Solutions to exercises

Exercise 1.1

The standard barrel of crude oil is 42 US gallons, that is, $42 \times 3.785 \, \text{litres} = 0.159 \, \text{m}^3$. The $100\,000 \, \text{m}^3$ of crude oil pumped through the Trans-Alaska Pipeline per day given in Section 1.1 hence correspond to 630 000 barrels. With a current price of some 50 US dollars per barrel (mid 2016), the value of the crude oil transported through the Trans-Alaska Pipeline in a day is given by the impressive number of 31 000 000 US dollars.

Exercise 2.1

Straightforward differentiations of the probability density $p_{\alpha_t\Theta_t}(x)$ defined in (2.16) give the following results:

$$\frac{\partial}{\partial t} p_{\alpha_t \Theta_t}(x) = \left[\frac{\dot{\Theta}_t}{2\Theta_t^2} (x - \alpha_t)^2 + \frac{\dot{\alpha}_t}{\Theta_t} (x - \alpha_t) - \frac{\dot{\Theta}_t}{2\Theta_t} \right] p_{\alpha_t \Theta_t}(x) ,$$

$$-\frac{\partial}{\partial x} [A_0(t) + A_1(t)x] p_{\alpha_t \Theta_t}(x) = \left[\frac{A_1(t)}{\Theta_t} (x - \alpha_t)^2 + \frac{A_1(t)\alpha_t + A_0(t)}{\Theta_t} (x - \alpha_t) - A_1(t) \right] p_{\alpha_t \Theta_t}(x),$$

and

$$\frac{1}{2} \frac{\partial^2}{\partial x^2} D_0(t) p_{\alpha_t \Theta_t}(x) = \frac{D_0(t)}{2\Theta_t^2} \left[(x - \alpha_t)^2 - \Theta_t \right] p_{\alpha_t \Theta_t}(x).$$

By comparing the prefactors of $(x - \alpha_t)^2$, $x - \alpha_t$, and 1, we recover the evolution equations (2.9) and (2.10).

Solutions to Exercises

Exercise 2.2

According to the superposition principle, we have

$$p(t,x) = \int_{-1/2}^{1/2} p_{yt}(x)dy = \int_{-1/2}^{1/2} p_{0t}(x-y)dy = \int_{(x-1/2)/\sqrt{2t}}^{(x+1/2)/\sqrt{2t}} p_{01/2}(z)dz$$
$$= \frac{1}{2} \left[\operatorname{erf}\left(\frac{x+1/2}{\sqrt{2t}}\right) - \operatorname{erf}\left(\frac{x-1/2}{\sqrt{2t}}\right) \right].$$

Exercise 2.3

In Mathematica:

```
 \begin{array}{ll} & \text{convol} \, [\, x_-, \, \text{sig}_-] = \\ & \text{Integrate} \, [\, (1-t) \, * \text{PDF} \, [\, \text{NormalDistribution} \, [\, t, \, \text{sig}]_+ \, x]_+ \, \{\, t, \, 0, \, 1\}_+ \\ & \text{Integrate} \, [\, (1+t) \, * \text{PDF} \, [\, \text{NormalDistribution} \, [\, t, \, \text{sig}]_+ \, x]_+ \, \{\, t, \, -1, \, 0\}_+ \\ & \text{Plot} \, [\, \{\text{Piecewise} \, [\, \{1+x, -1 < x < = 0\}, \{1-x, \, 0 < x < 1\}_+ \, 0]_+ \, \\ & \text{convol} \, [\, x, \, \text{Sqrt} \, [\, .0\, 3]_+ \, ]_+ \, \{\, x, \, -2, \, 2\}_+ \\ & \text{PlotRange-} \, \{\, 0, \, 1\}_+ \, \text{AxesLabel-} \, \{\, \text{Text} \, [\, \text{Style} \, [\, x, \, \text{FontSize-} > 20\, ]\, ]_+ \, \\ & \text{Text} \, [\, \text{Style} \, [\, p[\, t, \, x]_+ \, , \, \text{FontSize-} > 20\, ]\, ]_+ \, ]_+ \end{array}
```

Notice that Mathematica ® actually gives an analytical result for the integral implied by the superposition principle in terms of error functions. The resulting curves are shown in Figure C.9.

