2}(x_4 + x_8) =$	1.525781250	-0.00086020
10	$x_{10} = \frac{1}{2}(x_8 + x_9) =$	1.526171875	0.00104700
11	$x_{11} = \frac{1}{2}(x_9 + x_{10}) =$	1.525976563	0.00009315

Thus the root correct to three decimal places is 1.526.

2.8 (a) Setting

$$\frac{2(x^2 - 9x + 11)}{(x - 2)(x - 3)(x + 4)} = \frac{A}{(x - 2)} + \frac{B}{(x - 3)} + \frac{C}{(x + 4)},$$

gives

$$2(x^{2} - 9x + 11) = A(x - 3)(x + 4) + B(x - 2)(x + 4) + C(x - 2)(x - 3)$$

and using x=2, x=3 and x=-4 in turn, yields A=1, B=-2 and C=3, so that

$$\frac{2(x^2 - 9x + 11)}{(x - 2)(x - 3)(x + 4)} = \frac{1}{(x - 2)} - \frac{2}{(x - 3)} + \frac{3}{(x + 4)}.$$

(b) Setting

$$\frac{7x^2 + 6x - 13}{(2x+1)(x^2 + 2x - 4)} = \frac{Ax + B}{x^2 + 2x - 4} + \frac{C}{2x+1},$$

gives

$$7x^{2} + 6x - 13 = (Ax + B)(2x + 1) + C(x^{2} + 2x - 4)$$

and equating coefficients of powers of x yields A = 2, B = -1 and C = 3, so that

$$\frac{7x^2 + 6x - 13}{(2x+1)(x^2 + 2x - 4)} = \frac{2x-1}{x^2 + 2x - 4} + \frac{3}{2x+1}.$$

(c) Setting

$$\frac{2(3x^2+4x+2)}{(x-1)(2x+1)^2} = \frac{A}{x-1} + \frac{B}{2x+1} + \frac{C}{(2x+1)^2} ,$$

gives

$$2(3x^{2} + 4x + 2) = A(2x+1)^{2} + B(2x+1)(x-1) + C(x-1)$$

and equating coefficients of powers of x yields A = 2, B = -1 and C = -1, so that

$$\frac{2(3x^2+4x+2)}{(x-1)(2x+1)^2} = \frac{2}{x-1} - \frac{1}{2x+1} - \frac{1}{(2x+1)^2}.$$

2.9 (a) Performing a long division gives

$$\frac{x^3 - 2x^2 + 10}{(x-1)(x+2)} = (x-3) + \frac{5x+4}{(x-1)(x+2)}.$$

Then, setting

$$\frac{5x+4}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$

gives

$$A(x+2) + B(x-1) = 5x + 4 \Rightarrow A = 3, B = 2$$

and so

$$\frac{x^3 - 2x^2 + 10}{(x-1)(x+2)} = (x-3) + \frac{3}{(x-1)} + \frac{2}{(x+2)}.$$

(b) Setting

$$\frac{3x^2 - 5x - 4}{(x+2)(3x^2 + x - 1)} = \frac{A}{(x+2)} + \frac{Bx + C}{(3x^2 + x - 1)},$$

gives

$$3x^2 - 5x - 4 = A(3x^2 + x - 1) + (x + 2)(Bx + C),$$

and choosing x = -2, yields A = 2. Then

$$3x^2 - 5x - 4 = (6+B)x^2 + (2B+C+2)x + (2C-2)$$

and equating coefficients of powers of x, gives B = -3 and C = -1. So finally,

$$\frac{3x^2 - 5x - 4}{(x+2)(3x^2 + x - 1)} = \frac{2}{(x+2)} - \frac{3x+1}{(3x^2 + x - 1)}.$$

(c) Setting

$$\frac{3x^2 - x + 2}{(x - 1)(x - 3)^3} = \frac{A}{(x - 1)} + \frac{B}{(x - 3)} + \frac{C}{(x - 3)^2} + \frac{D}{(x - 3)^3},$$

gives

$$3x^{2} - x + 2 = A(x-3)^{3} + B(x-1)(x-3)^{2} + C(x-1)(x-3) + D(x-1).$$

Letting x=1 yields A=-1/2, and letting x=3 yields D=13. Then equating the coefficients of x^3 gives B=1/2 and equating the constants on both sides gives C=2. So, finally

$$\frac{3x^2 - x + 2}{(x - 1)(x - 3)^3} = -\frac{1}{2(x - 1)} + \frac{1}{2(x - 3)} + \frac{2}{(x - 3)^2} + \frac{13}{(x - 3)^3}.$$

