
Chapter 1 

THE FIRST LAW  

Problem 1.1 

(a) 
f

i f 1 2
i

W PdV P V   . Next, to calculate Tf, we note that from state 

(i) to state (f), we have 

1

dM
m

dt

dU
W mh

dt



  
 

where m is the instantaneous flow rate into the cylinder and M and 

U are the mass and energy inventories of the system (the “system” is 

the cylinder volume). Integrating in time, 
f

f i
i

f i 1 2 1 f i

M M mdt

U U P V h (M M )

 

    



 (1) 

and recognizing that Ui = 0 and Mi = 0, the first law reduces to 

f f 1 1 2U M h P V   ( 1 ′ )  

For the “ideal gas” working fluid, we write 

f f v f 0

1 v 1 0 1

U M c (T T )

h c (T T ) Pv

 

    

hence, eq. (1') becomes 

f v 0 f v 1 0 1 1 2M c (T T ) M [c (T T ) Pv ] P V      

Noting that V2 = MfVf and dividing everything by Mf yields 

v f 1 f v 1 1c T P v c T Pv    

or 

v f f v 1 1c T RT c T RT    

in other words, Tf = T1. The final ideal-gas mass admitted is 

1 2
f f

1

P V
m M

RT
 
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hence the goodness ratio 

i f 1 2
1

f 1 2 1

W P V
RT

m P V / (RT )

  
 

(b) m1 = P1V1/RT1, based on the solution for mf given in part (a), and 

1 2

1

V V

i f
0 V

v
1 1 1 1 2 2

W PdV PdV

c
P V (P V P V )

R

  

  

 

 

The second group of terms on the right-hand side is the work output 

during the reversible and adiabatic expansion (path: PVk = constant). 

Finally, the goodness ratio is 

v
1 1 1 1 2 2

vi f 2 2
1

1 1 1 1 1 1

c
P V (P V P V )

cW P VR RT 1 1
m P V / (RT ) R P V



    
     

   

(c) The relative goodness is 

i f 1 part (b ) v 2 2

i f f part (a ) 1 1

k 1

v 1

2

(W /m ) c P V
1 1

(W /m ) R P V

c V
1 1

R V







 
   

 

  
    
    

The quantity in the square brackets is positive because k >1 and V1< 

V2; therefore, 

i f i f

1 fpart (b ) part (a )

W W

m m

 
   

   
     
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Problem 1.2 
(a) Given are m = 1 kg, T1 = 100°C, and x1 = 0.5. The path is constant 

volume. 

 

(b) To pinpoint state (2), we must 

determine two properties at 

the final state. The first one is 

the volume 

1 12 1 f ,T 1 fg,T

3

v v v x v

0.001044 0.5(1.6729 0.001044)

0.837 m / kg

   

  

  

The second property is the internal energy: this comes from the first 

law 

1 2 1 2 2 1Q W m(u u )     (1) 

where W1−2 = 0 and 

1 11 f ,T 1 fg,Tu u x u 418.94 (0.5)(2087.6) 1462.74 kJ/kg      

Equation (1) yields 

2 1 1 2

1
u u Q 3662 kJ/kg

m
  

 

(c) To find T2 and P2, we must first locate state (2) on the P(v, t) surface 

(or tables). At state (2), we know u2 and v2; therefore, one way to 

proceed is to look at the table of superheated steam properties and 

find the u values of order 3662 kJ/kg. This is the equivalent of 

traveling along the u = u2 line and looking for the v value that comes 

closest to v2. This search leads to this portion of the table: 

T P = 0.5 MPa P = 0.6 MPa 

 v u v u 

⋯ ⋯ ⋯ ⋯ ⋯ 
800°C 0.9896 3662.1 0.8245 3661.8 

⋯ ⋯ ⋯ ⋯ ⋯ 
Fitting v2 between 0.9896 and 0.8245, we interpolate linearly for 

pressure and find 

2P 0.592 MPa  
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The final temperature is T2 ≅ 800°C. 

