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Chapter 1

Introduction

1.1 Mathematical Models, Solutions, and Direction Fields

For y > 3/2, the slopes are negative, and, therefore the solutions decrease. For y < 3/2, the
slopes are positive, and, therefore, the solutions increase. As a result, y — 3/2 as t — o
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For y > 3/2, the slopes are positive, therefore the solutions increase. For y < 3/2, the slopes
are negative, therefore, the solutions decrease. As a result, y diverges from 3/2 as t — oo if

y(0) # 3/2.
3.
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For y > —3/2, the slopes are positive, and, therefore the solutions increase. For y < —3/2,
the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from
the equilibrium —3/2 as t — oo

4.

For y > —1/2, the slopes are negative, therefore the solutions decrease. For y < —1/2, the
slopes are positive, therefore, the solutions increase. As a result, y — —1/2 as t — 0.

D.
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For y > —1/2, the slopes are positive, and, therefore the solutions increase. For y < —1/2,
the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from
the equilibrium —1/2 as t — oo

6.
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For y > —3, the slopes are positive, therefore the solutions increase. For y < —3, the slopes
are negative, therefore, the solutions decrease. As a result, y diverges from —3 as t — oc.

7. For the solutions to satisfy y — 3 as t — 0o, we need 3y’ < 0 for y > 3 and ' > 0 for
y < 3. The equation 3’ = 3 — y satisfies these conditions.

8. For the solutions to satisfy y — 3/4 as t — oo, we need 3y’ < 0 for y > 3/4 and 3 > 0 for
y < 3/4. The equation y = 3 — 4y satisfies these conditions.

9. For the solutions to satisfy y diverges from 2, we need 3y’ > 0 for y > 2 and ¢y < 0 for
y < 2. The equation 3’ = y — 2 satisfies these conditions.

10. For the solutions to satisfy y diverges from 1/3, we need y' > 0 for y > 1/3 and ¢/ < 0
for y < 1/3. The equation ' = 3y — 1 satisfies these conditions.

11.


https://ebookyab.ir/solution-manual-differential-equation-brannan-boyce/

INTRODUCTIO

CHAPTER 1.

SRS SN
AR
SRS SSSENN/
AP SSOUEUNN
— | e\
o N ———\ e
PN RSN
IECCECCNN
e\
N
T &N
FA RS CCUNN
AT SN
3 B SSENN
A SN
NN
IR CSCEONN
— | N\
e R
N\ e

~——~ —_~
—— | -
11//\\1 \\\\\ -~
~——~ —_~
—— | -
11//\\1 xxxxx —_~
~—~ Pl
—— -
11/\\1 xxxxx —_~
1///\\1 \\\\\\ Pl

————————

———————

————————

———————

————————

~———————

LRSS (P e s o
—— e~

11//\\1 \\\\\ —_
~——~ —_~
~——~ -
—— | -
~—~ Pl
~—— -
R -

————————

~—~———————

————————

———————

————————

yab.ir@gmail.com, Phone:+989359542944 7(Te|egram, WhatsA]\\Pp, Eitaa)

4

https://ebookyab.ir/solution-manual-differential-equation-brannan-boyce/

Email: ebook

y = 0 and y = 4 are equilibrium solutions; y — 4 if initial value is positive; y diverges from

0 if initial value is negative.

12.

y = 0 and y = 6 are equilibrium solutions; y diverges from 6 if the initial value is greater

than 6; y — 0 if the initial value is less than 6.

13.
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1.1. MATHE ATICAL MODELS SOLUTIONS, AND DIRECTION IELDS

y = 0 is equilibrium solution; y — 0 if initial value is negative; y diverges from 0 if initial
value is positive.

14.

y = 0 and y = 2 are equilibrium solutions; y diverges from 0 if the initial value is negative;
y — 2 if the initial value is between 0 and 2; y diverges from 2 if the initial value is greater
than 2.

15. (j)
(c)
(g)
18. (b)
(h)
(e)
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y is asymptotic tot — 3 as t — o0
22.
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y — 00,0, or —oo depending on the initial value of y

24.

y—0ast— oo.

23.

y — oo or —oo depending whether the initial value lies above or below the line y = —t¢/2.

