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Exercise 1.34. Many flying and swimming animals – as well as human-engineered vehicles – 
rely on some type of repetitive motion for propulsion through air or water. For this problem, 
assume the average travel speed U, depends on the repetition frequency f, the characteristic 
length scale of the animal or vehicle L, the acceleration of gravity g, the density of the animal or 
vehicle ρo, the density of the fluid ρ, and the viscosity of the fluid µ.  
a) Formulate a dimensionless scaling law for U involving all the other parameters. 
b) Simplify your answer for a) for turbulent flow where µ is no longer a parameter. 
c) Fish and animals that swim at or near a water surface generate waves that move and propagate 
because of gravity, so g clearly plays a role in determining U. However, if fluctuations in the 
propulsive thrust are small, then f may not be important. Thus, eliminate f from your answer for 
b) while retaining L, and determine how U depends on L. Are successful competitive human 
swimmers likely to be shorter or taller than the average person? 
d) When the propulsive fluctuations of a surface swimmer are large, the characteristic length 
scale may be U/f instead of L. Therefore, drop L from your answer for b). In this case, will higher 
speeds be achieved at lower or higher frequencies? 
e) While traveling submerged, fish, marine mammals, and submarines are usually neutrally 
buoyant (ρo ≈ ρ) or very nearly so. Thus, simplify your answer for b) so that g drops out. For this 
situation, how does the speed U depend on the repetition frequency f? 
f) Although fully submerged, aircraft and birds are far from neutrally buoyant in air, so their 
travel speed is predominately set by balancing lift and weight. Ignoring frequency and viscosity, 
use the remaining parameters to construct dimensionally accurate surrogates for lift and weight 
to determine how U depends on ρo/ρ, L, and g. 
 
Solution 1.34. a) Construct the parameter & units matrix 
 
   U f L g ρo ρ µ 
  M 0 0 0 0 1 1 1 
  L 1 0 1 1 -3 -3 -1 
  T -1 -1 0 -2 0 0 -1 
 
The rank of this matrix is three. There are 7 parameters and 3 independent units, so there will be 
4 dimensionless groups. First try to assemble traditional dimensionless groups, but its best to use 
the solution parameter U only once.  Here U is used in the Froude number, so its dimensional 
counter part, 

€ 

gL , is used in place of U in the Reynolds number.  

€ 

Π1 =
U
gL

 = Froude number,  

€ 

Π2 =
ρ gL3

µ
 = a Reynolds number 

The next two groups can be found by inspection: 

€ 

Π3 =
ρo
ρ

 = a density ratio , and the final group must include f: 

€ 

Π4 =
f
g L

, and is a frequency 

ratio between f and that of simple pendulum with length L.  Putting these together produces: 

€ 

U
gL

=ψ1
ρ gL3

µ
, ρo
ρ
, f
g L

$ 

% 
& & 

' 

( 
) )  where, throughout this problem solution,  ψi , i = 1, 2, 3, …  are 

unknown functions. 
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b) When µ is no longer a parameter, the Reynolds number drops out: 

€ 

U
gL

=ψ2
ρo
ρ
, f
g L

$ 

% 
& & 

' 

( 
) ) . 

c) When f is no longer a parameter, then 

€ 

U = gL ⋅ψ3 ρo ρ( ) , so that U is proportional to 

€ 

L .  
This scaling suggests that taller swimmers have an advantage over shorter ones. [Human 
swimmers best approach the necessary conditions for this part of this problem while doing 
freestyle (crawl) or backstroke where the arms (and legs) are used for propulsion in an 
alternating (instead of simultaneous) fashion.  Interestingly, this length advantage also applies to 
ships and sailboats. Aircraft carriers are the longest and fastest (non-planing) ships in any Navy, 
and historically the longer boat typically won the America’s Cup races under the 12-meter rule.  
Thus, if you bet on a swimming or sailing race where the competitors aren’t known to you but 
appear to be evenly matched, choose the taller swimmer or the longer boat.] 
d) Dropping L from the answer for b) requires the creation of a new dimensionless group from f, 
g, and U to replace Π1 and Π4. The new group can be obtained via a product of original 

dimensionless groups: 

€ 

Π1Π4 =
U
gL

f
g L

=
Uf
g

. Thus, 

€ 

Uf
g

=ψ4
ρo
ρ

$ 

% 
& 

' 

( 
) , or 

€ 

U =
g
f
ψ4

ρo
ρ

$ 

% 
& 

' 

( 
) .  Here, 

U is inversely proportional to f which suggests that higher speeds should be obtained at lower 
frequencies.  [Human swimmers of butterfly (and breaststroke to a lesser degree) approach the 
conditions required for this part of this problem.  Fewer longer strokes are typically preferred 
over many short ones.  Of course, the trick for reaching top speed is to properly lengthen each 
stroke without losing propulsive force]. 
e) When g is no longer a parameter, a new dimensionless group that lacks g must be made to 

replace Π1 and Π5.  This new dimensionless group is 

€ 

Π1

Π5

=
U gL
f g L

=
U
fL

, so the overall scaling 

law must be: 

€ 

U = fL ⋅ψ5
ρo
ρ

% 

& 
' 

( 

) 
* .  Thus, U will be directly proportional to f.  Simple observations of 

swimming fish, dolphins, whales, etc. verify that their tail oscillation frequency increases at 
higher swimming speeds, as does the rotation speed of a submarine or torpedo’s propeller. 
f) Dimensionally-accurate surrogates for weight and lift are: 

€ 

ρoL
3g  and 

€ 

ρU 2L2, respectively.  Set 
these proportional to each other, 

€ 

ρoL
3g∝ρU 2L2 , to find 

€ 

U ∝ ρogL ρ , which implies that 
larger denser flying objects must fly faster.  This result is certainly reasonable when comparing 
similarly shaped aircraft (or birds) of different sizes.   
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Exercise 1.35. The acoustic power W generated by a large industrial blower depends on its 
volume flow rate Q, the pressure rise ΔP it works against, the air density ρ, and the speed of 
sound c. If hired as an acoustic consultant to quiet this blower by changing its operating 
conditions, what is your first suggestion?  
 
Solution 1.35. The boundary condition and material parameters are: Q, ρ, ΔP, and c.  The 
solution parameter is W. Create the parameter matrix: 
 
  W Q ΔP ρ c 
         –––––––––––––––––––––––––––– 
Mass:  1 0 1 1 0 
Length: 2 3 -1 -3 1 
Time:  -3 -1 -2 0 -1 
 
This rank of this matrix is three. Next, determine the number of dimensionless groups:  5 
parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: ∏1 = W/QΔP, ∏2 = 
ΔP/ρc2. Now write the dimensionless law: W = QΔPΦ(ΔP/ρc2), where Φ is an unknown 
function. Since the sound power W must be proportional to volume flow rate Q, you can 
immediately suggest a decrease in Q as means of lowering W.  At this point you do not know if 
Q must be maintained at high level, so this solution may be viable even though it may oppose 
many of the usual reasons for using a blower.  Note that since Φ is unknown the dependence of 
W on ΔP cannot be determined from dimensional analysis alone. 
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Exercise 1.36. The horizontal displacement Δ of the trajectory of a spinning ball depends on the 
mass m and diameter d of the ball, the air density ρ and viscosity µ, the ball's rotation rate ω, the 
ball’s speed U, and the distance L traveled. 
a) Use dimensional analysis to predict how Δ can depend on the other parameters. 
b) Simplify your result from part a) for negligible viscous forces. 
c) It is experimentally observed that Δ for a spinning sphere becomes essentially independent of 
the rotation rate once the surface rotation speed, ωd/2, exceeds twice U.  Simplify your result 
from part b) for this high-spin regime. 
d) Based on the result in part c), how does Δ depend on U? 
 

 
 
Solution 1.36. a) Create the parameter matrix using the solution parameter is Δ, and the 
boundary condition and material parameters are: Q, ρ, ΔP, and c. 
 
  Δ m d ρ µ ω U L 
Mass:  0 1 0 1 1 0 0 0 
Length: 1 0 1 -3 -1 0 1 1 
Time:  0 0 0 0 -1 -1 -1 0 
 
This rank of this matrix is three. Next, determine the number of dimensionless groups:  8 
parameters - 3 dimensions = 5 groups. Construct the dimensionless groups: Π1 = Δ/d, Π2 = 
m/ρd3, Π3 = ρUd/µ, Π4 = ωd/U, and Π5 = L/d. Thus, the dimensionless law for Δ is: 

Δ
d
=Φ

m
ρd3

, ρUd
µ
,ωd
U
, L
d

#

$
%

&

'
( , 

where Φ is an undetermined function. 
b) When the viscosity is no longer a parameter, then the third dimensionless group (the Reynolds 
number) must drop out, so the part a) result simplifies to: 

Δ
d
=Ψ

m
ρd3

,ωd
U
, L
d

#

$
%

&

'
( , 

where Ψ is another undetermined function. 
c) When the rotation rate is no longer a parameter, the fourth dimensionless group from part a) 
(the Strouhal number) must drop out, so the part b) result simplifies to: 

Δ
d
=Θ

m
ρd3

, L
d

#

$
%

&

'
( , 

where Θ is another undetermined function. 
d) Interestingly, the part c) result suggests that Δ does not depend on U at all! 