(d) At state (2), the system is superheated steam. This particular fluid 

approaches ideal gas behavior if near state (2) the following two 

conditions are met: 

(i) u = u(T) 

(ii) Pv = RT, i.e., Pv / T = constant 

Condition (i) is satisfied, as shown by the u values listed in the 

preceding table. (u depends on T, while being practically 

independent of P.) As a way of testing condition (ii), we calculate 

the group (Pv/T) for the states immediately to the left and right of 

state (2): 

6 3

left

6 3

right

Pv (0.5)10 (0.9896) Pa m / kg
461.1

T 273.15 800 K

Pv (0.5)10 (0.8245) Pa m / kg
461.0

T 273.15 800 K

 
  

 

 
  

   

Condition (ii) is also satisfied (approximately, of course); therefore, 

the ideal gas model could be used to describe the behavior of the 

system at states that are sufficiently close to state (2).  

Observation: Note the use of absolute temperature in the 

denominators of the (Pv/T) calculations presented above.  
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Problem 1.3 
Taking the m gas as “system,” we write the first law for the process  

(1) − (2), 

1 2 1 2 2 1Q W U U     

which means 

1A 2 1 v 2 1 v 2 1 v 2 1

m m m
0 P (V V ) c (T T ) c (T T ) c (T T )

3 3 3
         

or 

1 1 1
2

1A v 2 1

2 1A 1B 1C

m m m
RT RT RT

mRT 3 3 3P mc (T T )
P P P P

 
 

      
 
 

 

Noting that P2 = P1A, the above statement can be written as 

1A 1B 1A 1C2

1 v v v

v 1A 1A

p p 1B 1C

1 (P / P ) (P / P )T 1 R

T 1 R/c 3(1 R/c ) c

c P PR
1

c 3c P P

 
  

 

 
    

   
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Problem 1.4 
The process is one of heating at constant volume. Let mf and mg represent 

the instantaneous liquid and vapor inventories in the system, 

f gm m m, (constant )    (1) 

Furthermore, the constant-volume constraint reads 

f f g gm v m v V, (constant )   (2) 

The first law of thermodynamics requires on a per-unit-time basis that 

dU
Q W

dt
 

 

or, since Ẇ = 0, 

f g

f f g g

g gf f
f f g g

du dudP dP

dP dt dP dt

d
Q (m u m u )

dt

dm dudm du
u m u m

dt dt dt dt

 

   

 (3) 

The time derivatives dmf/dt and dmg/dt follow from solving the system of two 

equations 

d d
(1) and (2)

dt dt  

The solution is 

gf

fg fg

dmdm A A
and

dt v dt v
   

 (4) 

where 

g gf f
f g f g

dv dvdv dv dP dP
A m m m m

dt dt dP dt dP dt
     

 

Combining Eqs. (3) and (4), we obtain after a few manipulations 

fg fg fg fgf f

fg fg

dP Q/m

dt u du u dvdu dv
x

dP v dP dP v dP


 

    
   
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Problem 1.5 
(a) Applying the first law to the water containers as an open system, we have 

in out

d
(mu) (mh) (mh)

dt
 

 (1) 

where 

w

V
m constant

v
 

 
 

Mass conservation dictates 

in out

d
(m) m m 0

dt
  

 

hence min = mout= m. The first law (1) reads finally 

in out

w

V du
m(h h )

v dt
 

 

For an incompressible fluid we also have 

wdu cdT and dh cdT v dP    

In the present case, Pin = Pout; therefore, 

in out in out 2h h c(T T ) c(T T)      

Equation (1) becomes 

2

w

V dT
c mc(T T)

v dt
 

 

which, integrated from 0 to t, means 

w2

2 1

mvT T
ln t

T T V


 


 

(b) The mass of hot water that raises the container water temperature from 10°C 

to 20°C is 

2 1

w 2 1

3

3 3

T TV
mt ln

v T T

m 40 20
ln 405.5 kg

10 m / kg 40 10


 




  


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Problem 1.6 
Selected for analysis is the system that contains the two masses (m1, m2). In the 

initial state (a), the velocities of the two masses are different (V1, V2), while in the final 

state (b), mutual friction brings the velocities to the same level (V∞). Since there are no 

forces between the system and its environment, the total momentum of the ensemble is 

conserved, 

1 1 2 2 1 2m V m V (m m )V    (1) 

The initial and final kinetic energy inventories of the ensemble are 

2 2

a 1 1 2 2

1 1
KE m V m V

2 2
 

 (2) 

2

b 1 2

1
KE (m m )V

2
 

 (3) 

The evolution of the total kinetic energy during the process (a)–(b) is described by the 

