CHAPTER 3 - Second-Order Linear Differential Equations - SOLUTIONS MANUAL

3.1 Homogeneous Differential Equations with Constant Coefficients

1P

Let $y = e^{rt}$, so that $y' = re^{rt}$ and $y'' = r^2e^{rt}$. Direct substitution into the differential equation yields $(r^2 + 3r - 4)e^{rt} = 0$. Canceling the exponential, the characteristic equation is $r^2 + 3r - 4 = 0$. The roots of the equation are r = -4, 1. Hence the general solution is $y = c_1e^t + c_2e^{-4t}$.

2P

Let $y = e^{rt}$. Substitution of the assumed solution results in the characteristic equation $r^2 + 5r + 6 = 0$. The roots of the equation are r = -3, -2. Hence the general solution is $y = c_1 e^{-2t} + c_2 e^{-3t}$.

3P

Let $y = e^{rt}$, so that $y' = re^{rt}$ and $y'' = r^2e^{rt}$. Direct substitution into the differential equation yields $(12r^2 - r - 1)e^{rt} = 0$. Since $e^{rt} \neq 0$, the characteristic equation is $12r^2 - r - 1 = 0$. The roots of the equation are r = -1/4, 1/3. Hence the general solution is $y = c_1 e^{-t/4} + c_2 e^{t/3}$.

4P

Substitution of the assumed solution $y = e^{rt}$ results in the characteristic equation $r^2 + 6r = 0$. The roots of the equation are r = 0, -6. Hence the general solution is $y = c_1 e^{0t} + c_2 e^{-6t} = c_1 + c_2 e^{-6t}$.

5P

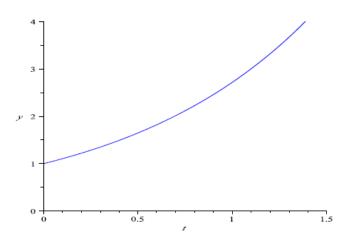
The characteristic equation is $9r^2 - 16 = 0$, with roots $r = \pm 4/3$. Therefore the general solution is $y = c_1 e^{-4t/3} + c_2 e^{4t/3}$.

6P

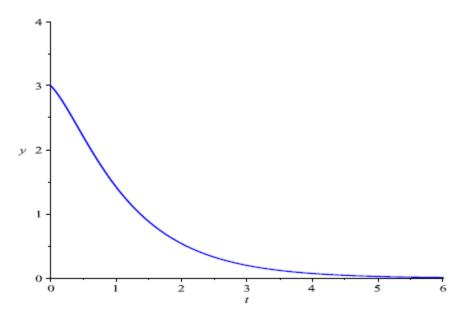
The characteristic equation is $r^2-4r-4=0$, with roots $r=2\pm 2\sqrt{2}$. Hence the general solution is $y=c_1e^{(2-2\sqrt{2})t}+c_2e^{(2+2\sqrt{2})t}$.

Substitution of the assumed solution $y = e^{rt}$ results in the characteristic equation $r^2 + 2r - 3 = 0$. The roots of the equation are r = -3, 1. Hence the general solution is $y = c_1 e^{-3t} + c_2 e^t$. Its derivative is $y' = -3c_1 e^{-3t} + c_2 e^t$. Based on the

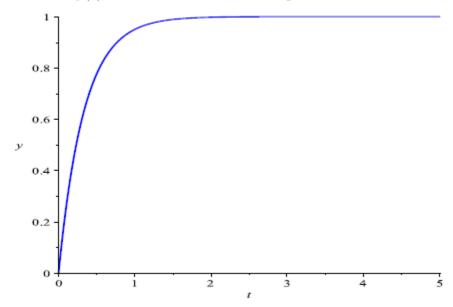
first condition, y(0) = 1, we require that $c_1 + c_2 = 1$. In order to satisfy y'(0) = 1, we find that $-3c_1 + c_2 = 1$. Solving for the constants, $c_1 = 0$ and $c_2 = 1$. Hence the specific solution is $y(t) = e^t$. It clearly increases without bound as $t \to \infty$.