25.
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y — oo or —oo or y oscillates depending whether the initial value of y lies above or below

the sinusoidal curve.

26.
y — —oo or is asymptotic to /2t — 1 depending on the initial value of y.

27.

>0

y — 0 and then fails to exist after some ¢

28.
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y — 0o or —oo depending on the initial value of y.
29.

(a) Using the differential equation and the given approximation, we obtain that

u(t;) — u(tj—1)
At

= —k(u(tj_1) — Tp).

Multiplication by At yields u(t;) —u(t;—1) = —kAt(u(t;_1) —Tp), which gives us u(t;) =
(1 — kAOu(tj_1) + kAT,

(b) We use induction. The statement is true for n = 1: u(t1) = (1-kAt)uo+kToAt. Suppose
the statement is true for n, i.e. that u(t,) = (1 — kA)"ug + KToAt Y- o(1 — kALY
This implies that for n + 1 we get

n—1
u(tny1) = (1—kA)u(t,)+kAtTy = (1—kAt)[(1—kAt)”uo+kToAtZ(l—kAt)ijAtTo =

=0

= (1= kA" g + KTHALY (1 — kAt

J=0

which is exactly what we wanted to show. We know that Z 0 =1 =
(rm—=1)/(r—1) = (1—=r")/(1—r); let r = 1 — kAt, then 17 = kAt and we obtam that
u(tn) = (1= kAt ug + kTyAt Y170 (1 — kALY = (1 — kAL ug + To(1 — (1 — kAL)™).

(¢) In(1—kt/n)* =nln(l—kt/n) =In(1—kt/n)/(1/n), so using L’Hospital’s rule we obtain
that the limit of this sequence is the same as the limit of (1/(1—kt/n))-(kt/n?)/(—1/n?),
which is clearly —kt as n — oo, so the sequence (1 —kt/n)"™ converges to e *" as n — oo.
Let At = t/n and we obtain immediately that u(t,) = (1 — kt/n)"uo + To(1 — (1 —
kt/n)") — e Fug + To(1 — e™*) = e ¥ (ug — Tp) + Ty as n — oo.

30. With

o(t) =Ty + —Acﬂ[k sin(wt) + w cos(wt)] + ce
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1.1. MATHE ATICAL MODELS SOLUTIONS, AND DIRECTION IELDS

it is straightforward to see that
&' (t) + ko(t) = kTo + kAsin(wt).

31. Using the fact that
Rsin(wt — ¢) = Rcosd sin(wt) — Rsin d cos(wt)

where R? cos? § + R?sin?§ = R? = A% + B2, the desired result follows.

31. Let R = +/A? + B2. Using the fact that sin(a — ) = sina cos f — cos asin 3, we obtain
that Rsin(wt—4J) = Rcosdsinwt — Rsind coswt = Asinwt + B coswt. The ¢ value for which
Rcosd = A and Rsind = —B exists because R? = A? + B2,

32.

(a) The general solution is p(t) = 900 + ce’/2. Plugging in for the initial condition, we have
p(t) = 900+ (po—900)et/2. With py = 850, the solution is p(t) = 900 —50e*/2. To find the
time when the population becomes extinct, we need to find the time 7" when p(7) = 0.
Therefore, 900 = 50e”/2, which implies e’/? = 18, and, therefore, T = 2In18 = 5.78
months.

(b) Using the general solution, p(t) = 900 + (po — 900)e"/?, we see that the population will
become extinct at the time 7" when 900 = (900—pg)e?/2. That is, T' = 21n[900/(900—py)]
months.

(c) Using the general solution, p(t) = 900 4 (po — 900)e'/?, we see that the population after
1 year (12 months) will be p(6) = 900 + (po — 900)e®. If we want to know the initial
population which will lead to extinction after 1 year, we set p(6) = 0 and solve for py.
Doing so, we have (900 — pg)e® = 900 which implies py = 900(1 — ¢~%) = 897.8.

33.

(a) The solution of the differential equation p’ = rp, when p(0) = pg is p(t) = pee”. If the
population doubles in 20 days, then p(20) = pee?"" = 2pg, so r = In2/20 (day1).