Figure C.9 Mathematica ® output for the diffusion problem of Exercise 2.3.

Exercise 2.4

$$\frac{d}{dt} \left[-\int p \ln(p/p_{\rm eq}) \, dx \right] = -\int \left[\frac{\partial p}{\partial t} \ln(p/p_{\rm eq}) + \frac{\partial p}{\partial t} \right] dx$$

3

A Modern Course in Transport Phenomena

$$= \int \ln(p/p_{\rm eq}) \frac{\partial J}{\partial x} dx = - \int J \frac{\partial}{\partial x} \ln(p/p_{\rm eq}) dx,$$

where the normalization of p and the diffusion equation have been used. By inserting the expression for J given in (2.25) we obtain the desired result.

Exercise 2.5

4

The eigenvalue problem for pure diffusion with D=1 is given by

$$-\lambda p(x) = \frac{1}{2} \frac{d^2 p(x)}{dx^2} \,,$$

which has the solutions

$$p(x) = C_1 \sin(\sqrt{2\lambda} x + C_2).$$

The boundary condition p(0) = 0 suggest $C_2 = 0$ and the boundary condition p(1) = 0 then selects discrete values of λ ,

$$\sqrt{2\lambda_n} = n\pi$$
, $\lambda_n = \frac{n^2\pi^2}{2}$.

We can now write the solution as the Fourier series

$$p(t,x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x) e^{-\lambda_n t},$$

where the coefficients c_n are determined by the initial condition at t=0. By multiplying with $\sin(m\pi x)$ and integrating, we find

$$\int_0^1 \sin(m\pi x) \, dx = \sum_{n=1}^\infty c_n \int_0^1 \sin(m\pi x) \, \sin(n\pi x) \, dx \,,$$

leading to the explicit expressions

$$\frac{1}{m\pi}[1-(-1)^m] = \frac{c_m}{2}.$$

Note that all the coefficients c_n with even n vanish. The fraction of the substance released as a function of time is given by

$$1 - \int_0^1 p(t, x) dx = 1 - \sum_{n = \text{odd}} \frac{8}{n^2 \pi^2} e^{-\lambda_n t}.$$

Exercise 2.6

According to the respective definitions, we have

$$\mathcal{T} - \exp\{M(t_1) + M(t_2)\} = 1 + M(t_1) + M(t_2)$$

5

$$+\frac{1}{2} \left[\mathbf{M}(t_1)^2 + \mathbf{M}(t_2)^2 \right] + \mathbf{M}(t_2) \cdot \mathbf{M}(t_1) +\frac{1}{6} \left[\mathbf{M}(t_1)^3 + \mathbf{M}(t_2)^3 \right] + \frac{1}{2} \left[\mathbf{M}(t_2) \cdot \mathbf{M}(t_1)^2 + \mathbf{M}(t_2)^2 \cdot \mathbf{M}(t_1) \right] + \dots,$$

and

$$\exp\{\boldsymbol{M}(t_1) + \boldsymbol{M}(t_2)\} = 1 + \boldsymbol{M}(t_1) + \boldsymbol{M}(t_2) + \frac{1}{2} \left[\boldsymbol{M}(t_1) + \boldsymbol{M}(t_2)\right]^2 + \frac{1}{6} \left[\boldsymbol{M}(t_1) + \boldsymbol{M}(t_2)\right]^3 + \dots$$