“efficiency” ratio 

t

a

KE

KE
 

 (4)  

Eliminating V∞ between Eqs. (1) and (3), the efficiency can be expressed in terms of the 

initial mass and velocity ratios m2/m1 and V2/V1, 
2

2 2

1 1

2

2 2 2

1 1 1

m V
1

m V
1

m m V
1 1

m m V

 
 

   
    

     
       (5)  

It can be shown analytically that  is less than 1 as soon as V2 is different from V1, for 

any value of the ratio m2/m1. Two limits of eq. (5) are worth noting: 

2

2 1

1

V1
0

m V
1

m

 
   

 
 (6)  

2

1 1

2

V1

m V
1

m

 
   

 
 (7) 

with the special case  = 1when V1 = V2 for any m2/m1. Equations (5)−(7) show that the 

order of magnitude  of  is 1when m2/m1 is a number of order 1. 
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In conclusion, the kinetic energy of the system decreases from state (a) to state 

(b). According to the first law of thermodynamics, this decrease is balanced by the other 

energy interactions and energy changes of the system, 

a b a b b a b aQ W U U KE KE       (8) 

where Wa−b = 0. If the process is adiabatic, Qa−b = 0, then the KE decrease is balanced by 

an increase in U, 

b a a bU U KE KE     (9) 

If the system boundary is diathermal, and (a) and (b) are states of thermal equilibrium 

with the ambient temperature reservoir (T0), then 

a b b a b aQ U U KE KE       (10) 

If m1 and m2 are two incompressible substances, then U = U(T), and at thermal 

equilibrium (T0), the energy change Ub – Ua is zero, and 

a b b aQ KE KE 0      (11) 
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Problem 1.7 
The first law for a complete cycle is Q W dE 0        

a) No, since 
W Q 0      

b) No, since 
Q W 0      

c) If the cycle has no net work transfer, then Q 0  . Processes 

that make up this cycle may have heat transfer interactions 

which, over the entire cycle, add up to zero. 

d) With no net heat transfer, there is no net work transfer for the 

cycle. Parts of the cycle, however, may have work transfer 

interactions that in the end cancel each other, Q 0  . 
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Problem 1.9 
The system is closed (m, fixed), and the boundary is adiabatic. State 1 is 

pinpointed by V1 and T1. At state 2, we know V2 = V1 (rigid enclosure). The 

temperature T2 is determined by invoking the first law, 

12 12 2 1Q W U U    

where 

W12 >0, directed into the system 

Q12 = 0, adiabatic 

U2− U1 = m c (T2− T1), incompressible substance 

In conclusion, 

12
2 1

W
T T

m c
 
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Problem 1.10 
The system is closed, the process 1−2 is at constant temperature, T, and the 

volume change is quasistatic, W = PdV. If the system contains an ideal gas with 

initial volume V1, from the first law, we have 

2 2

1 1

2
12

1

Q W dU

Q PdV m cv dT (dT 0)

Q PdV W

m R T
Q12 PdV dV

V

V
m R T ln W

V

   

   

   

 

 

 

 

Because dT = 0, we note that U2− U1 = 0. In conclusion, for the ideal gas: 

12 12 2 1Q W and U U 0    

If the system contains initially saturated liquid (1 = f), the isothermal expansion is 

also an isobaric expansion. The first law yields 

12 12 2 1

12 12 2 1

12 12 2 1

12 1,2 2 1 2 1

2 1 g f fg

Q W U U

Q W U U

Q W U U

Q P (V V ) U U

H H ,  or H H m h

  

  

  

   

     

In conclusion, for the complete evaporation of the liquid (2 = g), the following 

results hold: 

12 fg 12 fg 2 1 fgQ m h , W P m v , U U m u     

Unlike in the ideal gas case, W12 is not the same as Q12 because the substance 

evaporating at constant temperature has the ability to store internal energy. 
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Problem 1.11 
The relation between the temperature expressed in degrees °C and °F is 

     
5

T( C) [ ( F ) 32]
9

 

The captain was correct if T and  have the same numerical value, T =  = x. 