(b) The same computation shows that r = In2/N (day™).

34.

(a) The general solution of the equation is Q(t) = ce™™. Given that Q(0) = 100, we have
¢ = 100. Assuming that Q(1) = 82.04, we have 82.04 = 100e~". Solving this equation
for r, we have r = —In(82.04/100) = .19796 per week or r = 0.02828 per day.

(b) Using the form of the general solution and r found above, we have Q(t) = 100e0-92828¢,

(c) Let T be the time it takes the isotope to decay to half of its original amount. From part
(b), we conclude that .5 = e 92827 which implies that 7" = —1In(0.5)/0.2828 = 24.5
days.
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35.

(a) The direction field is the same as in Problem 1, except the equilibrium solution (where
the arrows are horizontal) is at —mg/y. We obtain this value by setting mv’ = 0:
—mg — yv = 0, so v = —mg/~. The direction field shows that the velocity of a falling
object does not grow without bound, it approaches this equilibrium velocity. We can
also see that the smaller the drag coefficient v > 0 is, the higher the terminal velocity
the object reaches.

(b) First, mv' = m(vg + mg/7y)(—y/m)e /™ = —y(vy + mg/7y)e ¥/™. Also, —mg — yv =
—mg — v((vo +mgy)e "™ —mg/y) = —y(vo + mg/y)e ™. So the function satisfies
the given differential equation. We can also see that v(0) = (vg + mg/vy) — mg/vy = vo.

(c) The ball reaches its maximum height when v = 0. This will happen when (vy +
mg/y)e "™ = mg/v. Dividing both sides by e~ "*™mg/~, we obtain vyy/(mg) + 1 =
e"/™  Taking the logarithm of both sides and dividing by v/m we get that t = ty., =
(m/7) In(1 + o/ (mg)).

(d) Using the previous parts, v = —mg/verm = —0.145:9.8/(—33)(kg/sec) =~ 0.0431(kg/sec).

(e) Using the expression for the velocity, we can get the function describing the height of the
thrown ball. Because v = A/, we get that h(t) = (—m/7)(vo+mg/Y)e "™ —mgt /y+ho+
(m/7)(vo +mg/v), where the constant was chosen to satisfy the initial condition h(0) =
ho. Using part (c), the time needed to reach maximum height is (m/7) In(14~yve/(mg)),
by plugging this into the height function we obtain that Ay, =~ 31.16 (m).

a) Following the discussion in the text, the equation is given by mv’ = mg — kv?.
(a) g 7 q g y g

(b) After a long time, v — 0. Therefore, mg — kv? — 0, or v — \/mg/k.

(c) We need to solve the equation 4/.005-9.8/k = 35. Solving this equation, we see that
k = 0.0004 kg/m.

(a) Let ¢(t) denote the amount of chemical in the pond at time ¢. The chemical ¢ will
be measured in grams and the time ¢ will be measured in hours. The rate at which
the chemical is entering the pond is given by 300 gallons/hour -.01 grams/gallons =
300 - 1072 grams/hour. The rate at which the chemical leaves the pond is given by
300 gallons/hour -q/1, 000,000 grams/gallons = 300 - g10~¢ grams/hour. Therefore, the
differential equation is given by dq/dt = 300(1072 — ¢107°).

(b) Ast — 0o, 1072 —¢107% — 0. Therefore, ¢ — 10* grams. The limiting amount does not
depend on the amount that was present initially.
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1.2. LINEAR EQUATIONS: METHOD OF INTEGRATING FACTORS 11

38. The surface area of a spherical raindrop of radius r is given by S = 4mr%. The volume
of a spherical raindrop is given by V = 4xr3/3. Therefore, we see that the surface area
S = ¢V?/3 for some constant c. If the raindrop evaporates at a rate proportional to its
surface area, then dV/dt = —kV?/3 for some k > 0.

39.

(a) Let g(t) be the total amount of the drug (in milligrams) in the body at a given time ¢
(measured in hours). The drug enters the body at the rate of 5 mg/cm? -100 cm?/hr
= 500 mg/hr, and the drug leaves the body at the rate of 0.4¢ mg/hr. Therefore, the
governing differential equation is given by dq/dt = 500 — 0.4q.