In terms of the commutator $C = M(t_2) \cdot M(t_1) - M(t_1) \cdot M(t_2)$, the difference can be written as

$$\mathcal{T} - \exp\{\boldsymbol{M}(t_1) + \boldsymbol{M}(t_2)\} - \exp\{\boldsymbol{M}(t_1) + \boldsymbol{M}(t_2)\} = \frac{1}{2}\boldsymbol{C}$$

$$+ \frac{1}{6}\left[\boldsymbol{C} \cdot \boldsymbol{M}(t_1) + \boldsymbol{M}(t_2) \cdot \boldsymbol{C} + \boldsymbol{M}(t_2) \cdot \boldsymbol{M}(t_1)^2 - \boldsymbol{M}(t_1)^2 \cdot \boldsymbol{M}(t_2)\right]$$

$$+ \boldsymbol{M}(t_2)^2 \cdot \boldsymbol{M}(t_1) - \boldsymbol{M}(t_1) \cdot \boldsymbol{M}(t_2)^2 + \dots$$

Exercise 2.7

Straightforward differentiations of the probability density $p_{\alpha_t \Theta_t}(x)$ defined in (2.39) give the following results:

$$\begin{split} \frac{\partial}{\partial t} p_{\alpha_t \Theta_t}(\boldsymbol{x}) &= \left[\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\alpha}_t) \cdot \boldsymbol{\Theta}_t^{-1} \cdot \dot{\boldsymbol{\Theta}}_t \cdot \boldsymbol{\Theta}_t^{-1} \cdot (\boldsymbol{x} - \boldsymbol{\alpha}_t) \right. \\ &+ (\boldsymbol{x} - \boldsymbol{\alpha}_t) \cdot \boldsymbol{\Theta}_t^{-1} \cdot \dot{\boldsymbol{\alpha}}_t - \frac{1}{2} \operatorname{tr} \left(\dot{\boldsymbol{\Theta}}_t \cdot \boldsymbol{\Theta}_t^{-1} \right) \right] p_{\alpha_t \boldsymbol{\Theta}_t}(\boldsymbol{x}) \,, \end{split}$$

$$-\frac{\partial}{\partial \boldsymbol{x}} \cdot \left[\boldsymbol{A}_0(t) + \boldsymbol{A}_1(t) \cdot \boldsymbol{x} \right] p_{\boldsymbol{\alpha}_t \boldsymbol{\Theta}_t}(\boldsymbol{x}) =$$

$$\left[\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\alpha}_t) \cdot (\boldsymbol{\Theta}_t^{-1} \boldsymbol{A}_1(t) + \boldsymbol{A}_1^T(t) \cdot \boldsymbol{\Theta}_t^{-1}) \cdot (\boldsymbol{x} - \boldsymbol{\alpha}_t) \right]$$

$$+ (\boldsymbol{x} - \boldsymbol{\alpha}_t) \cdot \boldsymbol{\Theta}_t^{-1} \cdot (\boldsymbol{A}_0(t) + \boldsymbol{A}_1(t) \cdot \boldsymbol{\alpha}_t) - \text{tr} \boldsymbol{A}_1(t) \right] p_{\boldsymbol{\alpha}_t \boldsymbol{\Theta}_t}(\boldsymbol{x}),$$

and

$$\frac{1}{2} \frac{\partial}{\partial \boldsymbol{x}} \frac{\partial}{\partial \boldsymbol{x}} : \boldsymbol{D}_0(t) \, p_{\boldsymbol{\alpha}_t \boldsymbol{\Theta}_t}(\boldsymbol{x}) = \frac{1}{2} \Big[(\boldsymbol{x} - \boldsymbol{\alpha}_t) \cdot \boldsymbol{\Theta}_t^{-1} \cdot \boldsymbol{D}_0(t) \cdot \boldsymbol{\Theta}_t^{-1} \cdot (\boldsymbol{x} - \boldsymbol{\alpha}_t) \\
- \operatorname{tr} \left(\boldsymbol{D}_0(t) \cdot \boldsymbol{\Theta}_t^{-1} \right) \Big] p_{\boldsymbol{\alpha}_t \boldsymbol{\Theta}_t}(\boldsymbol{x}) .$$

By comparing prefactors, we obtain the following evolution equations:

$$\dot{\boldsymbol{\alpha}}_t = \boldsymbol{A}_1(t) \cdot \boldsymbol{\alpha}_t + \boldsymbol{A}_0(t) \,,$$

6 A Modern Course in Transport Phenomena

and

$$\dot{\boldsymbol{\Theta}}_t = \boldsymbol{A}_1(t) \cdot \boldsymbol{\Theta}_t + \boldsymbol{\Theta}_t \cdot \boldsymbol{A}_1^T(t) + \boldsymbol{D}_0(t).$$

Exercise 2.8

In Mathematica (R):

The output is shown in Figure C.10.