U! L!

Δ"

Top view! spinning ball trajectory !
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Exercise 1.37. A machine that fills peanut-butter jars must be reset to accommodate larger jars. 
The new jars are twice as large as the old ones but they must be filled in the same amount of time 
by the same machine. Fortunately, the viscosity of peanut butter decreases with increasing 
temperature, and this property of peanut butter can be exploited to achieve the desired results 
since the existing machine allows for temperature control.  
a) Write a dimensionless law for the jar-filling time tf based on: the density of peanut butter ρ, 
the jar volume V, the viscosity of peanut butter µ, the driving pressure that forces peanut butter 
out of the machine P, and the diameter of the peanut butter-delivery tube d. 
b) Assuming that the peanut butter flow is dominated by viscous forces, modify the relationship 
you have written for part a) to eliminate the effects of fluid inertia. 
c) Make a reasonable assumption concerning the relationship between tf and V when the other 
variables are fixed so that you can determine the viscosity ratio µnew/µold necessary for proper 
operation of the old machine with the new jars. 
d) Unfortunately, the auger mechanism that pumps the liquid peanut butter develops driving 
pressure through viscous forces so that P is proportional to µ. Therefore, to meet the new jar-
filling requirement, what part of the machine should be changed and how much larger should it 
be? 
 
Solution 1.37. a) First create the parameter matrix. The solution parameter is tf. The boundary 
condition and material parameters are: V, ρ, P, µ, and d.  
 
   tf V P ρ d µ 
 Mass:  0 0 1 1 0 1 
 Length: 0 3 -1 -3 1 -1 
 Time:  1 0 -2 0 0 -1 
 
This rank of this matrix is three. Next, determine the number of dimensionless groups:  6 
parameters - 3 dimensions = 3 groups. Construct the dimensionless groups: Π1 = Ptf/µ, Π2 = 
µ2/ρd2P, Π3 = V/d3, and write a dimensionless law: tf = (µ/P)Φ(µ2/ρd2P,V/d3), where Φ is an 
unknown function.  
b) When fluid inertia is not important the fluid's density is not a parameter.  Therefore, drop ∏2 
from the dimensional analysis formula:  tf =  (µ/P)Ψ(V/d3), where Ψ is yet another unknown 
function. 
c) One might reasonably expect that tf ∝ V (these are the two extensive variables).  Therefore, we 
end up with tf =  const⋅µV/Pd3.  Now form a ratio between the old and new conditions and cancel 
common terms: 

€ 

(t f )new
(t f )old

 = 1 = 

€ 

(µV /Pd3)new
(µV /Pd3)old

 = 

€ 

(µV )new
(µV )old

,  so  

€ 

Vnew

Vold

= 2   →    

€ 

µnew

µold

=  

€ 

1
2

 

d) If P is proportional to µ, then to achieve the same filling time for twice the volume using the 
part c) result for tf implies, 

Vold
(d old )

3 =
2Vold
(d new )

3  

Thus, the machine’s nozzle diameter must be increased so that dnew = 23 dold . 
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Exercise 1.38. As an idealization of fuel injection in a Diesel engine, consider a stream of high-
speed fluid (called a jet) that emerges into a quiescent air reservoir at t = 0 from a small hole in 
an infinite plate to form a plume where the fuel and air mix.  
a) Develop a scaling law via dimensional analysis for the penetration distance D of the plume as 
a function of: Δp the pressure difference across the orifice that drives the jet, do the diameter of 
the jet orifice, ρo the density of the fuel, µ∞ and ρ∞ the viscosity and density of the air, and t the 
time since the jet was turned on. 
b) Simplify this scaling law for turbulent flow where air viscosity is no longer a parameter. 
c) For turbulent flow and D << do, do and ρ∞ are not parameters. Recreate the dimensionless law 
for D. 
d) For turbulent flow and D >> do, only the momentum flux of the jet matters, so Δp and do are 
replaced by the single parameter Jo = jet momentum flux (Jo has the units of force and is 
approximately equal to 

€ 

Δpdo
2). Recreate the dimensionless law for D using the new parameter Jo. 

 
Solution 1.38. a) The parameters are: D, t, Δp, ρo, ρ∞, µ∞, and do. With D as the solution 
parameter, create the parameter matrix: 
  D t Δp ρo ρ∞ µ∞ do 
         –––––––––––––––––––––––––––––––––––––––– 
Mass:  0 0 1 1 1 1 0 
Length: 1 0 -1 -3 -3 -1 1 
Time:  0 1 -2 0 0 -1 0 
 
Next, determine the number of dimensionless groups. This rank of this matrix is three so 7 
parameters - 3 dimensions = 4 groups, and construct the groups: 

€ 

Π1 = D do , 

€ 

Π2 = ρo ρ∞ , 

€ 

Π3 = Δpt 2 ρ∞do
2 , and 

€ 

Π4 = ρ∞Δpdo
2 µ∞

2 . Thus, the dimensionless law is: 

€ 

D
do

= f ρo
ρ∞
, Δpt

2

ρ∞do
2 ,
ρ∞Δpdo

2

µ∞
2

% 

& 
' 

( 

) 
*  ,  where f is an unknown function. 

b) For high Reynolds number turbulent flow when the reservoir viscosity is no longer a 
parameter, the above result becomes: 

€ 

D
do

= g ρo
ρ∞
, Δpt

2

ρ∞do
2

% 

& 
' 

( 

) 
* ,  

where g is an unknown function. 
c) When do and ρ∞ are not parameters, there is only one dimensionless group: 

€ 

Δpt 2 ρ∞D
2 , so 

the dimensionless law becomes: 

€ 

D = const ⋅ t Δp ρo . 
d) When Δp and do are replaced by the single parameter Jo = jet momentum flux, there are two 
dimensionless parameters: 

€ 

Jot
2 ρ∞D

4 , and 

€ 

ρo ρ∞ , so the dimensionless law becomes: 

€ 

D = Jot
2 ρ∞( )

1 4
F ρo ρ∞( ), 

where F is an unknown function.  
[The results presented here are the fuel-plume penetration scaling laws for fuel injection in 
Diesel engines where more than half of the world's petroleum ends up being burned.] 
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Exercise 1.39. One of the simplest types of gasoline carburetors is a tube with small port for 
transverse injection of fuel. It is desirable to have the fuel uniformly mixed in the passing air 
stream as quickly as possible. A prediction of the mixing length L is sought. The parameters of 
this problem are: ρ = density of the flowing air, d = diameter of the tube, µ = viscosity of the 
flowing air, U = mean axial velocity of the flowing air, and J = momentum flux of the fuel 
stream. 
a) Write a dimensionless law for L. 
b) Simplify your result from part a) for turbulent flow where µ must drop out of your 
dimensional analysis. 
c) When this flow is turbulent, it is observed that mixing is essentially complete after one 
rotation of the counter rotating vortices driven by the injected-fuel momentum (see downstream-
view of the drawing for this problem), and that the vortex rotation rate is directly proportional to 
J. Based on this information, assume that L ∝ (rotation time)(U) to eliminate the arbitrary 
function in the result of part b). The final formula for L should contain an undetermined 
dimensionless constant. 

 
 
Solution 1.39. a) The parameters are: L, J, d, µ, ρ, and U. Use these to create the parameter 
matrix with L as the solution parameter: 
  L J d µ ρ U 
         ––––––––––––––––––––––––––––––––––– 
Mass:  0 1 0 1 1 0 
Length: 1 1 1 -1 -3 1 
Time:  0 -2 0 -1 0 -1 
 
Next, determine the number of dimensionless groups. This rank of this matrix is three so 6 
parameters - 3 dimensions = 3 groups, and construct them: Π1 = L/d, Π2 = ρUd/µ, Π3 = ρU2d2/J. 
And, finally write a dimensionless law: L = d Φ(ρUd/µ, ρU2d2/J), where Φ is an unknown 
function. 
b) At high Reynolds numbers, µ must not be a parameter. Therefore: L = dΨ(ρU2d2/J) where Ψ 
is an unknown function. 
c) Let Ω = vortex rotation rate. The units of Ω are 1/time and Ω must be proportional to J. 
Putting this statement in dimensionless terms based on the boundary condition and material 

parameters of this problem means: Ω  =  const 

€ 

J
ρUd3

=  (rotation time)-1 
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Therefore: L  =  const (Ω-1)U  =  const 

€ 

ρU 2d3

J
,   or   

€ 

L
d

=  const 

€ 

ρU 2d2

J
.  Thus, for transverse 

injection, more rapid mixing occurs (L decreases) when the injection momentum increases.  
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Exercise 1.40. Consider dune formation in a large horizontal desert of deep sand.  
a) Develop a scaling relationship that describes how the height h of the dunes depends on the 
average wind speed U, the length of time the wind has been blowing Δt, the average weight and 
diameter of a sand grain w and d, and the air’s density ρ and kinematic viscosity ν. 
b) Simplify the result of part a) when the sand-air interface is fully rough and ν is no longer a 
parameter.  
c) If the sand dune height is determined to be proportional to the density of the air, how do you 
expect it to depend on the weight of a sand grain?  
 