Substitution of the assumed solution $y=e^{rt}$ results in the characteristic equation $r^2+4r+3=0$. The roots of the equation are r=-1, -3. Hence the general solution is $y=c_1e^{-t}+c_2e^{-3t}$. Its derivative is $y'=-c_1e^{-t}-3c_2e^{-3t}$. Based on the first condition, y(0)=2, we require that $c_1+c_2=3$. In order to satisfy y'(0)=-1, we find that $-c_1-3c_2=-1$. Solving for the constants, $c_1=4$ and $c_2=-1$. Hence the specific solution is $y(t)=4e^{-t}-e^{-3t}$. It clearly converges to 0 as $t\to\infty$.



The characteristic equation is $r^2 + 3r = 0$, with roots r = -3, 0. Therefore the general solution is $y = c_1 + c_2 e^{-3t}$, with derivative $y' = -3 c_2 e^{-3t}$. In order to satisfy the initial conditions, we find that $c_1 + c_2 = 0$, and $-3 c_2 = 3$. Hence the specific solution is $y(t) = 1 - e^{-3t}$. This converges to 1 as $t \to \infty$.



The characteristic equation is $2r^2+r-4=0$, with roots $r=(-1\pm\sqrt{33})/4$. The general solution is $y=c_1e^{(-1-\sqrt{33})t/4}+c_2e^{(-1+\sqrt{33})t/4}$, with derivative

$$y' = \frac{-1 - \sqrt{33}}{4} c_1 e^{(-1 - \sqrt{33})t/4} + \frac{-1 + \sqrt{33}}{4} c_2 e^{(-1 + \sqrt{33})t/4}.$$

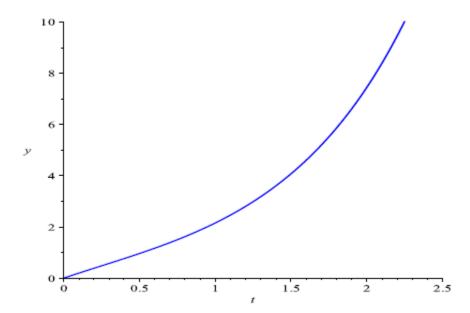
In order to satisfy the initial conditions, we require that

$$c_1 + c_2 = 0$$
 and $\frac{-1 - \sqrt{33}}{4} c_1 + \frac{-1 + \sqrt{33}}{4} c_2 = 2$.

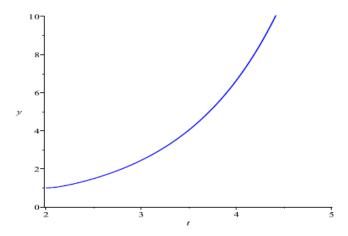
Solving for the coefficients, $c_1 = -4/\sqrt{33}$ and $c_2 = 4/\sqrt{33}$. The specific solution is

$$y(t) = -4 \left[e^{(-1-\sqrt{33})t/4} - e^{(-1+\sqrt{33})t/4} \right] / \sqrt{33}$$
.

It clearly increases without bound as $t \to \infty$.



Substitution of the assumed solution $y=e^{rt}$ results in the characteristic equation $r^2+8r-9=0$. The roots of the equation are r=1,-9. Hence the general solution is $y=c_1e^t+c_2e^{-9t}$. Its derivative is $y'=c_1e^t-9c_2e^{-9t}$. Based on the first condition, y(2)=1, we require that $c_1e^2+c_2e^{-18}=1$. In order to satisfy the condition y'(2)=0, we find that $c_1e^2-9c_2e^{-18}=0$. Solving for the constants, $c_1=9e^{-2}/10$ and $c_2=e^{18}/10$. Hence the specific solution is $y(t)=9e^{t-2}/10+e^{18-9t}/10=9e^{(t-2)}/10+e^{-9(t-2)}/10$. (Observe the shift on the time axis.) It clearly increases without bound as $t\to\infty$.

