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Solutions to exercises

Ezercise 1.1

The standard barrel of crude oil is 42 US gallons, that is, 42 x 3.785 litres =
0.159m?. The 100000m3 of crude oil pumped through the Trans-Alaska
Pipeline per day given in Section 1.1 hence correspond to 630000 barrels.
With a current price of some 50 US dollars per barrel (mid 2016), the value
of the crude oil transported through the Trans-Alaska Pipeline in a day is
given by the impressive number of 31000000 US dollars.

Ezercise 2.1
Straightforward differentiations of the probability density pa,e,(z) defined
in (2.16) give the following results:

gtpat@t( ) = 2%2 (x —ar)® + ét(m — o) - 2%t Parer(2).
_88[ ( )+ Al( ) ]pat@t(x) =
[Aé(tt) oo Al(t)at@j Ao®) oy Al(t)] Pagen (@),
and
1 92 Dy(t)

2 paz D0(Posen (@) = g [(2 = a0)” = O] puse, (@)

By comparing the prefactors of (z — oy)?, z — oy, and 1, we recover the
evolution equations (2.9) and (2.10).
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Solutions to Exercises 3

Ezercise 2.2
According to the superposition principle, we have

Po1/2(2)dz

A (54) ()]

FEzercise 2.3
In Mathematica:

/(x+1/2)/\/ﬁ
(

1/2 1/2
p(t,z) = / pyt(z)dy = / pot(z —y)dy =
2 —1/2 z—1/2)//2t

convol[x_,sig_]=
Integrate[ (1-t) «PDF [NormalDistribution[t,sig]l,x],{t,0,1}1+
Integrate[ (1+t) «PDF [NormalDistribution[t,sig]l, x],{t,-1,0}]
Plot [{Piecewise [{{1+x,-1<x<=0},{1-x,0<x<1}},0],
convol[x,Sqrt[.03]],convol[x,Sqrt[.311},{x,-2,2},
PlotRange->{0, 1}, AxesLabel->{Text [Style[x,FontSize->201],
Text [Style[p[t,x],FontSize->20]1}]

Notice that Mathematica ®) actually gives an analytical result for the inte-
gral implied by the superposition principle in terms of error functions. The
resulting curves are shown in Figure C.9.

Figure C.9 Mathematica ® output for the diffusion problem of Exercise
2.3.

Exercise 2.4

% [—/pln(p/peq) dfv} = —/ B? In(p/peq) + gf dz


https://ebookyab.ir/solution-manual-for-transport-phenomena-venerus-ottinger/

https://ebookyab.ir/solution-manual-for-transport-phenomena-venerus-ottinger/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

4 A Modern Course in Transport Phenomena

— [ wlo/pa) 5 do == [ 7 5 Wi/ ds

where the normalization of p and the diffusion equation have been used. By
inserting the expression for J given in (2.25) we obtain the desired result.

Ezercise 2.5
The eigenvalue problem for pure diffusion with D =1 is given by

1 d*p(x)

—)\p(.%') = 5 dz2

which has the solutions
p(z) = Cysin(vV2Az + Cy) .

The boundary condition p(0) = 0 suggest C2 = 0 and the boundary condi-
tion p(1) = 0 then selects discrete values of A,

\ 2\, =, )\n:nﬂ .

2

We can now write the solution as the Fourier series

oo
x) = Z cnsin(nmz) e At

where the coefficients ¢, are determined by the initial condition at ¢ = 0.
By multiplying with sin(mnz) and integrating, we find

[e.9]

1
/ sin(mnx) de = ch/ sin(mmx) sin(nrz) dx,
0 n=1
leading to the explicit expressions
1 c
— = (=)™ ==,
S (=

Note that all the coefficients ¢, with even n vanish. The fraction of the
substance released as a function of time is given by

1
8
1— taydr=1- Y —5e
/Op(’x) € n27r2€

n=odd

FExercise 2.6
According to the respective definitions, we have

T—exp{M(t1) + M(t2)} =1+ M(t1) + M(t2)
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Solutions to Exercises

+5 [M(t1)% + M(t2)%] + M (t) - M (t1)

RN =

o [M(t)° + M(t2)*] + % [M(t2) - M(t1)* + M (t2)* - M(t1)] + ...,

and

exp{M (t1) + M (t2)} =1+ M (t1) + M (t2)
L) + M) + é IM(t1) + M(t2)P + ... .

2
In terms of the commutator C = M(ts) - M(t;) — M(t1) - M(t2), the

difference can be written as
1
T—exp{M (t1) + M (t2)} — exp{M (t1) + M(t2)} = 3 C

+ % [C - M(t1) + M (t3) - C + M(ts) - M (t1)? — M(t1)* - M (t2)
+ M(tp)? - M(t1) — M(t1) - M(t2)?] + ... .