Solution 1.40. a) The solution parameter is h. The boundary condition and material parameters 
are: U, Δt, w, d, ρ, and ν. First create the parameter matrix: 
  h U Δt w d ρ ν 
         ––––––––––––––––––––––––––––––––––––––– 
Mass:  0 0 0 1 0 1 0 
Length: 1 1 0 1 1 -3 2 
Time:  0 -1 1 -2 0 0 -1 
 
Next determine the number of dimensionless groups. This rank of this matrix is three so 7 
parameters - 3 dimensions = 4 groups. Construct the dimensionless groups: Π1 = h/d, Π2 = Ud/ν, 
Π3 = w/ρU2d2, and Π4 = UΔt/d. Thus, the dimensionless law is 

€ 

h
d

=Φ
Ud
ν
, w
ρU 2d2

,UΔt
d

& 

' 
( 

) 

* 
+ , 

where Φ is an unknown function.  
b) When ν is no longer a parameter, Π2 drops out:  

€ 

h
d

= Ψ
w

ρU 2d2
,UΔt
d

% 

& 
' 

( 

) 
* , 

where Ψ is another unknown function.  
c) When h is proportional to ρ, then  

€ 

h
d

=
ρU 2d2

w
Θ
UΔt
d

% 

& 
' 

( 

) 
* ,  

where Θ is another unknown function. Under this condition, dune height will be inversely 
proportional to w the sand grain weight.  
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Exercise 1.41. The rim-to-rim diameter D of the impact crater produced by a vertically-falling 
object depends on d = average diameter of the object, E = kinetic energy of the object lost on 
impact, ρ = density of the ground at the impact site, Σ = yield stress of the ground at the impact 
site, and g = acceleration of gravity. 
a) Using dimensional analysis, determine a scaling law for D. 
b) Simplify the result of part a) when D >> d, and d is no longer a parameter. 
c) Further simplify the result of part b) when the ground plastically deforms to absorb the impact 
energy and ρ is irrelevant. In this case, does gravity influence D? And, if E is doubled how much 
bigger is D? 
d) Alternatively, further simplify the result of part b) when the ground at the impact site is an 
unconsolidated material like sand where Σ is irrelevant. In this case, does gravity influence D? 
And, if E is doubled how much bigger is D? 
e) Assume the relevant constant is unity and invert the algebraic relationship found in part d) to 
estimate the impact energy that formed the 1.2-km-diameter Barringer Meteor Crater in Arizona 
using the density of Coconino sandstone, 2.3 g/cm3, at the impact site. The impact energy that 
formed this crater is likely between 1016 and 1017 J. How close to this range is your dimensional 
analysis estimate? 

 
 
Solution 1.41. The solution parameter is D. The boundary condition and material parameters are: 
d, E, θ, ρ, Σ, and g. First create the parameter matrix: 
 
   D d E ρ Σ g 
  M 0 0 1 1 1 0 
  L 1 1 2 –3 –1 1  
  T 0 0 –2 0 –2 –2  
 
The rank of this matrix is 3, so there are 6 – 3 = 4 dimensionless groups. These groups are: 
Π1 = D d ,Π2 = E ρgd 4 , and Π3 = Σ ρgd . Thus, the scaling law is: 
 D / d = fn(E / ρgd 4,Σ / ρgd) ,  
where fn is an undetermined function. 
b) Use the second dimensionless group to remove d from the other two:  

D
d

E
ρgd 4
!

"
#

$

%
&

−1 4

=Φ
Σ
ρgd

E
ρgd 4
!

"
#

$

%
&

−1 4!

"
#
#

$

%
&
& ,  or  D

E ρg( )1 4
=Φ

Σ

ρ3g3E( )
1 4

#

$

%
%

&

'

(
(

. 

where Φ is an undetermined function. 
c) In this case, the two dimensionless groups in the part b) must be combined to eliminate ρ, 

D!g!

ρ, Σ"

Ε#

d!
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D
E ρg( )1 4

Σ1 3

ρ3g3E( )
1 12 =

D
E Σ( )1 3

= const. , 

and this lone dimensionless group must be constant. In this case, gravity does not influence the 
crater diameter, and a doubling of the energy E increases D by a factor of 21 3 ≅1.26 . 
d) When S is irrelevant, then the part b) result reduces to:  

D
E ρg( )1 4

= const.  

In this case, gravity does influence the crater diameter, and a doubling of the energy E increases 
D a factor of 21 4 ≅1.19 . 
e) If the part d) constant is unity, then that result implies: E = ρgD4 . For the Barringer crater, 
this energy is: 

E = (2300 kgm–3)(9.81 ms–2)(1200m)4 ≈ 4.7 x 1016 J,  
an estimate that falls in the correct range, a remarkable result given the simplicity of the analysis. 
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Exercise 1.42. An isolated nominally spherical bubble with radius R undergoes shape 
oscillations at frequency f. It is filled with air having density ρa and resides in water with density 
ρw and surface tension σ. What frequency ratio should be expected between two isolated bubbles 
with 2 cm and 4 cm diameters undergoing geometrically similar shape oscillations? If a soluble 
surfactant is added to the water that lowers σ by a factor of two, by what factor should air bubble 
oscillation frequencies increase or decrease? 
 
Solution 1.42. The boundary condition and material parameters are: R, ρa, ρw, and σ.  The 
solution parameter is f. First create the parameter matrix: 
  f R ρa ρw σ 
         –––––––––––––––––––––––––––– 
Mass:  0 0 1 1 1 
Length: 0 1 -3 -3 0 
Time:  -1 0 0 0 -2 
 
Next determine the number of dimensionless groups. This rank of this matrix is three, so 5 
parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: Π1 = 

€ 

f ρwR
3 σ , 

and Π2 = ρw/ρa. Thus, the dimensionless law is 

€ 

f =
σ

ρwR
3Φ

ρw
ρa

% 

& 
' 

( 

) 
* , 

where Φ is an unknown function. For a fixed density ratio, Φ(ρw/ρa) will be constant so f is 
proportional to R–3/2 and to σ1/2.  Thus, the required frequency ratio between different sizes 
bubbles is: 

€ 

( f )2cm
( f )4cm

=
2cm
4cm
" 

# 
$ 

% 

& 
' 
−3 2

= 2 2 ≅ 2.83.  

Similarly, if the surface tension is decreased by a factor of two, then  

€ 

( f )σ 2

( f )σ
=
1/2
1

# 

$ 
% 

& 

' 
( 
−1 2

=
1
2
≅ 0.707. 
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Exercise 1.43. In general, boundary layer skin friction, τw, depends on the fluid velocity U above 
the boundary layer, the fluid density ρ, the fluid viscosity µ, the nominal boundary layer 
thickness δ, and the surface roughness length scale ε. 
a) Generate a dimensionless scaling law for boundary layer skin friction. 
b) For laminar boundary layers, the skin friction is proportional to µ. When this is true, how must 
τw depend on U and ρ? 
c) For turbulent boundary layers, the dominant mechanisms for momentum exchange within the 
flow do not directly involve the viscosity µ. Reformulate your dimensional analysis without it. 
How must τw depend on U and ρ when µ is not a parameter? 
d) For turbulent boundary layers on smooth surfaces, the skin friction on a solid wall occurs in a 
viscous sublayer that is very thin compared to δ. In fact, because the boundary layer provides a 
buffer between the outer flow and this viscous sub-layer, the viscous sublayer thickness lv does 
not depend directly on U or δ. Determine how lv depends on the remaining parameters. 
e) Now consider nontrivial roughness. When ε is larger than lv a surface can no longer be 
considered fluid-dynamically smooth. Thus, based on the results from parts a) through d) and 
anything you may know about the relative friction levels in laminar and turbulent boundary 
layers, are high- or low-speed boundary layer flows more likely to be influenced by surface 
roughness? 
 
Solution 1.43. a) Construct the parameter & units matrix and recognizing that τw is a stress and 
has units of pressure. 
   τw U ρ µ δ ε 
   ––––––––––––––––––––––––––––––– 
  M 1 0 1 1 0 0 
  L -1 1 -3 -1 1 1 
  T -2 -1 0 1 0 0 
 
The rank of this matrix is three. There are 6 parameters and 3 independent units, thus there will 
be 6 – 3 = 3 dimensionless groups.  By inspection these groups are: a skin-friction coefficient = 

€ 

Π1 =
τw
ρU 2 , a Reynolds number = 

€ 

Π2 =
ρUδ

µ
, and the relative roughness = 

€ 

Π3 =
ε
δ

.  Thus the 

dimensionless law is: 

€ 

τw
ρU 2 = f ρUδ

µ
,ε
δ

& 

' 
( 

) 

* 
+   where f is an undetermined function.  

b) Use the result of part a) and set 

€ 

τw ∝µ . This involves requiring Π1 to be proportional to 1/ Π2 

so the revised form of the dimensionless law in part a) is: 

€ 

τw
ρU 2 =

µ
ρUδ

g ε
δ

& 

' 
( 
) 

* 
+ , where g is an 

undetermined function.  Simplify this relationship to find: 

€ 

τw =
µU
δ
g ε
δ

% 

& 
' 
( 

) 
* .  Thus, in laminar 

boundary layers, τw is proportional to U and independent of ρ.  
c) When µ is not a parameter the second dimensionless group from part a) must be dropped. 

