
  

SOLUTION 2

Solutions to Chapter 2 Exercises 
   
 
2.1. From Eq. (2.4),  
 

    f E E
e

e
ef E kT

E kT

E kT( ) /

/

/− =
+

=
+−Δ Δ

Δ

Δ

1
1 1

, 

 
and 
 

    f E E
ef E kT( ) /+ =

+
Δ Δ

1
1

. 

 
Adding the above two equations yields 
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2.2. Neglecting the hole (last) term in Eq. (2.19), one obtains 
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Treating exp(Ef/kT) as an unknown, the above equation is a quadratic equation with the solution 
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Here only the positive root has been kept.  For shallow donors with low to moderate 
concentration at room temperature, (Nd/Nc)exp[(Ec − Ed)/kT] << 1, and the last equation can be 
approximated by 
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which is the same as Eq. (2.20).  If we compare the above relation with Eq. (2.19), it is clear 
that in this case, exp[−(Ed − Ef)/kT] << 1, and Nd

+ ≈ Nd or complete ionization. 
 
 If the condition for low to moderate concentration of shallow donors is not met, then 
exp[−(Ed − Ef)/kT] is no longer negligible compared with unity.  That means Nd

+ < Nd (Eq. 
(2.19)) or incomplete ionization (freeze-out).  [Note that incomplete ionization never occurs for 
shallow impurities: arsenic, boron, phosphorus, and antimony at room temperature, even for 
doping concentrations higher than Nc or Nv.  This is because in heavily doped silicon, the 
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SOLUTION 3

impurity level broadens and the ionization energy decreases to zero, as discussed in Section 
2.1.2.3.]      
 
2.3. (a) Substituting Eqs. (2.5) and (2.3) into the expression for average kinetic energy, one 
obtains  
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Applying integration by parts to the numerator yields 
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 (b) For a degenerate semiconductor at 0 K, f(E) = 1 if E < Ef and f(E) = 0 if E > Ef.  
Here Ef > Ec.  Therefore,   
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2.4. With the point charge Q at the center, construct a closed spherical surface S with radius 
r.  By symmetry, the electric field at every point on S has the same magnitude and points 
outward perpendicular to the surface.  Therefore,    
 
     E ⋅ =∫∫ dS 4 2πr

S
E ,      

 
where E is the magnitude of the electric field on S.  3-D Gauss’s law then gives 
 

    E =
Q

rsi4 2πε
, 

 
which is Coulomb’s law. 
 
 Since E =−dV/dr, the electric potential at a point on the sphere is 
 

    V Q
rsi

=
4πε

, 

 
if one defines the potential to be zero at infinity.  
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SOLUTION 4

 
2.5. (a) Construct a cylindrical Gaussian surface perpendicular to the charge sheet as shown:    
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The cross-sectional area is A.  At the two ends of the cylinder, the electric field E is 
perpendicular to the surface and pointing outward.  Along the side surface of the cylinder, the 
field is parallel to the surface, so E⋅dS = 0.  For an infinitely large sheet of charge, E is uniform 
across A from symmetry.  Therefore, 
 
     E ⋅ =∫∫ dS 2A

S
E . 

 
The charge enclosed within the surface is QsA.  From Gauss’s law, one obtains E = Qs/2ε. 
 
 (b) The field due to the positively charged sheet is Qs/2ε pointing away from the sheet.  
The field due to the negatively charged sheet is also Qs/2ε, but pointing toward the negatively 
charged sheet.  In the region between the two sheets, the two fields are in the same direction 
and the total field adds up to Qs/ε, pointing from the positively charged sheet toward the 
negatively charged sheet.  In the regions outside the two parallel sheets, the fields are equal and 
opposite to each other, resulting in zero net field.        
 
 
2.6. (a) Using the integral expressions of Qd and Qi, one has 
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Here Es = E (ψ = ψs). 
 
 (b) Take the square of Eq. (2.182) and differentiate with respect to ψs, one obtains 

https://ebookyab.ir/solution-manual-modern-vlsi-devices-taur-ning/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-modern-vlsi-devices-taur-ning/


  

SOLUTION 5
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Using Qs =−εsiE s (Gauss’s law) and the above two equations in (a), it is straightforward to show 
that 
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 (c) When ψs = 2ψB, exp(qψs/kT) = (Na/ni)2 >> 1 and exp(−qψs/kT) << 1.  From (a), one 
has 
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 (d) It is clear from Fig. 2.33 that Qs and therefore Es takes off rapidly beyond strong 
inversion.  This means that Cd ∝ E s

−1 decreases rapidly beyond strong inversion.  We say that 
the depletion layer (charge) is “screened” by the inversion layer.  Note that Ci, on the other 
hand, increases rapidly beyond strong inversion because of the exp(qψs/kT) factor. 
 
    
2.7. In strong inversion and near the surface, Eq. (2.191) can be approximated by 
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The solution to the above differential equation is 
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where ψs = ψ(x = 0) is the surface potential.    
 
 Using Eq. (2.178) and the above solution, one has 
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where n(0) equals (ni

2/Na)exp(qψs/kT). 
 
2.8. Substituting Eq. (2.189) into Eq. (2.195), one obtains 
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