Exercise 2.9

The covariance matrix Θ is symmetric and can hence be diagonalized. By a linear transformation to suitable coordinates, Θ can hence be assumed to be diagonal. For diagonal Θ , the probability density in (2.39) indeed is the product of d one-dimensional Gaussians.

Exercise 3.1

To switch from a rectangular to a triangular initial distribution, we only need to change the stochastic initial condition. The curve for t=0.03 is produced by the following MATLAB \circledR code:

% Simulation parameters

Solutions to Exercises

Exercise 3.2

By integrating (3.19) over x, we obtain

$$1 - \int_0^\infty p_{\mathbf{f}}(t, x) \, dx = \int_0^\infty \int_0^t \frac{a(t')}{\sqrt{2\pi(t - t')}} \, \exp\left\{-\frac{1}{2} \frac{(x + t - t')^2}{t - t'}\right\} dt' dx \, .$$

For the time derivative of the left-hand side of this equation, we obtain by means of the diffusion equation

$$-\frac{d}{dt} \int_0^\infty p_{\rm f}(t,x) = \left. \frac{1}{2} \frac{\partial p_{\rm f}(t,x)}{\partial x} \right|_{x=0} + p_{\rm f}(t,0) \,.$$

The contribution to the time derivative of the right-hand side of the above equation resulting from the upper limit of the time integration is

$$a(t) \lim_{\epsilon \to 0} \frac{1}{\sqrt{2\pi\epsilon}} \int_0^\infty \exp\left\{-\frac{1}{2} \frac{(x+\epsilon)^2}{\epsilon}\right\} dx = \frac{1}{2} a(t),$$

where we can neglect the mean value $-\epsilon$ compared to the width $\sqrt{\epsilon}$ of the Gaussian distribution. For the time derivative of the Gaussian under the integral in the above equation, we can again use the diffusion equation to obtain

$$\int_0^\infty \int_0^t \frac{a(t')}{\sqrt{2\pi(t-t')}} \left(\frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2}\right) \exp\left\{-\frac{1}{2} \frac{(x+t-t')^2}{t-t'}\right\} dt' dx = -\frac{1}{2} \int_0^t \frac{a(t')}{\sqrt{2\pi(t-t')}} e^{-(t-t')/2} dt'.$$

By equating the time derivatives of the left- and right-hand sides, we arrive at the desired result (3.20).

7

A Modern Course in Transport Phenomena

Exercise 3.3

8

Mathematica ® code for the inverse Laplace transform using the Zakian method, adapted from the implementation Zakian.nb by Housam Binous in the Wolfram Library Archive (library.wolfram.com):

```
alph={12.83767675+I 1.666063445,
    12.22613209+I 5.012718792,
    10.9343031+I 8.40967312,
    8.77643472+I 11.9218539,
    5.22545336+I 15.7295290};
K={-36902.0821+I 196990.426,
    61277.0252-I 95408.6255,
    -28916.5629+I 18169.1853,
    4655.36114-I 1.90152864,
    -118.741401-I 141.303691};
abar[s_]=Exp[1-Sqrt[1+2s]]*(Sqrt[1+2s]+1)/(Sqrt[1+2s]-1);
a[t_]=2/t Sum[Re[K[[i]]]abar[alph[[i]]/t]],{i,5}];
Plot[a[t],{t,0,5},PlotRange->{0,2.5}]
```