Thus, the dimensionless law becomes: 

€ 

τw
ρU 2 = h ε

δ

& 

' 
( 
) 

* 
+  where h is an undetermined function.  Here 

we see that 

€ 

τw ∝ρU
2 . Thus, in turbulent boundary layers, τw is linearly proportional to ρ and 
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quadratically proportional to U. In reality, completely dropping µ from the dimensional analysis 
is not quite right, and the skin-friction coefficient (Π1 in the this problem) maintains a weak 
dependence on the Reynolds number when ε/δ << 1. 
d) For this part of this problem, it is necessary to redo the dimensional analysis with the new 
length scale lv and the three remaining parameters: τw, ρ, and µ.  Here there are four parameters 

and three units, so there is only one dimensionless group: 

€ 

Π =
lν ρτw

µ
.  This means that:  

€ 

lν ∝µ ρτw = ν τw ρ = ν u* . 
In the study of wall bounded turbulent flows, the length scale lv is commonly known as the 
viscous wall unit and u* is known as the friction or shear velocity. 
e) The results of part b) and part c) both suggest that τw will be larger at high flow speeds than at 
lower flow speeds. This means that lv will be smaller at high flow speeds for both laminar and 
turbulent boundary layers.  Thus, boundary layers in high-speed flows are more likely to be 
influenced by constant-size surface roughness.  
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Exercise 1.44. Turbulent boundary layer skin friction is one of the fluid phenomena that limit 
the travel speed of aircraft and ships. One means for reducing the skin friction of liquid boundary 
layers is to inject a gas (typically air) from the surface on which the boundary layer forms. The 
shear stress, τw, that is felt a distance L downstream of such an air injector depends on: the 
volumetric gas flux per unit span q (in m2/s), the free stream flow speed U, the liquid density ρ, 
the liquid viscosity µ, the surface tension σ, and gravitational acceleration g.  
a) Formulate a dimensionless law for τw in terms of the other parameters. 
b) Experimental studies of air injection into liquid turbulent boundary layers on flat plates has 
found that the bubbles may coalesce to form an air film that provides near perfect lubrication, 
τ w → 0  for L > 0, when q is high enough and gravity tends to push the injected gas toward the 
plate surface. Reformulate your answer to part a) by dropping τw and L to determine a 
dimensionless law for the minimum air injection rate, qc, necessary to form an air layer. 
c) Simplify the result of part c) when surface tension can be neglected. 
d) Experimental studies (Elbing et al. 2008) find that qc is proportional to U2. Using this 
information, determine a scaling law for qc involving the other parameters. Would an increase in 
g cause qc to increase or decrease? 

 
 
Solution 1.44. a) Construct the parameter & units matrix and recognizing that τw is a stress and 
has units of pressure. 
   τw L q U ρ µ σ g 
   ––––––––––––––––––––––––––––––––––––––––––– 
  M 1 0 0 0 1 1 1 0 
  L -1 1 2 1 -3 -1 0 1 
  T -2 0 -1 -1 0 -1 -2 -2 
This rank of this matrix is three. There are 8 parameters and 3 independent units, thus there will 
be 8 – 3 = 5 dimensionless groups.  By inspection these groups are: a skin-friction coefficient = 

€ 

Π1 =
τw
ρU 2 , a Reynolds number = 

€ 

Π2 =
ρUL

µ
, a Froude number = 

€ 

Π3 =
U
gL

, a capillary number 

= 

€ 

Π4 =
µU
σ

, and flux ratio = 

€ 

Π5 =
ρq
µ

.  Thus the dimensionless law is: 

€ 

τw
ρU 2 = f ρUL

µ
, U
gL
,µU
σ
, ρq

µ

% 

& 
' 

( 

) 
*  where f is an undetermined function.  

b) Dropping τw means dropping Π1. Dropping L means combining Π2 and Π3 to form a new 

dimensionless group: 

€ 

Π2Π3
2 =

ρUL
µ

U 3

gL
=
ρU 3

µg
. Thus, with Π5 as the solution parameter, the 
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scaling law for the minimum air injection rate, qc, necessary to form an air layer is:

€ 

ρqc µ = φ ρU 3 µg,µU σ( )  where φ is an undetermined function.  
c) When σ is not a parameter, Π4 can be dropped leaving: 

€ 

ρqc µ =ϕ ρU 3 µg( )  where ϕ is an 
undetermined function. 
d) When qc is proportional to U2, then dimensional analysis requires: 

€ 

qc = µ ρ( )const. ρU 3 µg( )
2 3

= const.U 2 µ ρg2( )
1 3

. 
So, an increase in g would cause qc to decrease.  
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Exercise 1.45. An industrial cooling system is in the design stage. The pumping requirements 
are known and the drive motors have been selected. For maximum efficiency the pumps will be 
directly driven (no gear boxes). The number Np and type of water pumps are to be determined 
based on pump efficiency η (dimensionless), the total required volume flow rate Q, the required 
pressure rise ΔP, the motor rotation rate Ω, and the power delivered by one motor W. Use 
dimensional analysis and simple physical reasoning for the following items. 
a) Determine a formula for the number of pumps. 
b) Using Q, Np, ΔP, Ω, and the density (ρ) and viscosity (µ) of water, create the appropriate 
number of dimensionless groups using ΔP as the dependent parameter. 
c) Simplify the result of part b) by requiring the two extensive variables to appear as a ratio.  
d) Simplify the result of part c) for high Reynolds number pumping where µ is no longer a 
parameter.  
e) Manipulate the remaining dimensionless group until Ω appears to the first power in the 
numerator. This dimensionless group is known as the specific speed, and its value allows the 
most efficient type of pump to be chosen (see Sabersky et al. 1999). 
 
Solution 1.45. a) The total power that must be delivered to the fluid is QΔP. The power that one 
pump delivers to the fluid will be ηW. Thus, Np will be the next integer larger than QΔP/ηW. 
b) Construct the parameter & units matrix using ΔP as the solution parameter 
 
   ΔP Q Np Ω ρ µ 
  M 1 0 0 0 1 1 
  L -1 3 0 0 -3 -1 
  T -2 -1 0 -1 -0 -1 
 
The rank of this matrix is three. There are 6 parameters and 3 independent units, thus there will 
be 6 – 3 = 2 dimensionless groups.  By inspection these groups are: a pressure coefficient = 

Π1 =
ΔP

ρ Ω2Q( )
2 3 , the number of pumps = Π2 = Np,  and a Reynolds number = Π3 =

ρQ2 3Ω1 3

µ
.  

c) The two extensive parameters (Q & Np) must for a ratio, so defining q = Q/Np, the two 

dimensionless groups are: ΔP
ρ Ω2q( )

2 3 ,  and  ρq
2 3Ω1 3

µ
.  

d) At high Reynolds number, the second dimensionless group will not matter. Thus, ΔP
ρ Ω2q( )

2 3  

alone will characterize the pump, and this group will be a constant.  

e) The specific speed = Ωq1 2

ΔP ρ( )3 4
. Low values of the specific speed (below ~1/2 or so) 

correspond centrifugal pumps that move relatively small amounts of liquid against relatively-
high pressure differences (a water pump for circulating a coolant through narrow passageways). 
High values of the specific speed (above ~2 or so) correspond to propeller pumps that move 
relatively high volumes of fluid against relatively-low pressure differences (a ventilation fan). 
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Exercise 1.46. Nearly all types of fluid filtration involve pressure driven flow through a porous 
material.  
a) For a given volume flow rate per unit area = Q/A, predict how the pressure difference across 
the porous material = Δp, depends on the thickness of the filter material = L, the surface area per 
unit volume of the filter material = Ψ, and other relevant parameters using dimensional analysis. 
b) Often the Reynolds number of the flow in the filter pores is very much less than unity so fluid 
inertia becomes unimportant. Redo the dimensional analysis for this situation. 
c) To minimize pressure losses in heating, ventilating, and air-conditioning (HVAC) ductwork, 
should hot or cold air be filtered? 
d) If the filter material is changed and Ψ is lowered to one half its previous value, estimate the 
change in Δp if all other parameters are constant. (Hint: make a reasonable assumption about the 
dependence of Δp on L; they are both extensive variables in this situation). 

 
 
Solution 1.46. This question can be answered with dimensional analysis. The parameters are 
drawn from the problem statement and the two fluid properties ρ = density and µ = viscosity. 
The solution parameter is Δp, and the unit matrix is: 
 
   Δp Q/A L Ψ ρ µ 
  –––––––––––––––––––––––––––––––––––––– 
  M 1 0 0 0 1 1 
  L –1 1 1 –1 –3 –1 
  T –2 –1 0 0 0 –1 
 
There will be: 6 – 3 = 3 dimensionless groups. These groups are: a pressure coefficient =
Π1 = Δp ρ(Q / A)2 , a dimensionless thickness = Π2 = LΨ , and a thickness-based Reynolds 
number Π3 = ρ(Q / A)L µ . The dimensionless relationship must take the form:  

Δp
ρ(Q / A)2

= fn LΨ, ρ(Q / A)L
µ

#

$
%

&

'
( . 

b) Dropping the density reduces the number of dimensionless groups. The product of the first 
and third group is independent of the density, thus the revised dimensional analysis result is: 

Δp
ρ(Q / A)2

⋅
ρ(Q / A)L

µ
=

ΔpL
(Q / A)µ

= fn LΨ( ) . 

c) The viscosity of gases increases with increasing temperature, thus to keep Δp low for a given 
filter element (LΨ) the viscosity should be low. So, filter cold air. 