2.10 (a) Using the double-angle formulas,

$$\cos 4\theta \equiv 2\cos^2 2\theta - 1$$
 and $\cos 2\theta \equiv 2\cos^2 \theta - 1$,

so that

$$\cos 4\theta \equiv 2(2\cos^2\theta - 1)^2 \equiv 8\cos^4\theta - 8\cos^2\theta + 1.$$

(b) Using the identities (2.36c) and (2.36d).

$$\sin(n\theta) + \sin[(n+4)\theta] \equiv 2\sin[(n+2)\theta]\cos(2\theta)$$

and

$$\cos(n\theta) + \cos[(n+4)\theta] \equiv 2\cos[(n+2)\theta]\cos(2\theta),$$

in the left-hand side of the identity gives

$$\frac{\sin[(n+2)\theta][1+2\cos(2\theta)]}{\cos[(n+2)\theta][1+2\cos(2\theta)]} \equiv \tan[(n+2)\theta].$$

(c)

$$\left(\frac{\sin 5\theta}{\sin \theta}\right)^{2} - \left(\frac{\cos 5\theta}{\cos \theta}\right)^{2} = \left(\frac{\sin 5\theta}{\sin \theta} - \frac{\cos 5\theta}{\cos \theta}\right) \left(\frac{\sin 5\theta}{\sin \theta} + \frac{\cos 5\theta}{\cos \theta}\right)$$

$$= \left(\frac{\sin 5\theta \cos \theta - \cos 5\theta \sin \theta}{\sin \theta \cos \theta}\right) \left(\frac{\sin 5\theta \cos \theta + \cos 5\theta \sin \theta}{\sin \theta \cos \theta}\right)$$

$$= \frac{4\sin 4\theta \sin 6\theta}{\sin 2\theta \sin 2\theta}.$$

Then from (2.36c), $\sin 6\theta$ may be written

$$\sin 6\theta = \sin 4\theta \cos 2\theta + \cos 4\theta \sin 2\theta ,$$

and using the double-angle formulas (2.37a) on the right-hand side,

$$\sin 6\theta = 3\sin 2\theta - 4\sin^3 2\theta$$

so that

$$\frac{4\sin 4\theta \sin 6\theta}{\sin 2\theta \sin 2\theta} = \frac{8\sin 2\theta \cos 2\theta (3\sin 2\theta - 4\sin^3 2\theta)}{\sin^2 2\theta},$$

and finally

$$\left(\frac{\sin 5\theta}{\sin \theta}\right)^2 - \left(\frac{\cos 5\theta}{\cos \theta}\right)^2 = 8\cos 2\theta (3 - 4\sin^2 2\theta) = 8\cos 2\theta (4\cos^2 2\theta - 1).$$

2.11 (a) Using the double-angle formula (2.37a), we have

$$2\cos\theta\cos2\theta + 2\sin\theta\cos\theta = 2\cos\theta(3\cos^2\theta - 1),$$

so the first solution is $\cos \theta = 0$, i.e. $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$. If $\cos \theta \neq 0$, we can divide by $2\cos \theta$ to give

$$\cos 2\theta + \sin \theta = 3\cos^2 \theta - 1,$$

which again using the double-angle formula and writing everything in terms of $\sin \theta$, reduces to the quadratic $\sin^2 \theta + \sin \theta - 1 = 0$ which leads directly to solutions $\theta = 0.666$ and 2.475 radians.

(b) Combining the first and third terms using (2.36) gives

$$2\sin 2\theta\cos\theta - 2\sin\theta\cos\theta = 0,$$

https://ebookyab.ir/solution-manual-mathematics-for-physicists-martin-shaw/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

so the first solution is

$$\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}, \frac{3\pi}{2}$$
.

If $\cos \theta \neq 0$, then dividing gives

$$\sin\theta(2\cos\theta-1)=0.$$

The two possibilities are

$$\sin \theta = 0 \Rightarrow \theta = \pi$$
, or $\cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}, \frac{5\pi}{3}$.

So finally

$$\theta = \frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \text{ and } \frac{5\pi}{3}.$$

2.12 We have

$$\sin k\theta - \sin \theta \equiv 2\sin\left[\frac{1}{2}(k-1)\theta\right]\cos\left[\frac{1}{2}(k+1)\theta\right].$$

Thus one of the two brackets must be zero. The first bracket is zero if

$$\frac{1}{2}(k-1)\theta = \pm n\pi$$
, i.e. $k\theta = \pm n\pi + \theta \Rightarrow \theta = \pm 2n\pi/(k-1)$,

for all integer n and $k \neq 1$. The second bracket is zero if

$$\frac{1}{2}(k+1)\theta = \pm \frac{1}{2}(2n+1)\pi$$
, i.e. $k\theta = \pm (2n+1)\pi - \theta \Rightarrow \theta = \pm (2n+1)\pi/(k+1)$,

for all integer n and $k \neq -1$.