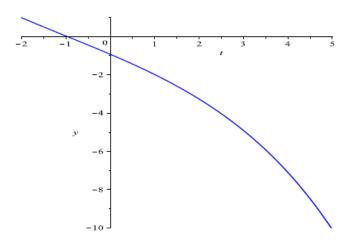


12P

The characteristic equation is $9r^2-1=0$, with roots $r=\pm 1/3$. Therefore the general solution is $y=c_1e^{-t/3}+c_2e^{t/3}$. Since the initial conditions are specified at t=-2, is more convenient to write $y=d_1e^{-(t+2)/3}+d_2e^{(t+2)/3}$. The derivative is given by $y'=-\left[d_1e^{-(t+2)/3}\right]/3+\left[d_2e^{(t+2)/3}\right]/3$. In order to satisfy the initial conditions, we find that $d_1+d_2=1$, and $-d_1/3+d_2/3=-1$. Solving for the coefficients, $d_1=2$, and $d_2=-1$. The specific solution is

$$y(t) = 2e^{-(t+2)/3} - e^{(t+2)/3} = 2e^{-2/3}e^{-t/3} - e^{2/3}e^{t/3}$$
.

It clearly decreases without bound as $t \to \infty$.



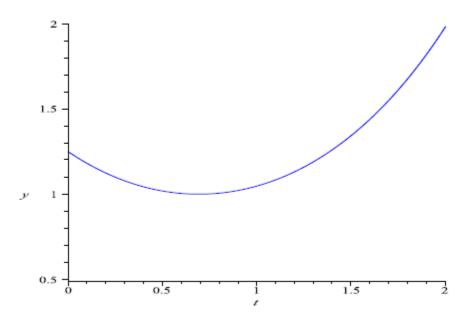
13P

An algebraic equation with roots 4 and -3 is $(r-4)(r+3) = r^2 - r - 12 = 0$. This is the characteristic equation for the differential equation y'' - y' - 12y = 0.

14P

The characteristic equation is $2r^2 - 3r + 1 = 0$, with roots r = 1/2, 1. Therefore the general solution is $y = c_1 e^{t/2} + c_2 e^t$, with derivative $y' = c_1 e^{t/2}/2 + c_2 e^t$. In order to satisfy the initial conditions, we require $c_1 + c_2 = 2$ and $c_1/2 + c_2 = 1/2$. Solving for the coefficients, $c_1 = 3$, and $c_2 = -1$. The specific solution is $y(t) = 3e^{t/2} - e^t$. To find the stationary point, set $y' = 3e^{t/2}/2 - e^t = 0$. There is a unique solution, with $t_1 = \ln(9/4)$. The maximum value is then $y(t_1) = 9/4$. To find the x-intercept, solve the equation $3e^{t/2} - e^t = 0$. The solution is readily found to be $t_2 = \ln 9 \approx 2.1972$.

The characteristic equation is $r^2 - 1 = 0$, with roots r = 1, -1. Therefore the general solution is $y = c_1 e^t + c_2 e^{-t}$, with derivative $y' = c_1 e^t - c_2 e^{-t}$. To satisfy the initial conditions, we require that $c_1 + c_2 = 5/4$ and $c_1 - c_2 = -3/4$. Solving for the coefficients, $c_1 = 1/4$ and $c_2 = 1$. This means that the specific solution is $y(t) = e^t/4 + e^{-t}$. From this, $y' = e^t/4 - e^{-t} = 0$ when $e^{2t} = 4$ or $t = \ln 2$. The value here is $y(\ln 2) = 2/4 + 1/2 = 1$. Since y'' = y is positive at $t = \ln 2$, this is a minimum.



16P

The characteristic equation is $4r^2 - 1 = 0$, with roots $r = \pm 1/2$. Hence the general solution is $y = c_1 e^{-t/2} + c_2 e^{t/2}$ and $y' = -c_1 e^{-t/2}/2 + c_2 e^{t/2}/2$. Invoking the initial conditions, we require that $c_1 + c_2 = 2$ and $-c_1 + c_2 = 2\beta$. The specific solution is $y(t) = (1 - \beta)e^{-t/2} + (1 + \beta)e^{t/2}$. Based on the form of the solution, it is evident that as $t \to \infty$, $y(t) \to 0$ as long as $\beta = -1$.

17P

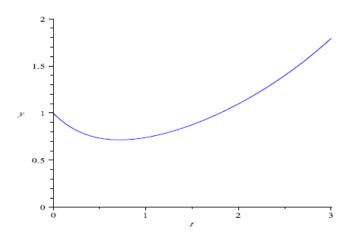
The characteristic equation is $r^2 + (3 - \alpha)r - 2(\alpha - 1) = 0$. Solving this equation, we see that the roots are $r = \alpha - 1, -2$. Therefore, the general solution is $y(t) = c_1 e^{(\alpha - 1)t} + c_2 e^{-2t}$. In order for all solutions to tend to zero, we need $\alpha - 1 < 0$. Therefore, the solutions will all tend to zero as long as $\alpha < 1$. Due to the term $c_2 e^{-2t}$, we can never guarantee that all solutions will become unbounded as $t \to \infty$.