L!

Gage pressure !
= Δp!

Q/A! Q/A!

Gage pressure !
= 0!

Porous Material!
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d) A reasonable assumption is that Δp will be proportional to the thickness of the porous 
material, and this implies: 

Δp = (Q / A)µ
L

⋅const. LΨ( )2
=  const.(Q / A)µLΨ2 . 

So, if Ψ is lowered by a factor of ½, then Δp will be lowered to ¼ of is previous value. 
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Exercise 1.47. A new industrial process requires a volume V of hot air with initial density ρ to be 
moved quickly from a spherical reaction chamber to a larger evacuated chamber using a single 
pipe of length L and interior diameter of d. The vacuum chamber is also spherical and has a 
volume of Vf. If the hot air cannot be transferred fast enough, the process fails. Thus, a prediction 
of the transfer time t is needed based on these parameters, the air’s ratio of specific heats γ, and 
initial values of the air’s speed of sound c and viscosity µ. 
a) Formulate a dimensionless scaling law for t, involving six dimensionless groups. 
b) Inexpensive small-scale tests of the air-transfer process are untaken before construction of the 
commercial-scale reaction facility. Can all these dimensionless groups be matched if the target 
size for the pipe diameter in the small-scale tests is d´ = d/10? Would lowering or raising the 
initial air temperature in the small-scale experiments help match the dimensionless numbers? 
 
Solution 1.47. a) This question can be answered with dimensional analysis. The parameters are 
drawn from the problem statement. The solution parameter is t, and the unit matrix is: 
 
  t V Vf L d γ c ρ µ 
  ––––––––––––––––––––––––––––––––––––––––––––––––– 
 M 0 0 0 0 0 0 0 1 1 
 L 0 3 3 1 1 0 1 -3 -1 
 T 1 0 0 0 0 0 -1 0 -1 
 
The rank of this matrix is 3, so there will be: 9 – 3 = 6 dimensionless groups. These groups are:  
a dimensionless time: Π1 = ct/d; a volume ratio: Π2 = V/Vf; another volume ratio: Π2 = d3/Vf; an 
aspect ratio: Π4 = L/d; the ratio of specific heats: Π5 = γ; and a sonic Reynolds number: Π6 = 
ρcd/µ. Thus, the scaling law is: 

ct
d
= φ

V
Vf

, d
3

Vf

, L
d
,γ, ρcd

µ

!

"
##

$

%
&& . 

b) The first dimensionless group will be matched if the other five are matched. So, let primes 
denote the small-scale test parameter. Matching the five independent dimensionless groups 
means: 

V
Vf

=
!V
!Vf

 , d
3

Vf

=
!d 3

!Vf

 , L
d
=

!L
!d
, γ = γ´, and ρcd

µ
=

!ρ !c !d
!µ

.           (1, 2, 3, 4, 5) 

Starting from the target pipe size ratio, d´ = d/10, (2) implies: 
d3

!d 3 =
Vf

!Vf

=103    or   !Vf =Vf 10
3 , and !V =V 103 . 

where the finding for V´ follows from (1). Similarly, from (3), the results for the length of the 
pipe are: 

d
!d
=
L
!L
=10  , so  !L = L 10 . 

The next independent dimensionless group, γ, can be matched by using air in the scale model 
tests since it will be used in the full-scale device. The final independent dimensionless group is 
likely to be the most difficult to match. Using (5) and d´ = d/10, implies: 
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ρcd
µ

=
!ρ !c d
10 !µ

 or  !ρ !c
!µ
=10 ρc

µ
,  

and this relationship only involves material properties. The initial temperature (and pressure P) 
of the small scale experiments can be varied, ρ is proportional to T–1 (and P+1), while both c and 
µ are proportional to T1/2 (and nearly independent of P). Thus, small scale testing at reduced 
temperature (and elevated pressure) might make it possible to match values of this dimensionless 
group between the large- and small-scale experiments. 
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Exercise 1.48. Create a small passive helicopter from ordinary photocopy-machine paper (as 
shown) and drop it from a height of 2 m or so. Note the helicopter’s rotation and decent rates 
once it’s rotating steadily. Repeat this simple experiment with different sizes of paper clips to 
change the helicopter’s weight, and observe changes in the rotation and decent rates. 
a) Using the helicopter’s weight W, blade length l, and blade width (chord) c, and the air’s 
density ρ and viscosity µ as independent parameters, formulate two independent dimensionless 
scaling laws for the helicopter’s rotation rate Ω, and decent rate dz/dt.  
b) Simplify both scaling laws for the situation where µ is no longer a parameter. 
c) Do the dimensionless scaling laws correctly predict the experimental trends? 
d) If a new paper helicopter is made with all dimensions smaller by a factor of two. Use the 
scaling laws found in part b) to predict changes in the rotation and decent rates. Make the new 
smaller paper helicopter and see if the predictions are correct. 

 
 
Solution 1.48. The experiments clearly show that Ω and dz/dt increase with increasing W. 
a) This question can be answered with dimensional analysis. The parameters are drawn from the 
problem statement. The first solution parameter is Ω (the rotation rate) and the units matrix is: 
 
  Ω W l c ρ µ 
  –––––––––––––––––––––––––––––––– 
 M 0 1 0 0 1 1 
 L 0 1 1 1 -3 -1 
 T -1 -2 0 0 0 -1 
 
The rank of this matrix is 3, so there will be: 6 – 3 = 3 dimensionless groups. These groups are:  
Π1 = Ωρ1/2l2/W1/2, Π2 = l/c, and Π3 = ρW/µ2. Thus, the scaling law is: 

Ω
ρl4

W
= φ

l
c
, ρW
µ 2

"

#
$

%

&
' , 

where φ is an undetermined function. The second solution parameter is dz/dt (the descent rate), 
and it has the same units as Ωl, so it's scaling law is: 

dz
dt
!

"
#

$

%
&

ρl2

W
=ψ

l
c
, ρW
µ 2

!

"
#

$

%
& . 

where ψ is an undetermined function. 

4 cm!

7 cm!

2 cm!
paper clip!

7 cm!
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b) When µ is no longer a parameter, both scaling laws simplify  

Ω
ρl4

W
=Φ

l
c
#

$
%
&

'
(   and  dz

dt
!

"
#

$

%
&

ρl2

W
=Ψ

l
c
!

"
#
$

%
& ,  

where Φ and Ψ are different undetermined functions. These laws imply  

Ω =
1
l2

W
ρ
Φ

l
c
#

$
%
&

'
(   and  dz

dt
=
1
l

W
ρ
Ψ

l
c
"

#
$
%

&
' ,  

c) These scaling laws are consistent with experimental results; the rotation and decent rates both 
increase when W increases.  
d) If the aspect ratio, l/c, is fixed, then decreasing l by a factor of two should increase Ω by a 
factor of 4, and dz/dt by a factor of two. When the smaller helicopter is made, the experiments do 
appear to confirm these predictions; both Ω and dz/dt do increase, and the increase for Ω is 
larger. 
 

https://ebookyab.ir/solution-manual-fluid-mechanics-kundu-cohen/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-fluid-mechanics-kundu-cohen/


Fluid Mechanics, 6th Ed.                                                                                                      Kundu, Cohen, and Dowling 

Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation 
and evaluate or simplify them using the values or parameters given, and the definitions of δij and 
εijk wherever possible. In b) through e), x is the position vector, with components xi. 
a) 

€ 

b ⋅ c  where b = (1, 4, 17) and c = (–4, –3, 1)  
b) 

€ 

u ⋅ ∇( )x  where u a vector with components ui. 
c) 

€ 

∇φ , where 

€ 

φ = h ⋅ x  and h is a constant vector with components hi. 
d) 

€ 

∇ ×u, where u = Ω  × x and Ω  is a constant vector with components Ωi. 

e) 

€ 

C ⋅ x , where 

€ 

C =

1 2 3
0 1 2
0 0 1

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

 

 
Solution 2.1. a) 

€ 

b ⋅ c = bici =1(−4) + 4(−3) +17(1) = −4 −12 +17 = +1 

b) 

€ 

u ⋅ ∇( )x = u j
∂
∂x j

xi = u1
∂
∂x1

% 

& 
' 

( 

) 
* + u2

∂
∂x2

% 

& 
' 

( 

) 
* + u3

∂
∂x3

% 

& 
' 

( 

) 
* 

+ 

, 
- 

. 

/ 
0 

x1
x2
x3

+ 

, 

- 
- 
- 

. 

