https://ebookyab.ir/solution-manual-coding-theory-roth/L Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Chapter 1

Given that "O" is transmitted (in which case the output of the modulator is α), the demodulator will produce the wrong bit ("1") if and only if the value of the noise exceeds α . The probability of that to happen is

 $\frac{1}{\sqrt{2\pi}\sigma^2} \int_{\infty}^{\infty} e^{-\frac{y^2}{2\sigma^2}} dy = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\frac{t^2}{2}} dt$ $= \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}} dt \int_{\infty}^{\infty} e^{-\frac{t^2}{2}} dt$

The same resultabilities of fained if we assume that "1" is transmitted

The memoryless property of the BSC follows from the fact that the random variables V; and Ve are statistically independent for j+l.

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa) Without loss of generality we can assume that x, y, and \ take the form 7 = 00 ... 0 00 ... 0 00 ... 0 y= 11...1 11...1 00...0 00...0 Z= 11...1 00...0 11...1 00...0 t = t = t = n-3t Now, $d(\bar{x}, \bar{v}) = t \implies \omega(\bar{x}) = t$, and dl(y,v)=dl(z,v)=t by the support of v is contained in those of y and Z. Therefore, the only possible choice for v is $\bar{v} = 11...100...000...000...0$ t = n-t

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa) Clearly, rank (A-B) > 0, with equality if and only if A=B. Secondly, rank (A-B) = rank (-(A-B)) = rank (B-A), thereby proving symmetry. Thirdly, rank (A-C) = rank (A-B+B-C) Sis rank (A-B) + romk (B-C), thus obtaining tromsitivety.

Problem 1.4 First, the addition of an overall parity bit will not decrease the minimum distance. Now, if to and to are codewords of

Now, if \overline{c}_1 and \overline{c}_2 are codewords of the original code such that $d(\overline{c}_1, \overline{c}_2)$:
equals the (odd) minimum distance of then exactly one of the weighte, $w(\overline{c}_1)$ and $w(\overline{c}_2)$, is odd. This means that these codewords differ in the added bit.

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

The two codewords are complement of one another; therefore, Perr equals the probability of having three errors or more. Namely, $P_{err} = \binom{5}{3} p^3 (1-p)^2 + \binom{5}{4} p^4 (1-p) + \binom{5}{5} p^5 = 0.00856.$

Problem 1.6

- 2. If the minimum distance were greater

 than 3, there would be a codeword in FF

 at Hamming distance at least 2 from

 any codeword. And if the minimum distance

 were less than 3, there would be a word

 in FT at distance < 1 from at least two

 codewords.
 - 3. $1-(1-p)^{2}-(\frac{\pi}{2})p(1-p)^{6}\simeq 0.02$.
 - 4. The same value as in part 3.
- 5. When there is no coding, the error probability is $1-(1-p)^4 \simeq 0.039$.

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa) The computation is very similar to that in Example 1.6, except that here, Prob { y received | c transmitted } $= \left(\frac{p}{(q-1)}\right)^{\operatorname{dl}(g,\varepsilon)} (1-p)^{n-\operatorname{dl}(g,\varepsilon)}$ $= (1-p)^{n} \left(\frac{p}{(1-p)(q-1)}\right)^{d(\bar{q},\bar{c})}$ and (1-p)(q-1) < 1 whenever p < 1 - \frac{1}{9} This follows from the equality Problem 1.8 $\frac{1}{2}\sum_{j=1}^{n}(-1)^{c_{j}}\mu(y_{j}) = \log\log_{2}\sqrt{\frac{1}{2}}\operatorname{Rrob}(y_{j}|c_{j})$ $= \sum_{j=1}^{n}\log_{2}\sqrt{\operatorname{Prob}(y_{j}|0)\operatorname{Prob}(y_{j}|1)}$ (and the last sum does not depend on the codeword).

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1. This follows directly from the definition of Perr.

2. Since D is a MLD, then

Prob(y|c) ≤ Prob(y|c') for every y ∈ Y(c'). Now combine this inequality with part 1.