(b) If ¢ > 1250, then ¢’ < 0. If ¢ < 1250, then ¢’ > 0. Therefore, ¢ — 1250.
1.2 Linear Equations: Method of Integrating Factors

1.
(a)

—~
—

IS
1]
e B

(b) All solutions seem to converge to an increasing function as t — oc.
(c) The integrating factor is u(t) = 3. Then
ey + 3y = et + e ) = (’ly) =te¥ + ¢
— My = /(te?’t +el)dt = 1tef” — 1e3t +e4c

3 9

t 1

—3t —2t
— = ce +€ _|____
Y 379

We conclude that y is asymptotic to t/3 —1/9 as t — oc.
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We conclude that y increases exponentially as ¢ — oo.

(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is pu(t) = e~%. Then

(b) All solutions appear to converge to the function y(t) = 1.
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1.2. LINEAR QUATIONS: 'METHOD OF INTEGRATING FACTO

(c) The integrating factor is p(t) = e'. Therefore,
ey +ely=t+e = (y) =t+¢
t2
— ety:/(t—l—et)dt: §+et+c

2

t
— y= Ee_t—l— 1+ce ™.

Therefore, we conclude that y — 1 as t — oo.
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(b) The solutions eventually become oscillatory.
(¢) The integrating factor is u(t) = t. Therefore,

ty' +y = 3tcos(2t) = (ty) = 3t cos(2t)

3 3
= ty = /3t cos(2t) dt = 1 cos(2t) + 515 sin(2t) + ¢
o 3cos 2t L 3sin 2t L c
V=T w > Tt

We conclude that y is asymptotic to (3sin2t)/2 as t — oo.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.
t2y) + 2ty = tsin(t) = (t*y)

(¢) The integrating factor is pu(t)
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We conclude that y — 0 as t — oo.
7.
(a)

11
11117

(b) For ¢t > 0, all solutions seem to eventually converge to the function y = 0.

(¢) The integrating factor is u(t) = e'”. Therefore, using the techniques shown above, we
see that y(t) = t2¢™"" + ce™". We conclude that y — 0 as t — oo.

(b) For ¢ > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is pu(t) = (1 + ¢*)?. Then

1+ t)%) + 4t(1 + 2y =
(1 +1°)%y +4t(1 + %)y e
1
dt

— () = [

— y = (arctan(t) +c)/(1 + )2

We conclude that y — 0 as t — oo.
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(b) All slopes eventually become positive. Therefore, all solutions will increase without

bound.
(c) The integrating factor is pu(t) = e!/2. Therefore,
2!y + e!/?y = 3tet/? — 2et?y = /3t6t/2 dt = 6tet’? —12¢'/% + ¢

— y=3t—6+ce V2

We conclude that y — 3t — 6 as t — oo.

10.
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(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease

without bound.


https://ebookyab.ir/solution-manual-differential-equation-brannan-boyce/

https://ebookyab.ir/solution-manual-differential-equation-brannan-boyce/

Email: ebookyab. |r@%mall .com, Phone:+989359542944 ( Telegram WhatsApp, Eitaa)
1.2. LINEAR QUATIONS: 'METHOD OF INTEGRATING FACTO

(c) By dividing the equation by ¢, we see that the integrating factor is u(t) = 1/t. Therefore,
yjt—y/t=te”t = (y/t) =te
— % = /te_tdt =—tet—e 4o
= y = —t2e7t —te7t + ct.
We conclude that y - ocoif ¢ >0,y - —c0if c <0 and y — 0 if ¢ = 0.
11.
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(b) The solution appears to be oscillatory.
(¢) The integrating factor is u(t) = e’. Therefore,
ey’ + e'y = be’sin(2t) = (e'y)’ = 5e’ sin(2t)
= ey = /5et sin(2t) dt = —2¢" cos(2t) + e'sin(2t) + ¢ = y = —2cos(2t) + sin(2t) + ce".
We conclude that y — sin(2t) — 2 cos(2t) as t — 0.

12.
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(b) All slopes are eventually positive. Therefore, all solutions increase without bound.

(c) The integrating factor is u(t) = e'/?