Substitute in the above relation we find that x = −40. The captain was correct. 
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Problem 1.12  
The cavern is an open thermodynamic system with mass m(t) and energy 

E(t). The conservation of mass and energy require 

0

dm dU
m, constant mh

dt dt
 

 (1, 2) 

where h0 is constant. After combining (1) and (2), 

0

dU d
(mh )

dt dt


 (3) 

0U mh constant   (4) 

0mu mh constant   (5) 

where h0 is the specific enthalpy of the air stream that enters the cavity. Initially, at 

t = 0, the pressure and temperature of the cavern are the same as those of the 

inflowing stream. These initial conditions are indicated by the subscript 0, 

therefore eq. (5) states that at t = 0 

0 0 0 0m U m h constant   (6) 

Eliminating the constant between Eqs. (5) and (6) and noting that eq. (1) yields 

equation, we obtain 

0 0 0mu m u mth   (6) 

furthermore, because m = m0 + mt, u − u0 = cv(T − T0), h0 = u0 P0v0, and P0v0 = R 

T0, eq. (6) becomes 

0 v 0

T R mt
1

T c m mt
 

  (7) 

This shows that the cavern temperature T rises from T0 to (cP/cv)T0 during a time 

of order equation. This is the highest temperature rise during the filling of the 

cavern, because the cavern was modeled as adiabatic. If the cavern loses heat to its 

walls, then the final cavern temperature will be lower than (cP/cv)T0. 
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Chapter 2 

THE SECOND LAW  

Problem 2.1 
With reference to system A sketched below, assume that 

2W 0 and Q 0   

The first law for one cycle completed by A is 

1 2Q Q W   (1) 

Investigating the possible signs of Q1 and Q2, we see three options: 

(i) Q1 < 0 and Q2 < 0 

(ii) Q1 > 0 and Q2 > 0 

(iii)     Q1Q2 < 0 

Option (i) is ruled out by the first law (1) and the assumption that W is positive. 

Option (ii) is a violation of the Kelvin-Planck statement (2.2). In order to see this 

violation, consider system B, which executes one complete cycle while 

communicating with (T1) such that 

B 1Q Q   

Since the net heat transfer interaction experienced by (T1) is zero, Q1 + QB = 0, the 

(T1) reservoir completes a cycle at the end of the cycles executed by A and B. The 

aggregate system [A + B + (T1)] also executes a complete cycle. This cycle is 

executed while making contact with (T2) only. The net heat transfer interaction of 

this cycle is positive 

2Q 0  

which is a clear violation of eq. (2.2). In conclusion, the only option possible is 

(iii): Q1Q2 < 0. 
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Problem 2.2 
With reference to the system A shown in the preceding figure, we write the 

first law for one cycle 

1 2Q Q W   (1) 

and assume this time that W is negative, 

W 0  

There are three options to consider: 

(i) Q1 < 0 and Q2 < 0 

(ii) Q1 > 0 and Q2 > 0 

(iii) Q1Q2 < 0 

of which only option (ii) can be ruled out, because it violates the first law. Option 

(i) is definitely compatible with the sign of eq. (2.27), 

1 2

1 2

Q Q
0

T T
 

 (2.27) 

Option (iii), in which Q2 is the negative of the two heat transfer interactions, 

produces an analysis identical to the segment contained between eqs. (2.11) and 

(2.27) in the text. The second law (2.27) is valid therefore for W < 0 and as shown 

in the text for W > 0. 

In the special case of W = 0, the first law requires that Q1 = −Q2. The second law 

(2.27) reduces to 

1 1 2Q (T T ) 0   

which means that 

(a) if Q1 is positive, then (T1 − T2) cannot be negative, or 

(b) if Q1 is negative, then (T1 − T2) cannot be positive. 

In less abstract terms, (a) and (b) mean that in the absence of work transfer, the 

heat transfer interaction Q1 cannot proceed in the direction of higher temperatures. 
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Problem 2.3  
According to the problem statement, it is being assumed that two paths (1 – 

2rev and 1 – 2rev) can be traveled in both directions (see sketch below). The two 

paths are reversible and adiabatic. This assumption allows us to execute the cycle 

1 – 2rev – 2rev – 1 in two ways: 

(i) clockwise, in which 

δ
rev rev rev rev2 2 2 2Q Q U U 0      

(ii) counterclockwise, in which 

δ
rev rev rev rev2 2 2 2Q Q U U 0      

Note, however, that the counterclockwise option violates the Kelvin-Planck 

statement of the second law. This means that the original assumption on which 

options (i) and (ii) are based is false (i.e., that two reversible and adiabatic paths 

cannot intersect at state 1). 