Mathematica \Re code for the evaluation of (3.19):

```
 \begin{aligned} &p[t_-,x_-] := (1/\text{Sqrt}[2\text{Pi}\ t]) & \text{Exp}[-0.5(x-1+t)^2/t] + \\ & \text{NIntegrate}[\,(a[tp]/\text{Sqrt}[2\text{Pi}\,(t-tp)]) & \text{Exp}[-0.5(x+t-tp)^2/(t-tp)]\,, \big\{\text{tp},0,t\big\}] \\ & \text{Plot}[p[0.3,x]\,, \big\{\text{x},0,2\big\}] \end{aligned}
```

Exercise 4.1

From (4.15) and (4.21) we have

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{V,N} = \frac{3N\tilde{R}}{2U}$$

which gives (4.22a). Similarly, from (4.16) and (4.21) we have

$$\frac{p}{T} = \left(\frac{\partial S}{\partial V}\right)_{U,N} = \frac{N\tilde{R}}{V}$$

which gives (4.22b). Finally, from (4.17) and (4.21) we have for a single-component fluid

$$-\frac{\tilde{\mu}}{T} = \left(\frac{\partial S}{\partial N}\right)_{U,V} = \tilde{s}_0 + \tilde{R} \ln \left[\left(\frac{U}{N\tilde{u}_0}\right)^{3/2} \left(\frac{V}{N\tilde{v}_0}\right) \right] - \frac{5}{2} \tilde{R}$$

Rearranging and using previous results, we can write

$$\tilde{\mu} = -T\tilde{s}_0 - \tilde{R}T \ln \left[\left(\frac{T}{T_0} \right)^{3/2} \left(\frac{\tilde{R}T}{p\tilde{v}_0} \right) \right] + \frac{5}{2}\tilde{R}T$$

where we have used $\tilde{u}_0 = \frac{3}{2}\tilde{R}T_0$. Collecting all terms depending on T in $\tilde{\mu}^0(T)$ leads to (4.22c).

Solutions to Exercises

Exercise 4.2

We first invert (4.21) to obtain

$$U(S, V, N) = N\tilde{u}_0 \left(\frac{V}{N\tilde{v}_0}\right)^{-2/3} \exp\left\{\frac{2}{3} \frac{S - N\tilde{s}_0}{N\tilde{R}}\right\}$$

as a starting point for our Legendre transformation. By differentiation with respect to S we obtain

$$T(S,V,N) = \frac{2\tilde{u}_0}{3\tilde{R}} \left(\frac{V}{N\tilde{v}_0}\right)^{-2/3} \exp\left\{\frac{2}{3} \frac{S - N\tilde{s}_0}{N\tilde{R}}\right\},\,$$

and by inversion

$$S(T, V, N) = N\tilde{s}_0 + N\tilde{R} \ln \left[\frac{V}{N\tilde{v}_0} \left(\frac{3\tilde{R}T}{2\tilde{u}_0} \right)^{3/2} \right].$$

Now, from (4.24) the Helmholtz free energy is then given by F(T, V, N) = U(S(T, V, N), V, N) - TS(T, V, N),

$$F(T, V, N) = \frac{3}{2}N\tilde{R}T - N\tilde{s}_0T - N\tilde{R}T \ln\left[\frac{V}{N\tilde{v}_0} \left(\frac{3\tilde{R}T}{2\tilde{u}_0}\right)^{3/2}\right]$$
$$= -N\tilde{R}T \ln\left[\frac{V}{N\tilde{v}_0} \left(\frac{3\tilde{R}T}{2\tilde{u}_0e}\right)^{3/2} \exp\left\{\frac{\tilde{s}_0}{\tilde{R}}\right\}\right].$$

This expression can be simplified considerably by introducing a new constant c in terms of all the other constants,

$$c = \frac{1}{\tilde{v}_0} \left(\frac{3\tilde{R}}{2\tilde{u}_0 e} \right)^{3/2} \exp\left\{ \frac{\tilde{s}_0}{\tilde{R}} \right\}.$$