/ 

0 
0 
0 

 

                     

€ 

=

u1
∂x1
∂x1

# 

$ 
% 

& 

' 
( + u2

∂x1
∂x2

# 

$ 
% 

& 

' 
( + u3

∂x1
∂x3

# 

$ 
% 

& 

' 
( 

u1
∂x2
∂x1

# 

$ 
% 

& 

' 
( + u2

∂x2
∂x2

# 

$ 
% 

& 

' 
( + u3

∂x2
∂x3

# 

$ 
% 

& 

' 
( 

u1
∂x3
∂x1

# 

$ 
% 

& 

' 
( + u2

∂x3
∂x2

# 

$ 
% 

& 

' 
( + u3

∂x3
∂x3

# 

$ 
% 

& 

' 
( 

) 

* 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

, 

- 

. 

. 

. 

. 

. 

. 

. 

=

u1 ⋅1+ u2 ⋅ 0 + u3 ⋅ 0
u1 ⋅ 0 + u2 ⋅1+ u3 ⋅ 0
u1 ⋅ 0 + u2 ⋅ 0 + u3 ⋅1

) 

* 

+ 
+ 
+ 

, 

- 

. 

. 

. 

= u jδij =

u1
u2
u3

) 

* 

+ 
+ 
+ 

, 

- 

. 

. 

. 

= ui 

c) 

€ 

∇φ =
∂φ
∂x j

=
∂
∂x j

hixi( ) = hi
∂xi
∂x j

= hiδij = h j = h  

d) 

€ 

∇ ×u =∇ × Ω × x( ) = εijk
∂
∂x j

εklmΩl xm( ) = εijkεklmΩlδ jm = δilδ jm −δimδ jl( )Ωlδ jm = δilδ jj −δijδ jl( )Ωl  

  

€ 

= 3δil −δil( )Ωl = 2δilΩl = 2Ωl = 2Ω  
Here, the following identities have been used: 

€ 

εijkεklm = δilδ jm −δimδ jl , 

€ 

δijδ jk = δik , 

€ 

δ jj = 3, and 

€ 

δijΩ j =Ωi  

e) 

€ 

C ⋅ x = Cij x j =

1 2 3
0 1 2
0 0 1

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

x1
x2
x3

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

=

x1 + 2x2 + 3x3
x2 + 2x3
x3

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 
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Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7). 
 
Solution 2.2. The two representations for the position vector are: 

€ 

x = x1e1 + x2e2 + x3e3 ,  or  

€ 

x = " x 1 " e 1 + " x 2 " e 2 + " x 3 " e 3 . 
Develop the dot product of x with e1 from each representation,  

€ 

e1 ⋅ x = e1 ⋅ x1e1 + x2e2 + x3e3( ) = x1e1 ⋅ e1 + x2e1 ⋅ e2 + x3e1 ⋅ e3 = x1 ⋅1+ x2 ⋅ 0 + x3 ⋅ 0 = x1 , 
and  

€ 

e1 ⋅ x = e1 ⋅ # x 1 # e 1 + # x 2 # e 2 + # x 3 # e 3( ) = # x 1e1 ⋅ # e 1 + # x 2e1 ⋅ # e 2 + # x 3e1 ⋅ # e 3 = # x iC1i ,  
set these equal to find: 

€ 

x1 = " x iC1i ,  
where 

€ 

Cij = e i ⋅ # e j  is a 3 × 3 matrix of direction cosines. In an entirely parallel fashion, forming 
the dot product of x with e2, and x with e2 produces:  

€ 

x2 = " x iC2i   and  

€ 

x3 = " x iC3i . 
Thus, for any component xj, where j = 1, 2, or 3, we have:  

€ 

x j = " x iC ji , 
which is (2.7). 
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Exercise 2.3. For two three-dimensional vectors with Cartesian components ai and bi, prove the 
Cauchy-Schwartz inequality: (aibi)2 ≤ (ai)2(bi)2. 
 
Solution 2.3. Expand the left side term, 

(aibi )
2 = (a1b1 + a2b2 + a3b3)

2 = a1
2b1

2 + a2
2b2

2 + a3
2b3

2 + 2a1b1a2b2 + 2a1b1a3b3 + 2a2b2a3b3 , 
then expand the right side term, 

(ai )
2 (bi )

2 = (a1
2 + a2

2 + a3
2 )(b1

2 + b2
2 + b3

2 )
               = a1

2b1
2 + a2

2b2
2 + a3

2b3
2 + (a1

2b2
2 + a2

2b1
2 )+ (a1

2b3
2 + a3

2b1
2 )+ (a3

2b2
2 + a2

2b3
2 ).

 

Subtract the left side term from the right side term to find: 
(ai )

2 (bi )
2 − (aibi )

2

     = (a1
2b2

2 − 2a1b1a2b2 + a2
2b1

2 )+ (a1
2b3

2 − 2a1b1a3b3 + a3
2b1

2 )+ (a3
2b2

2 − 2a2b2a3b3 + a2
2b3

2 )

     = (a1b2 − a2b1)2 + (a1b3 − a3b1)2 + (a3b2 − a2b3)2 = a×b 2 .

 

Thus, the difference (ai )
2 (bi )

2 − (aibi )
2  is greater than zero unless a = (const.)b then the 

difference is zero.  
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Exercise 2.4. For two three-dimensional vectors with Cartesian components ai and bi, prove the 
triangle inequality: a + b ≥ a+b . 
 
Solution 2.4. To avoid square roots, square both side of the equation; this operation does not 
change the equation's meaning. The left side becomes: 

a + b( )
2
= a 2 + 2 a b + b 2 , 

and the right side becomes: 
a+b 2

= (a+b) ⋅ (a+b) = a ⋅a+ 2a ⋅b+b ⋅b = a 2 + 2a ⋅b+ b 2 . 
So,  

a + b( )
2
− a+b 2

= 2 a b − 2a ⋅b . 
Thus, to prove the triangle equality, the right side of this last equation must be greater than or 
equal to zero. This requires: 

a b ≥ a ⋅b   or using index notation: ai
2bi

2 ≥ aibi , 
which can be squared to find: 

  ai
2bi

2 ≥ (aibi )
2 ,  

and this is the Cauchy-Schwartz inequality proved in Exercise 2.3. Thus, the triangle equality is 
proved. 
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Exercise 2.5. Using Cartesian coordinates where the position vector is x = (x1, x2, x3) and the 
fluid velocity is u = (u1, u2, u3), write out the three components of the vector: 

€ 

u ⋅ ∇( )u = ui ∂u j ∂xi( ) . 
 
Solution 2.5.  

a) 

€ 

u ⋅ ∇( )u = ui
∂u j

∂xi

% 

& 
' 

( 

) 
* = u1

∂u j

∂x1

% 

& 
' 

( 

) 
* + u2

∂u j

∂x2

% 

& 
' 

( 

) 
* + u3

∂u j

∂x3

% 

& 
' 

( 

) 
* =

u1
∂u1
∂x1

% 

& 
' 

( 

) 
* + u2

∂u1
∂x2

% 

& 
' 

( 

) 
* + u3

∂u1
∂x3

% 

& 
' 

( 

) 
* 

u1
∂u2
∂x1

% 

& 
' 

( 

) 
* + u2

∂u2
∂x2

% 

& 
' 

( 

) 
* + u3

∂u2
∂x3

% 

& 
' 

( 

) 
* 

u1
∂u3
∂x1

% 

& 
' 

( 

) 
* + u2

∂u3
∂x2

% 

& 
' 

( 

) 
* + u3

∂u3
∂x3

% 

& 
' 

( 

) 
* 

+ 

, 

- 
- 
- 

. 

- 
- 
- 

/ 

0 

- 
- 
- 

1 

- 
- 
- 

 

      

€ 

=

u ∂u
∂x
# 

$ 
% 

& 

' 
( + v

∂u
∂y
# 

$ 
% 

& 

' 
( + w

∂u
∂z
# 

$ 
% 

& 

' 
( 

u ∂v
∂x
# 

$ 
% 

& 

' 
( + v

∂v
∂y
# 

$ 
% 

& 

' 
( + w

∂v
∂z
# 

$ 
% 

& 

' 
( 

u ∂w
∂x
# 

$ 
% 

& 

' 
( + v

∂w
∂y
# 

$ 
% 

& 

' 
( + w

∂w
∂z

# 

$ 
% 

& 

' 
( 

) 

* 

+ 
+ 
+ 

, 

+ 
+ 
+ 

- 

. 

+ 
+ 
+ 

/ 

+ 
+ 
+ 

 

The vector in this exercise, 

€ 

u ⋅ ∇( )u = ui ∂u j ∂xi( ) , is an important one in fluid mechanics. As 
described in Ch. 3, it is the nonlinear advective acceleration.  
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Exercise 2.6. Convert ∇×∇ρ  to indicial notation and show that it is zero in Cartesian 
coordinates for any twice-differentiable scalar function ρ.  
 
Solution 2.6. Start with the definitions of the cross product and the gradient.  

∇× ∇ρ( ) = εijk
∂
∂x j

∇ρ( )k = εijk
∂ 2ρ
∂x j∂xk

 

Write out the vector component by component recalling that εijk = 0 if any two indices are equal. 
Here the "i" index is the free index. 

εijk
∂ 2ρ
∂x j∂xk

=

ε123
∂ 2ρ
∂x2∂x3

+ε132
∂ 2ρ
∂x3∂x2

ε213
∂ 2ρ
∂x1∂x3

+ε231
∂ 2ρ
∂x3∂x1

ε312
∂ 2ρ
∂x1∂x2

+ε321
∂ 2ρ
∂x2∂x1

!