Is state 2rev unique on the V = V2 line? Worth noting is that options (i) and (ii) are 

both compatible with the Kelvin-Planck statement in the case where state 2rev (or, 

for the matter, any other state 2rev on the V = V2 line) coincides with state 2rev. In 

this case, the reading of the cycle goes as follows: 

(i) clockwise 

δ
rev rev2 2Q Q 0    

(ii) counterclockwise 

δ
rev rev2 2Q Q 0   

Geometrically, this second law compatible limit means that state 2rev is unique 

(i.e., there is only one state at V = V2 that can be reached reversibly and 

adiabatically from state 1). 
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Problem 2.4 
(a) With reference to the sketch below, assume first that state 2 is such 

that 

rev2 2U U  

Assume further that state 2 is accessible adiabatically from state 1. 

Then if we execute the cycle 1 – 2 – 2rev –1 clockwise, we conclude 

that 

rev rev rev2 2 2 2 2Q Q U U U 0      

which is a violation of the Kelvin-Planck statement. 

(b) Consequently we assume that the state 2 that is accessible adiabatically 

from state 1 is situated above state 2rev, 

rev2 2U U   

Executing the cycle 1 – 2 – 2rev –1 counterclockwise, we conclude 

that 

δ
rev rev2 2 2 2Q Q U U 0      

which is in accord with the Kelvin-Planck statement. 

In conclusion, the states that are accessible adiabatically from state 1 

are all situated above state 2rev. This conclusion is the same as the 

one reached in the discussion of Fig. 2.10 in the text. 
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Problem 2.5 
Starting with state A, Fig. 2.8, we remove a single partition. We have three 

choices. Labeling the partitions (a), (b), and (c), we analyze each choice and list 

the results in line with each graph. For example, removing (a) allows the contents 

of the two leftmost chambers to mix to the new temperature 
3

2
 T0, which is listed 

on the drawing. The new entropy inventory of the aggregate system is in this case 

0S S 3
2ln ln3 ln 4 3.296

mc 2


   

 

This number is listed to the right of each drawing and represents the abscissa 

values of the points drawn in line with “2 partitions present” in Fig. 2.8. 

 

Starting again from state A (3 partitions present), we remove two partitions at a 

time. We have the following choices and results: 
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Regarding the number of paths from A to B, we can have the following 

scenarios: 

(i) Removing a single partition each time, we have 3 × 2 = 6 choices, 

therefore 6 possible paths. 

(ii) Removing a single partition in the first step and two partitions in 

the second, we have 3 × 1 = 3 choices, meaning 3 paths. 

(iii) Removing two partitions in the first step and a single partition in 

the second, we have again 3 × 1 = 3 choices, hence 3 paths. 

(iv) Removing all three partitions at the same time, one path. 

The total number of paths is then 6 + 3 + 3+1 =13. 
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Problem 2.6  
Assume first that the end state is (b), in other words, that the piston is 

pressed against the ceiling of the enclosures. The first law for the (gas + weight) 

system during the process (a) → (b) is 

   

   

     

 

a b a b b a b agas weight

v 2 1 2 1

Q W U U PE PE

Mg
0 0 mc T T V V

A

 

This equation delivers the final temperature, 

 2 1 2 1

v

Mg/A
T T V V

mc
     (1) 

For configuration (b) to exist, the final pressure P2 must be greater than the 

pressure that could be sustained by the piston weight alone, 

2

Mg
P

A
  

hence 

2

2

mRT Mg

V A
   (2) 

Combining eqs. (2) and (1), this criterion becomes 

P 2 1

V 1 V

1 Mg/A

c V R P

c V c





  (3) 

The entropy generated during the process (a) → (b) is 

   
δb

gen,a b b a b agas weight a

0 0

2 2
v

1 1

Q
S S S S S

T

T V
mc ln mR ln

T V

     

 



  (4) 

Using eq. (1), we can put eq. (4) in the following dimensionless form 

vR/c

gen,a b 2 2

v 1 v 1 1

S V VMg/A R
ln 1 1

mc P c V V


      

       
      

  (5) 