Exercise 4.3

By integrating $p = N\tilde{R}T/V$ we find

$$F(T, V, N) = -N\tilde{R}T \ln \left[\frac{V}{C(T, N)}\right],$$

where C(T,N) represents an additive integration constant. To obtain an extensive free energy, C(T,N) must be of the form $C(T,N) = N \tilde{C}(T)$. Equation (4.25) then leads to the entropy

$$S(T,V,N) = N\tilde{R} \ln \left[\frac{V}{N\,\tilde{C}(T)} \right] - N\tilde{R}T \frac{1}{\tilde{C}(T)} \frac{d\tilde{C}(T)}{dT} \,. \label{eq:S}$$

For reproducing the ideal-gas entropy (see solution to Exercise 4.2) we need to choose

$$\frac{1}{\tilde{C}(T)} = c \, T^{3/2} \,,$$

9

A Modern Course in Transport Phenomena

where c plays the role of a further integration constant. For a suitable matching of constants, the resulting Helmholtz free energy (4.39) coincides with the solution to Exercise 4.2.

Exercise 4.4

10

In terms of intensive quantities we can write (4.15) as $1/T = (\partial s/\partial u)_{\rho}$ and (4.17) as $-\hat{\mu}/T = (\partial s/\partial \rho)_{u}$. Applying these to (4.56) we obtain

$$\frac{1}{T} = \frac{3}{2} \frac{k_{\rm B} \rho}{m u}, \quad -\frac{\hat{\mu}}{T} = \frac{s}{\rho} + \frac{k_{\rm B}}{m} \left[\frac{\partial \ln R_0(\rho)}{\partial \ln \rho} - \frac{5}{2} \right].$$

Combining these using the Euler equation (4.44) gives the following equations of state:

$$u = \frac{3}{2} \frac{\rho k_{\rm B} T}{m}, \quad p = \frac{\rho k_{\rm B} T}{m} \left[1 - \frac{\partial \ln R_0(\rho)}{\partial \ln \rho} \right],$$

which match the equations of state for an ideal gas if $R_0(\rho)$ is constant.

Exercise 4.5

Using the Maxwell relation $(\partial \hat{s}/\partial \hat{v})_{T,w_{\alpha}} = (\partial p/\partial T)_{\hat{v},w_{\alpha}}$ and definition for specific heat capacity $\hat{c}_{\hat{v}} = T(\partial \hat{s}/\partial T)_{\hat{v},w_{\alpha}}$ in (4.49) gives

$$d\hat{u} = \hat{c}_{\hat{v}}dT + \left[T\left(\frac{\partial p}{\partial T}\right)_{\hat{v},w_1} - p\right]d\hat{v} + \left[T\left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,\hat{v}} + (\hat{\mu}_1 - \hat{\mu}_2)\right]dw_1.$$

Focusing on the last term in square brackets, we use (4.52) and write

$$T\left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,p} = T(\hat{s}_1 - \hat{s}_2) = \hat{u}_1 - \hat{u}_2 + p(\hat{v}_1 - \hat{v}_2) - (\hat{\mu}_1 - \hat{\mu}_2),$$

which can be arranged to give

$$T\left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,p} + (\hat{\mu}_1 - \hat{\mu}_2) = (\hat{h}_1 - \hat{h}_2).$$

Now, to change the independent variables in the derivative on the left-hand side, we write

$$\left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,p} = \left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,\hat{v}} + \left(\frac{\partial \hat{s}}{\partial \hat{v}}\right)_{T,w_1} \left(\frac{\partial \hat{v}}{\partial w_1}\right)_{T,p} = \left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,\hat{v}} + \left(\frac{\partial p}{\partial T}\right)_{\hat{v},w_1} (\hat{v}_1 - \hat{v}_2),$$

where have used the Maxwell relation and (4.52) to obtain the second equality. Combining the last two results, we obtain

$$T\left(\frac{\partial \hat{s}}{\partial w_1}\right)_{T,\hat{v}} + (\hat{\mu}_1 - \hat{\mu}_2) = (\hat{h}_1 - \hat{h}_2) + T\left(\frac{\partial p}{\partial T}\right)_{\hat{v},w_1} (\hat{v}_1 - \hat{v}_2).$$

Substitution in the expression above for $d\hat{u}$ gives the result in (4.53).