2.13 From the equation of the straight line $x = (p - y \cos \theta)/\sin \theta$ and substituting into the equation for the hyperbola gives

$$\frac{p^2 - 2py\cos\theta + y^2\cos^2\theta}{a^2\sin^2\theta} - \frac{y^2}{b^2} = 1,$$

which is a quadratic in y of the form $Ay^2 + By + C = 0$, where

$$A = \left[\frac{\cos^2 \theta}{a^2 \sin^2 \theta} - \frac{1}{b^2} \right], \ B = -\left[\frac{2p \cos \theta}{a^2 \sin^2 \theta} \right] \text{ and } C = \left[\frac{p^2}{a^2 \sin^2 \theta} - 1 \right].$$

If the line is to be a tangent, then there can be only one solution of this quadratic, the condition for which is that $B^2=4AC$, i.e.

$$\left[\frac{2p\cos\theta}{a^2\sin^2\theta}\right]^2 = 4\left[\frac{\cos^2\theta}{a^2\sin^2\theta} - \frac{1}{b^2}\right]\left[\frac{p^2}{a^2\sin^2\theta} - 1\right],$$

which after simplifying gives $a^2 \sin^2 \theta - b^2 \cos^2 \theta = p^2$, as required.

https://ebookyab.ir/solution-manual-mathematics-for-physicists-martin-shaw/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

The y-co-ordinate of the point of intersection is y = -B/2A, i.e.

$$y = \frac{2p\cos\theta}{2a^2\sin^2\theta} \cdot \frac{a^2b^2\sin^2\theta}{b^2\cos^2\theta - a^2\sin^2\theta} = \frac{-b^2\cos\theta}{p}$$

and hence

$$x = \frac{p - y\cos\theta}{\sin\theta} = \frac{a^2\sin\theta}{p}.$$

2.14 Equation (2.37c) may be used on the left-hand side to give

$$\frac{1+\sin\theta+\cos\theta}{1+\sin\theta-\cos\theta} \equiv \frac{1+(2\sin\theta/2\cos\theta/2)+(2\cos^2\theta/2-1)}{1+(2\sin\theta/2\cos\theta/2)-(1-2\sin^2\theta/2)}$$
$$\equiv \frac{\cos\theta/2}{\sin\theta/2} \equiv \frac{2\cos^2\theta/2}{2\sin\theta/2\cos\theta/2} \equiv \frac{1+\cos\theta}{\sin\theta}.$$

2.15 From the sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \sin A = \frac{a \sin B}{b}.$$

So $A=\arcsin\left[5\sin(0.5)/4\right]=0.643$ rad = 36.84° and hence C=1.999 rad = 114.51° . Again using the sine rule, $c=b\sin C/\sin B=7.59$ cm .

2.16 The lengths of the sides are: $a = BC = \sqrt{(5-7)^2 + (6-2)^2} = \sqrt{20}$ and likewise $b = AC = \sqrt{37}$ and $c = AB = \sqrt{25}$. Then using the cosine rule

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{21}{5\sqrt{37}},$$

giving $A=0.809\,\mathrm{rad}=46.35^{\circ}$. In a similar way, $B=1.391\,\mathrm{rad}=79.70^{\circ}$ and $C=0.942\,\mathrm{rad}=53.97^{\circ}$.

2.17 For n = 0 the results are trivial. So we just need to show that if both are true for any $n \ge 0$ they are true for m = n + 1. Suppose both results are true for n. Then

$$\begin{aligned} \sin[(2m+1)\theta] &= \sin[(2n+1)\theta + 2\theta] \\ &= \sin[(2n+1)\theta]\cos 2\theta + \cos[(2n+1)\theta]\sin 2\theta \\ &= \sin[(2n+1)\theta][1 - 2\sin^2\theta] + \left[\frac{\cos[(2n+1)\theta]}{\cos\theta}\right] 2\sin\theta\cos^2\theta, \end{aligned}$$

which is a polynomial in $\sin \theta$ since both $\sin[(2n+1)\theta]$ and $\cos[(2n+1)\theta]/\cos \theta$ are polynomials and $\cos^2 \theta = 1 - \sin^2 \theta$. Similarly,