18P

The characteristic equation is $r^2-(2\alpha-1)r+\alpha(\alpha-1)=0$. Examining the coefficients, the roots are $r=\alpha$, $\alpha-1$. Hence the general solution of the differential equation is $y(t)=c_1e^{\alpha t}+c_2e^{(\alpha-1)t}$. Assuming $\alpha\in\mathbb{R}$, all solutions will tend to zero as long as $\alpha<0$. On the other hand, all solutions will become unbounded as long as $\alpha-1>0$, that is, $\alpha>1$.

19P

- (a) The characteristic equation is $2r^2 + 3r 2 = 0$, with roots r = 1/2 and r = -2. The initial conditions give $y(t) = (2\beta + 1)e^{-2t}/5 + (4 2\beta)e^{t/2}/5$.
- (b) $y(t) = 2e^{t/2}/5 + 3e^{-2t}/5$.



We obtain that $y' = (-6e^{-2t} + e^{t/2})/5$. Setting this equal to zero and solving for t yields $t_0 = (2 \ln 6)/5$. At this point, $y_0 = \sqrt[5]{3/16} \approx 0.715485$.

(c) From part (a), if $\beta = 2$ then $y = e^{-2t}$ and the solution simply decays to zero. For $\beta > 2$, the solution becomes unbounded negatively, and again there is no minimum point. For $0 < \beta < 2$ there is always a minimum point, as found in part (b).

- (a) The roots of the characteristic equation are $r = (-b \pm \sqrt{b^2 4ac})/2a$. For the roots to be real and different we must have $b^2 4ac > 0$. If they are to be negative, then we must have b > 0 (since we are given that a > 0) and c > 0. This latter condition comes from the fact that if $c \le 0$ then $\sqrt{b^2 4ac} \ge b$ and hence the numerator of r would give both positive and negative values, or a zero if c = 0.
- (b) From part (a), this will happen when $b^2 4ac > 0$ and c < 0.
- (c) Similarly to part (a), this happens when $b^2 4ac > 0$ and b < 0 and c > 0.

21P

- (a) Assuming that y is a constant, the differential equation reduces to cy = d. Hence the only equilibrium solution is y = d/c.
- (b) Setting y = Y + d/c, substitution into the differential equation results in the equation aY'' + bY' + c(Y + d/c) = d. The equation satisfied by Y is aY'' + bY' + cY = 0.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

1P

$$W(e^{4t}, e^{-3t/2}) = \begin{vmatrix} e^{4t} & e^{-3t/2} \\ 4e^{4t} & -\frac{3}{2}e^{-3t/2} \end{vmatrix} = -\frac{11}{2}e^{5t/2}.$$

2P

$$W(x, xe^{2x}) = \begin{vmatrix} x & xe^{2x} \\ 1 & e^{2x} + 2xe^{2x} \end{vmatrix} = xe^{2x} + 2x^2e^{2x} - xe^{2x} = 2x^2e^{2x}.$$

3P

$$W(e^{-3t}, t e^{-3t}) = \begin{vmatrix} e^{-3t} & t e^{-3t} \\ -3e^{-3t} & (1-3t)e^{-3t} \end{vmatrix} = e^{-6t}.$$

4P

$$W(e^{2t}\sin t, e^{2t}\cos t) = \begin{vmatrix} e^{2t}\sin t & e^{2t}\cos t \\ e^{2t}(2\sin t + \cos t) & e^{2t}(2\cos t - \sin t) \end{vmatrix} = -e^{4t}.$$

5P

$$W(\sin^2\theta, 1 - \cos 2\theta) = \begin{vmatrix} \sin^2\theta & 1 - \cos 2\theta \\ 2\sin\theta\cos\theta & 2\sin 2\theta \end{vmatrix} = 0.$$

6P

Write the equation as y'' + (3/t)y' = 1. p(t) = 3/t is continuous for all t > 0. Since $t_0 > 0$, the IVP has a unique solution for all t > 0.