"

#
#
##

$

#
#
#
#

%

&

#
#
##

'

#
#
#
#

=

∂ 2ρ
∂x2∂x3

– ∂ 2ρ
∂x3∂x2

– ∂ 2ρ
∂x1∂x3

+
∂ 2ρ
∂x3∂x1

∂ 2ρ
∂x1∂x2

−
∂ 2ρ
∂x2∂x1

!

"

#
#
##

$

#
#
#
#

%

&

#
#
##

'

#
#
#
#

= 0 , 

where the middle equality follows from the definition of εijk (2.18), and the final equality follows 

when ρ is twice differentiable so that 

€ 

∂ 2ρ
∂x j∂xk

=
∂ 2ρ
∂xk∂x j

. 
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Exercise 2.7. Using indicial notation, show that a × (b × c) = (a ⋅  c)b − (a ⋅  b)c. [Hint: Call d ≡ b 
× c. Then (a × d)m = εpqmapdq = εpqmapεijqbicj.  Using (2.19), show that (a × d)m = (a ⋅  c)bm −  (a ⋅  
b)cm.]  
 
Solution 2.7. Using the hint and the definition of εijk produces: 

(a × d)m = εpqmapdq = εpqmapεijqbicj =  εpqmεijq bicjap = –εijqεqpm bicjap. 
Now use the identity (2.19) for the product of epsilons:  

(a × d)m = – (δipδjm – δimδpj) bicjap = – bpcmap + bmcpap. 
Each term in the final expression involves a sum over "p", and this is a dot product; therefore 

(a × d)m =  – (a ⋅  b)cm + bm(a ⋅  c). 
Thus, for any component m = 1, 2, or 3,  

a × (b × c) =  − (a ⋅  b)c + (a ⋅  c)b = (a ⋅  c)b − (a ⋅  b)c. 
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Exercise 2.8. Show that the condition for the vectors a, b, and c to be coplanar is εijkaibjck = 0.  
 
Solution 2.8. The vector b × c is perpendicular to b and c. Thus, a will be coplanar with b and c 
if it too is perpendicular to b × c. The condition for a to be perpendicular with b × c is: 

a ⋅  (b × c) = 0. 
In index notation, this is aiεijkbjck = 0 = εijkaibjck. 
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Exercise 2.9. Prove the following relationships: δijδij = 3,  εpqrεpqr = 6, and εpqiεpqj = 2δij.  
 
Solution 2.9. (i) δijδij = δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3.  
For the second two, the identity (2.19) is useful. 
(ii) εpqrεpqr = εpqrεrpq = δppδqq – δpqδpq = 3(3) – δpp = 9 – 3 = 6. 
(iii) εpqiεpqj = εipqεpqj = – εipqεqpj = – (δipδpj – δijδpp) = – δij + 3δij = 2δij. 
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Exercise 2.10. Show that C⋅CT = CT⋅C = δ , where C is the direction cosine matrix and δ  is the 
matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal 
matrix because it represents transformation of one set of orthogonal axes into another.  
 
Solution 2.10. To show that C⋅CT = CT⋅C = δ , where C is the direction cosine matrix and δ  is 
the matrix of the Kronecker delta. Start from (2.5) and (2.7), which are 

€ 

" x j = xiCij   and 

€ 

x j = " x iC ji ,  
respectively, and change the index "i" into "m" on (2.5): 

€ 

" x j = xmCmj . Substitute this into (2.7) to 
find: 

€ 

x j = " x iC ji = xmCmi( )C ji = CmiC jixm . 
However, we also have xj = δjmxm, so  

€ 

δ jm xm = CmiC jixm → δ jm = CmiC ji,  
which can be written: 

€ 

δ jm = CmiCij
T =  C⋅CT,  

and taking the transpose of the this produces: 

€ 

δ jm( )
T

= δmj = CmiCij
T( )

T
= Cmi

TCij =  CT⋅C. 
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Exercise 2.11. Show that for a second-order tensor A, the following quantities are invariant 
under the rotation of axes: 

I1 = Aii ,  I2 =
A11 A12
A21 A22

+
A22 A23
A32 A33

+
A11 A13
A31 A33

 ,  and I3 = det(Aij). 

 [Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that Iʹ′1 = Aʹ′ii = 
Aii.= I1.  Then show that AijAji and AijAjkAki are also invariants. In fact, all contracted scalars of the 
form AijAjk ⋅⋅⋅ Ami are invariants. Finally, verify that I2 =

1
2 I1

2 − AijAji
"# $% , 

I3 =
1
3 AijAjkAki − I1AijAji + I2Aii"# $% . Because the right-hand sides are invariant, so are I2 and I3.] 

 
Solution 2.11. First prove I1 is invariant by using the second order tensor transformation rule 
(2.12): 

€ 

" A mn = CimC jn Aij . 
Replace Cjn by 

€ 

Cnj
T and set n = m,  

€ 

" A mn = CimCnj
TAij → " A mm = CimCmj

T Aij . 
Use the result of Exercise 2.8, 

€ 

δij = CimCmj
T =  , to find: 

€ 

I1 = " A mm = δij Aij = Aii . 
Thus, the first invariant is does not depend on a rotation of the coordinate axes.  
 Now consider whether or not AmnAnm is invariant under a rotation of the coordinate axes. 
Start with a double application of (2.12): 

€ 

" A mn " A nm = CimC jn Aij( ) CpnCqm Apq( ) = C jnCnp
T( ) CimCmq

T( )Aij Apq . 
From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta 
functions, so  

€ 

" A mn " A nm = δ jpδiq Aij Apq = Aij A ji. 
Thus, the matrix contraction AmnAnm does not depend on a rotation of the coordinate axes. 
 The manipulations for AmnAnpApm are a straightforward extension of the prior efforts for 
Aii and AijAji.  

€ 

" A mn " A np " A pm = CimC jn Aij( ) CqnCrp Aqr( ) CspCtm Ast( ) = C jnCnq
T( ) CrpCps

T( ) CimCmt
T( )Aij Aqr Ast . 

Again, the factors in parentheses are Kronecker delta functions, so 

€ 

" A mn " A np " A pm = δ jqδrsδit Aij Aqr Ast = Aiq AqsAsi ,  
which implies that the matrix contraction AijAjkAki does not depend on a rotation of the coordinate 
axes. 
 Now, for the second invariant, verify the given identity, starting from the given definition 
for I2. 

€ 

I2 =
A11 A12
A21 A22

+
A22 A23
A32 A33

+
A11 A13
A31 A33

 

  

€ 

= A11A22 − A12A21 + A22A33 − A23A32 + A11A33 − A13A31 
  

€ 

= A11A22 + A22A33 + A11A33 − A12A21 + A23A32 + A13A31( )  
  

€ 

= 1
2 A11

2 + 1
2 A22

2 + 1
2 A33

2 + A11A22 + A22A33 + A11A33 − A12A21 + A23A32 + A13A31 + 1
2 A11

2 + 1
2 A22

2 + 1
2 A33

2( ) 

  

€ 

= 1
2 A11 + A22 + A33[ ]2 − 1

2 2A12A21 + 2A23A32 + 2A13A31 + A11
2 + A22

2 + A33
2( )  
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€ 

= 1
2 I1

2 − 1
2 A11A11 + A12A21 + A13A31 + A12A21 + A22A22 + A23A32 + A13A31 + A23A32 + A33A33( ) 

  

€ 

= 1
2 I1

2 − 1
2 Aij A ji( ) = 1

2 I1
2 − Aij A ji( ) 

Thus, since I2 only depends on I1 and AijAji, it is invariant under a rotation of the coordinate axes 
because I1 and AijAji are invariant under a rotation of the coordinate axes. 
 The manipulations for the third invariant are a tedious but not remarkable. Start from the 
given definition for I3, and group like terms. 
       