The objective is to show that the quantity calculated with eq. (5) is positive (i.e., 

that the quantity between accolades { } is greater than 1). The proof that { } > 1 is 
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even stronger if we replace the factor (Mg/A)P1 by its ceiling value, which is listed 

on the left side of the inequality (3). In other words, if we prove that 

v

2
R/c

v 1 2

p 2 1

v 1

VR
1

c V V
1 1

c V V
1

c V

  
  

         
  

  (6) 

then we can be sure that Sgen, a-b of eq. (5) is positive. To prove the inequality (6) 

means to prove that 

vR/c

2 2

1 1

2v

1

V V
1

V V

VR/c

V

 
 

 
   (7) 

Both sides of the inequality (7) are monotonic in (V2 / V1). The inequality is 

clearly correct in the limit V2/V1 → ∞. To see its true sign in the opposite limit, 

V2/V1 → 1, let 

ε ε2

1

V
1 ,where 1

V
  

 

and rewrite eq. (7) side by side as 

ε
ε ε ε

2
2

v

R
1

c 2

 
     
   

This form reduces to 

ε2
p

V

c
0

c 2


 

which certainly validates eq. (7) in the limit ε → 0. The inequality (7) is true for 

all values of V2/V1 in the range (1, ∞) because the derivative of the left side of eq. 

(7) with respect to (V2/V1) is always greater than the derivative of the right side, 

 



   
      

v

R
1

c
2 2

1 1

V V

V V
 

for (V2/V1) > 1 and (R/cv) > 0. 

Consider next the process (a) → (c), which occurs when eq. (3) is violated. The 

first law (1) for this case reads 

 3 1 3 1

v

Mg/A
T T V V

mc
  

 

In order to find V3, we combine (3) with P3V3 = mRT3; the result is 
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3 V 1

1 P 3 V

V c P R

V c P c

 
  

  

where P3 = Mg/A. This result makes it easy to verify that when P1 = P3 the piston 

does not move at all, V3 = V1. Finally, the entropy generated during the process (a) 

→ (c) is 

V

gen,a c 3 3

V 1 V 1

R/c

P

S T VR
ln ln

mc T c V

1 x
ln 1

c
x 1

R

x


 

 
 

  
 
   

where x is shorthand for V2/V1. To prove that the entropy increases from (a) to (c), 

we must prove 

VR/c

P

1 x
1 x 1

c
x 1

R

 
 
  

 
 

 

in other words: 


 

kx 1
x 1

k  (10)
 

where k = cP/cV. Both sides of the inequality (10) approach zero in the limit x → 1. 

In the opposite limit (x → ∞), the inequality is correct. It is correct also at 

intermediate x’s, because the same inequality exists between the d( )/dx slopes of 

the left and right sides of eq. (10), respectively. 

 

k 1 d
x 1, [eq. (10)]

dx

   

for x > 1 and k > 1.  
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Problem 2.7  
The initial pressures above and below the partition are 

1
1 above 2 1 below

1

mRTMg
P P , and P

A 2V
  

 

The first law for the (m + M) system requires 

   

   

a-b a-b b a b agas weight

V 2 1 b a

Q W U U PE PE

Mg
0 0 mc T T V V

A

    

 
 

where 

2
b

2

mRT
V =

R  

and 

  1

a 1

m/2 RT
V =V +

Mg/A  

Combining these results, we obtain the expression for T2, 

2 1
2 1

P

2
1

p 1 below

P Vk 1
T T

2k mc

P1 1 R
T 1

2 k c P


 

 
   

 
 

  (1) 

where k = cP / cV. We can verify at this point that when the initial pressure 

difference across the partition is zero, the final state (b) is identical to (a): this is in 

agreement with eq. (1), where P1 below = P1 above (= P2) means that T2 = T1. 

The entropy increase from (a) to (b) is associated only with the ideal gas part of 

the system, 

   

π

   

   

 

gen,a b gen,a b gen,a b

originally originally
above below
partition partition

2 2 2 2
P P

1 1 above 1 1 below

2
P

1

S S S

T P T Pm m m m
c ln R ln c ln R ln

2 T 2 P 2 T 2 P

T m
m c ln R ln

T 2

gas gas

 

where π = P2/P1 below is a given constant. We must prove that the quantity 

https://ebookyab.ir/solution-manual-advanced-engineering-thermodynamics-bejan/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-advanced-engineering-thermodynamics-bejan/