7P

Write the equation as y'' + (3/(t-4))y' + (5/t(t-4))y = 2/t(t-4). The coefficients are not continuous at t = 0 and t = 4. Since $t_0 \in (0,4)$, the largest interval is 0 < t < 4.

8P

The coefficient $3 \ln |t|$ is discontinuous at t = 0. Since $t_0 > 0$, the largest interval of existence is $0 < t < \infty$.

9P

Write the IVP as

$$y'' + \frac{1}{x - 2}y' + (\tan x)y = 0.$$

Since the coefficient functions are continuous for all x such that $x \neq 2$, $n\pi + \pi/2$ and $x_0 = 4$, the IVP is guaranteed to have a unique solution for all x such that $2 < x < 3\pi/2$.

10P

No. Substituting $y = \sin(t^2)$ into the differential equation,

$$-4t^2\sin(t^2) + 2\cos(t^2) + 2t\,\cos(t^2)p(t) + \sin(t^2)q(t) = 0.$$

At t = 0, this equation becomes 2 = 0 (if we suppose that p(t) and q(t) are continuous), which is impossible.

11P

 $y_1'' = 2$. We see that $t^2(2) - 2(t^2) = 0$. $y_2'' = 2t^{-3}$, with $t^2(y_2'') - 2(y_2) = 0$. Let $y_3 = c_1t^2 + c_2t^{-1}$, then $y_3'' = 2c_1 + 2c_2t^{-3}$. It is evident that y_3 is also a solution.

12P

For y = 1, y' = 0 and y'' = 0, so $yy'' + (y')^2 = 0$. For $y = t^{1/2}$, $y' = t^{-1/2}/2$ and $y'' = -t^{-3/2}/4$, thus $yy'' + (y')^2 = -t^{-1}/4 + t^{-1}/4 = 0$. If $y = c_1 \cdot 1 + c_2 t^{1/2}$ is substituted into the differential equation, we get $(c_1 + c_2 t^{1/2})(-c_2 t^{-3/2}/4) + (c_2 t^{-1/2}/2)^2 = -c_1 c_2 t^{-3/2}/4$, which is zero only if $c_1 = 0$ or $c_2 = 0$. Thus the linear combination of two solutions is not, in general, a solution. Theorem 3.2.2 is not contradicted however, since the differential equation is not linear.

13P

 $y = \phi(t)$ is a solution of the differential equation, so $L[\phi](t) = g(t)$. Since L is a linear operator, $L[c\phi](t) = cL[\phi](t) = cg(t)$. But, since $g(t) \neq 0$, cg(t) = g(t) if and only if c = 1. This is not a contradiction of Theorem 3.2.2 since the linear differential equation is not homogeneous.

14P

 $W(e^{3t},g(t))=e^{3t}g'(t)-3e^{3t}g(t)=2e^{6t}$. Dividing both sides by e^{3t} , we find that g must satisfy the ODE $g'-3g=2e^{3t}$. Hence $g(t)=2t\,e^{3t}+c\,e^{3t}$.

15P

 $W(t, g(t)) = tg'(t) - g(t) = 2t^2e^t$. Dividing both sides of the equation by t, we have $g' - g/t = 2te^t$. This a linear equation for g with an integrating factor 1/t. Therefore, $g(t) = 2te^t + ct$.

16P

We compute

$$W(a_1y_1 + a_2y_2, b_1y_1 + b_2y_2) = \begin{vmatrix} a_1y_1 + a_2y_2 & b_1y_1 + b_2y_2 \\ a_1y'_1 + a_2y'_2 & b_1y'_1 + b_2y'_2 \end{vmatrix} =$$

$$= (a_1y_1 + a_2y_2)(b_1y'_1 + b_2y'_2) - (b_1y_1 + b_2y_2)(a_1y'_1 + a_2y'_2) =$$

$$= a_1b_2(y_1y'_2 - y'_1y_2) - a_2b_1(y_1y'_2 - y'_1y_2) = (a_1b_2 - a_2b_1)W(y_1, y_2).$$

This now readily shows that y_3 and y_4 form a fundamental set of solutions if and only if $a_1b_2 - a_2b_1 \neq 0$.