€ 

I3 = det Aij( ) = A11(A22A33 − A23A32) − A12(A21A33 − A23A31) + A13(A21A32 − A22A31) 
           

€ 

= A11A22A33 + A12A23A31 + A13A32A21 − A11A23A32 + A22A13A31 + A33A12A21( )                         (a) 
Now work from the given identity. The triple matrix product AijAjkAki has twenty-seven terms: 
A11
3 + A11A12A21 + A11A13A31 + A12A21A11 + A12A22A21 + A12A23A31 + A13A31A11 + A13A32A21 + A13A33A31 +

A21A11A12 + A21A12A22 + A21A13A32 + A22A21A12 + A22
3 + A22A23A32 + A23A31A12 + A23A32A22 + A23A33A32 +

A31A11A13 + A31A12A23 + A31A13A33 + A32A21A13 + A32A22A23 + A32A23A33 + A33A31A13 + A33A32A23 + A33
3

 
These can be grouped as follows:  
       

€ 

AijA jkAki = 3(A12A23A31 + A13A32A21) + A11(A11
2 + 3A12A21 + 3A13A31) +  

                        

€ 

A22(3A21A12 + A22
2 + 3A23A32) + A33(3A31A13 + 3A32A23 + A33

2 )                                (b) 
The remaining terms of the given identity are: 

€ 

−I1Aij A ji + I2Aii = I1(I2 – AijA ji) = I1(I2 + 2I2 − I1
2) = 3I1I2 – I1

3 ,  
where the result for I2 has been used. Evaluating the first of these two terms leads to: 

€ 

3I1I2 = 3(A11 + A22 + A33)(A11A22 − A12A21 + A22A33 − A23A32 + A11A33 − A13A31) 
        

€ 

= 3(A11 + A22 + A33)(A11A22 + A22A33 + A11A33) − 3(A11 + A22 + A33)(A12A21 + A23A32 + A13A31) . 
Adding this to (b) produces:  

€ 

AijA jkAki + 3I1I2 = 3(A12A23A31 + A13A32A21) + 3(A11 + A22 + A33)(A11A22 + A22A33 + A11A33) +  
                                

€ 

A11(A11
2 − 3A23A32) + A22(A22

2 − 3A13A31) + A33(A33
2 − 3A12A21) 

                          

€ 

= 3(A12A23A31 + A13A32A21 − A11A23A32 − A22A13A31 − A33A12A21) +  
                             

€ 

3(A11 + A22 + A33)(A11A22 + A22A33 + A11A33) + A11
3 + A22

3 + A33
3                            (c) 

The last term of the given identity is: 

€ 

I1
3 = A11

3 + A22
3 + A33

3 + 3(A11
2 A22 + A11

2 A33 + A22
2 A11 + A22

2 A33 + A33
2 A11 + A33

2 A22) + 6A11A22A33 
    

€ 

= A11
3 + A22

3 + A33
3 + 3(A11 + A22 + A33)(A11A22 + A11A33 + A22A33) – 3A11A22A33 

Subtracting this from (c) produces:  

€ 

AijA jkAki + 3I1I2 − I1
3 = 

€ 

3(A12A23A31 + A13A32A21 − A11A23A32 − A22A13A31 − A33A12A21 + A11A22A33) 
                                 

€ 

= 3I3 . 
This verifies that the given identity for I3 is correct. Thus, since I3 only depends on I1, I2, and 
AijAjkAki, it is invariant under a rotation of the coordinate axes because these quantities are 
invariant under a rotation of the coordinate axes as shown above. 
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Exercise 2.12. If u and v are vectors, show that the products uiυj obey the transformation rule 
(2.12), and therefore represent a second-order tensor.  
 
Solution 2.12. Start by applying the vector transformation rule (2.5 or 2.6) to the components of 
u and v separately,  

€ 

" u m = Cimui ,  and  

€ 

" v n = C jnv j . 
The product of these two equations produces: 

€ 

" u m " v n = CimC jnuiv j , 
which is the same as (2.12) for second order tensors. 
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Exercise 2.13. Show that δij is an isotropic tensor. That is, show that δʹ′ij = δij under rotation of 
the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.10.]  
 
Solution 2.13. Apply (2.12) to δij, 

€ 

" δ mn = CimC jnδij = CimCin = Cmi
TCin = δmn . 

where the final equality follows from the result of Exercise 2.10. Thus, the Kronecker delta is 
invariant under coordinate rotations. 
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Exercise 2.14. If u and v are arbitrary vectors resolved in three-dimensional Cartesian 
coordinates, use the definition of vector magnitude, a 2 = a ⋅a , and the Pythagorean theorem to 
show that u⋅v = 0 when u and v are perpendicular. 
 
Solution 2.14. Consider the magnitude of the sum u + v,  

€ 

u+ v 2
= (u1 + v1)

2 + (u2 + v2)
2 + (u3 + v3)

2  
             

€ 

= u1
2 + u2

2 + u3
2 + v1

2 + v2
2 + v3

2 + 2u1v1 + 2u2v2 + 2u3v3 
             

€ 

= u 2
+ v 2

+ 2u ⋅ v , 
which can be rewritten: 

€ 

u +v 2
− u 2

− v 2
= 2u ⋅ v . 

When u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus,  

€ 

u ⋅ v = 0. 
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Exercise 2.15. If u and v are vectors with magnitudes u and υ, use the finding of Exercise 2.14 
to show that u⋅v = uυcosθ where θ is the angle between u and v.  
 
Solution 2.15. Start with two arbitrary vectors (u and v), and view them so that the plane they 
define is coincident with the page and v is horizontal. Consider two additional vectors, βv and w, 
that are perpendicular (v⋅w = 0) and can be summed together to produce u: w + βv = u. 

 
Compute the dot-product of u and v: 

u⋅v = (w + βv) ⋅v = w⋅v + βv⋅v = βυ2. 
where the final equality holds because v⋅w = 0. From the geometry of the figure: 

€ 

cosθ ≡
βv
u

=
βυ
u

,  or  

€ 

β =
u
υ
cosθ . 

Insert this into the final equality for u⋅v to find: 

€ 

u ⋅ v =
u
υ
cosθ

% 

& 
' 

( 

) 
* υ 2 = uυ cosθ . 

 

θ 

u 

v 

βv 

w 
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Exercise 2.16. Determine the components of the vector w in three-dimensional Cartesian 
coordinates when w is defined by: u⋅w = 0, v⋅w = 0, and w⋅w = u2υ2sin2θ, where u and v are 
known vectors with components ui and υi and magnitudes u and υ, respectively, and θ is the 
angle between u and v. Choose the sign(s) of the components of w so that w = e3 when u = e1 
and v = e2.  
 
Solution 2.16. The effort here is primarily algebraic. Write the three constraints in component 
form: 

u⋅w = 0, or 

€ 

u1w1 + u2w2 + u3w3 = 0,                                             (1) 
v⋅w = 0, or 

€ 

υ1w1 +υ 2w2 +υ 3w3 = 0, and                                         (2) 
The third one requires a little more effort since the angle needs to be eliminated via a dot 
product: 

w⋅w = u2υ2sin2θ = u2υ2(1 – cos2θ) = u2υ2 – (u⋅w)2  or 

€ 

w1
2 + w2

2 + w3
2 = (u1

2 + u2
2 + u3

2)(υ1
2 +υ 2

2 +υ 3
2) − (u1υ1 + u2υ 2 + u3υ 3)

2, which leads to 

€ 

w1
2 + w2

2 + w3
2 = (u1υ 2 − u2υ1)

2 + (u1υ 3 − u3υ1)
2 + (u2υ 3 − u3υ 2)

2 .                      (3) 
Equation (1) implies:  

€ 

w1 = −(w2u2 + w3u3) u1                                                        (4) 
Combine (2) and (4) to eliminate w1, and solve the resulting equation for w2: 

€ 

−υ1 (w2u2 + w3u3) u1 +υ 2w2 +υ 3w3 = 0 ,  or  

€ 

−
υ1
u1
u2 +υ 2

$ 

% 
& 

' 

( 
) w2 + −

υ1
u1
u3 +υ 3

$ 

% 
& 

' 

( 
) w3 = 0 . 

Thus: 

€ 

w2 = +w3
υ1
u1
u3 −υ 3

$ 

% 
& 

' 

( 
) −

υ1
u1
u2 +υ 2

$ 

% 
& 

' 

( 
) = w3

u3υ1 − u1υ 3
u1υ 2 − u2υ1

$ 

% 
& 

' 

( 
) .                              (5) 

Combine (4) and (5) to find:  

€ 

w1 = −
w3

u1
υ1u3 −υ 3u1
υ 2u1 −υ1u2

$ 

% 
& 

' 

( 
) u2 + u3

$ 

% 
& 

' 

( 
) = −

w3

u1
υ1u3u2 −υ 3u1u2 +υ 2u1u3 −υ1u2u3

υ 2u1 −υ1u2
+

$ 

% 
& 

' 

( 
)  

€ 

= −
w3

u1
−υ 3u1u2 +υ 2u1u3
υ 2u1 −υ1u2

$ 

% 
& 

' 

( 
) = w3

u2υ 3 − u3υ 2
u1υ 2 − u2υ1

$ 

% 
& 

' 

( 
)  .                                                       (6) 

Put (5) and (6) into (3) and factor out w3 on the left side, then divide out the extensive common 
factor that (luckily) appears on the right and as the numerator inside the big parentheses.  

€ 

w3
2 (u2υ 3 − u3υ 2)

2 + (u3υ1 − u1υ 3)
2 + (u1υ 2 − u2υ1)

2

(u1υ 2 − u2υ1)
2

$ 

% 
& 

' 

( 
) = (u1υ 2 − u2υ1)

2 + (u1υ 3 − u3υ1)
2 + (u2υ 3 − u3υ 2)

2

€ 

w3
2 1
(u1υ 2 − u2υ1)

2

$ 

% 
& 

' 

( 
) =1,  so  

€ 

w3 = ±(u1υ 2 − u2υ1) . 

If u = (1,0,0), and v = (0,1,0), then using the plus sign produces w3 = +1, so 

€ 

w3 = +(u1υ 2 − u2υ1) .  
Cyclic permutation of the indices allows the other components of w to be determined: 

€ 

w1 = u2υ 3 − u3υ 2, 

€ 

w2 = u3υ1 − u1υ 3 , 

€ 

w3 = u1υ 2 − u2υ1. 
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