. Therefore,
2et/2y + et?y = 31%e!? = (2e%y)" = 3t%e!/?
— 2et?%y = /3t2et/2 dt = 6t2et/? — 24te!/? + 48¢2 + ¢
— y =3t> — 12t + 24 4 ce /2.
We conclude that y is asymptotic to 3t — 12t + 24 as t — oo.

13. The integrating factor is u(t) = e~*. Therefore,
(e7ty) =2te! = y=2¢' / ote! dt = 2te* — 2e*! + ce'.

The initial condition y(0) = 1 implies —2 + ¢ = 1. Therefore, ¢ = 3 and y = 3¢’ +2(t — 1)e*
14. The integrating factor is u(t) = e3. Therefore,

t2
(y) =t = y=e /tdt = 56_3t + ce 3,

The initial condition y(1) = 0 implies e 3 /2 + ce™ = 0. Therefore, ¢ = —1/2, and
y=(t*—1)e3/2.
15. Dividing the equation by ¢, we see that the integrating factor is u(t) = t2. Therefore,

_ 2t 1 ¢

The initial condition y(1) = 1/2 implies ¢ = 1/12, and y = (3t* — 4¢3 + 6¢% + 1) /12¢%.
16. The integrating factor is u(t) = t2. Therefore,

(t*y) = cos(t) = y=1t"7 / cos(t) dt = t~*(sin(t) + ¢).

The initial condition y(7) = 0 implies ¢ = 0 and y = (sint)/¢*.
17. The integrating factor is u(t) = e~*. Therefore,

(eMy) =1 = y=¢ /1dt—e (t+c).

The initial condition y(0) = 2 implies ¢ = 2 and y = (¢ + 2)e*
18. After dividing by ¢, we see that the integrating factor is u(t) = t?. Therefore,

t*y) =1 = y=1t"2 /tsin(t) dt =t~ %(sin(t) — t cos(t) + c).
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The initial condition y(7/2) = 1 implies ¢ = (7%/4) —1 and y = t~2[(7*/4) — 1 —t cos t+sin t].
19. After dividing by ¢3, we see that the integrating factor is u(t) = t*. Therefore,

(t'y) =t = 1/==t_4]/te_tdt::t‘4(—te—t_-e—t4_0)

The initial condition y(—1) = 0 implies c =0 and y = —(1 +t)e~?/t*, t#0
20. After dividing by ¢, we see that the integrating factor is u(t) = te'. Therefore,

(te'y) =te! = y=t""e! /tet dt=t"te ! (te' —e'+c) =t (t —1+ce™).

The initial condition y(In2) = 1 implies c=2 and y = (t — 1 +2e7%)/t, t #0.
21.
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The solutions appear to diverge from an oscillatory solution. It appears that ag ~ —1.
For a > —1, the solutions increase without bound. For a < —1, the solutions decrease

without bound.

(b) The integrating factor is u(t) = _t/ 2. From this, we conclude that the general solution
is y(t) = (8sin(t) —4cos(t))/5+ cet/?, where ¢ = a+4/5 The solution will be sinusoidal
as long as ¢ = 0. The initial condltlon for the sinusoidal behavior is y(0) = (8sin(0) —

4 co0s(0))/5 = —4/5. Therefore, ag = —4/5.

(c) y oscillates for a = ag

22.
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All solutions eventually increase or decrease without bound. The value ag appears to be
approximately ag = —3.

(b) The integrating factor is u(t) = e7*/2, and the general solution is y(t) = —3e'/3 + cet/2.
The initial condition »(0) = a implies y = —3¢*/ + (a + 3)e/2. The solution will behave
like (a + 3)e!/2. Therefore, ag = —3.

(¢) y — —oo for a = ay.
23.
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Solutions eventually increase or decrease without bound, depending on the initial value
ag. It appears that ag ~ —1/8.

(b) Dividing the equation by 3, we see that the integrating factor is p(t) = e=2/3. Therefore,
the solution is y = [(2 + a(37 +4))e?/® — 2e7/2] /(31 + 4). The solution will eventually
behave like (2 + a(3m + 4))e*/3 /(37 + 4). Therefore, ag = —2/(3m + 4).

(¢) y — 0 for a = ag

24.
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