3. Since the channel is memoryless,

 $\sum_{\mathbf{y} \in \Phi^{n}} \operatorname{Prob}(\mathbf{y}|\mathbf{z}) \operatorname{Prob}(\mathbf{y}|\mathbf{z})$ $= \sum_{\mathbf{y} \in \Phi} \sum_{\mathbf{y} \in \Phi^{n}} \operatorname{Prob}(\mathbf{y}, |\mathbf{z}) \operatorname{Prob}(\mathbf{y}, |\mathbf{z})$ $= \sum_{\mathbf{y} \in \Phi} \sum_{\mathbf{y} \in \Phi^{n}} \operatorname{Prob}(\mathbf{y}, |\mathbf{z}) \operatorname{Prob}(\mathbf{y}, |\mathbf{z})$

= $T \sum_{j=1}^{n} \sum_{y \in \Phi} Prob(y|c_j) Rrob(y|c_j)$.

Next notice that when c; = c;

 $\Sigma \sqrt{\text{Prob}(y|c_i)\text{Prob}(y|c_i)} = \Sigma \cdot \text{Prob}(y|c_i)$ $y \in \overline{\Phi}$

4. By the Cauchy-Schwartz inequality,

∑ Prob(y(c) Prob(y(c'))

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa) with equality if and only if Prob(y(c) = Prob(y(c') for every y ∈ D. 5. This follows from part 3, where now J' Cj # Cj' y & Drob (y | Cj) Prob (y | Cj) = TT \(\sum_{\text{j:}} \sqrt{\text{Prob}(y|0) \text{Prob}(y|1)}\)
= TT \(\sqrt{\text{j:}} \sqrt{\text{j:}} \sqrt{\text{dil}(\varepsilon,\varepsilon')}\)
= TT \(\sqrt{\text{j:}} \sqrt{\text{j:}} \sqrt{\text{dil}(\varepsilon,\varepsilon')}\)
6. By following the hints to for every $c \neq c'$: Prob(y/c) Prob(y/c') = { (q-p)p' q-1 if ye {c,e'} otherwise Therefore, $\sum_{y \in \Phi} Prob(y(c)) Prob(y(c')) = 2\sqrt{\frac{P(1-p)}{q-1}} + (q-2)\cdot \frac{2}{q-1}$ Next use part 3. 7. By part 4 we got that $8 \le 1$. Therefore, $Perr(\bar{c}) \le \Sigma$, $g(\bar{c},\bar{c}') \le (M-1)8^d$.

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.jr@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Let $\overline{c_1}$ and $\overline{c_2}$ be two codewords such that $d(\overline{c_1},\overline{c_2})=d$. There is a (not necessarily unique) "half way" word $\overline{y}\in F^n$ such that $d(\overline{y},\overline{c_1})\leq \frac{d+1}{2}$ and $d(\overline{y},\overline{c_2})\leq \frac{d+1}{2}$. Clearly, either $\mathcal{D}(\overline{y})\neq \overline{c_1}$ or $\mathcal{D}(\overline{y})\neq \overline{c_2}$.

Problem 1.11

1.
$$R = \frac{\log_2 16}{8} = \frac{1}{2}$$

2. By the triangle inequality:

$$4 \leq d(\bar{c}, \bar{c}^\circ) \leq d(\bar{y}, \bar{c}^\circ) + d(\bar{y}, \bar{c}^\prime).$$

Hence, $d(\bar{y},\bar{c}) \leq 10 \Rightarrow d(\bar{y},\bar{c}') \geq 3$.

3.
$$\binom{8}{2} p^2 (1-p)^6 \simeq 2.6 \times 10^{-3}$$
.

4.
$$1-(1-p)^8-\binom{8}{1}p(1-p)^7-\binom{8}{2}p^2(1-p)^6\simeq 5.4\times 10^{-5}$$

- 5. This is the sum of the probabilities in parts 3 and 4.
- 6. If there are two errors, then a necessarily produces "e" (if there are less than two errors, then a necessarily produces the correct codeword).

https://ebookyab.ir/solution-manual-coding-theory-roth/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

The probability equals that of having two crasures or more, regardless of the transmitted codeword. This probability is $1 - (1-p)^4 - 4p(1-p)^3 = 0.0523.$

Problem 1.13

Case 1: the transmitted codeword is 0000. Here 2 produces "e" it and only if the evasures cover the 1's in at least one of the other codewords. i.e., when the erasure patterns are O???, ? Q 5 7 1 2 2 3 2 7 7 0 ?, or
The probability is then of the ????

 $3p^3(1-p)+p^4=0.028$.

Case 2: the transmitted codeword is (say) 0111. Here & produces "e" if and only if the erasure patterns are 0333 33333 3311 3311 3311 ? 1? 1, ? 1??. The probability is then $2p^{2}(1-p)^{2} + 4p^{3}(1-p) + p^{4} = 0.0199$.