Ezercise 2.7
Straightforward differentiations of the probability density pa,e,(x) defined

in (2.39) give the following results:

0 1 1 _
Giperen(@) = |y(e ) 01610, (- a
1. 1 : —1
+(:L'—at)-€-)t -at—§tr<®t~@t )]pat@t(m),
0

— g [Ao®) + Ai(t) - ] pa,e, (@) =

5@ e (© 40+ AT(0)- 0,1 (o - a)

@ — ) O (Ag(t) + A(t) - ) - trAﬂt)}patet (x),

and

s Dy(1) pave, () = 3 [ — ) € Do(1) - O - (2 — )

2 0x Oz :
— tr (Do (t) - O;1) | pasen (@).

By comparing prefactors, we obtain the following evolution equations:

oy = Al(t) c o+ Ao(t) ,
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6 A Modern Course in Transport Phenomena

and
Gt = Al(t) -0+ O - A{(t) + Do(t) .

FEzercise 2.8
In Mathematica ®):

Theta={{0.4,0.3},{0.3,0.6}}

invT=Inverse[Theta]

flxl_,x2.]1:=Exp[-1/2 {x1,x2}.invT.{x1,x2}]/Sqrt[(2 Pi) 2 Det[Theta]l]
Plot3D[f[x1l,x2]1,{x1,-2,2},{x2,-2,2}]

The output is shown in Figure C.10.

Figure C.10 Mathematica ® output for the two-dimensional Gaussian of
Exercise 2.8.

Exercise 2.9

The covariance matrix © is symmetric and can hence be diagonalized. By
a linear transformation to suitable coordinates, ® can hence be assumed to
be diagonal. For diagonal ®, the probability density in (2.39) indeed is the
product of d one-dimensional Gaussians.

Exercise 3.1

To switch from a rectangular to a triangular initial distribution, we only
need to change the stochastic initial condition. The curve for ¢ = 0.03 is
produced by the following MATLAB (®) code:

% Simulation parameters
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Solutions to Exercises 7

NTRA=1000;NTIME=3;NHIST=100;DT=0.01;
XMIN=-1.;DX=0.05; XMAX=1.;
edges=XMIN:DX:XMAX;
centers=XMIN+DX/2:DX:XMAX-DX/2;

for K=1:NHIST
% Generation of NTRA trajectories x
y=random('Uniform',-1,1, [1,NTRA]); x=sign(y).* (l-sqgrt (abs(y)));
for J=1:NTIME
x=x+random ('Normal', O, sqrt (DT), [1,NTRA]);
end
% Collection of NHIST histograms in matrix p
p (K, :)=histc(x,edges)/ (DXxNTRA) ;
end

% Plot of simulation results
errorbar ([centers NaN],mean (p),std(p)/sqrt (NHIST), 'LineStyle', 'none")

Ezercise 3.2
By integrating (3.19) over x, we obtain

1(ac+t—t')} ,
1-— (t,z)dr = 2 A dtdr.
/0 il / /\/27rt—t’ { t—t

For the time derivative of the left-hand side of this equation, we obtain by
means of the diffusion equation

d > 19ps(t, z)

Cdt 0 pf(t ) 2 8217

t,0).

=0

The contribution to the time derivative of the right-hand side of the above
equation resulting from the upper limit of the time integration is

(z+e 1
a(t) lim / + ) dr = = a(t),
e—=0 \/27€ € 2
where we can neglect the mean value —e compared to the width /e of the
Gaussian distribution. For the time derivative of the Gaussian under the
integral in the above equation, we can again use the diffusion equation to

o 10? L(z+t—1t)2
— —— 2 Sdt'dr =
/ / \/ t—t’ (ax 26m2) eXp{ 2 t—t v
_Lfa)
0 \/2m(t—1)
By equating the time derivatives of the left- and right-hand sides, we arrive
at the desired result (3.20).

obtain

ef@fﬂVQdﬂ'
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8 A Modern Course in Transport Phenomena

Exercise 3.3

Mathematica ®) code for the inverse Laplace transform using the Zakian
method, adapted from the implementation Zakian.nb by Housam Binous
in the Wolfram Library Archive (1ibrary.wolfram.com):

alph={12.83767675+I 1.666063445,

12.22613209+I 5.012718792,

10.9343031+I 8.40967312,

8.77643472+1 11.9218539,

5.22545336+1 15.7295290};

K={-36902.0821+I 196990.426,

61277.0252-1 95408.6255,

-28916.5629+1 18169.1853,

4655.36114-1 1.90152864,

-118.741401-T 141.303691};
abar[s_]=Exp[l-Sqrt[1+2s]]* (Sqrt[1+2s]+1)/(Sqgrt[1+2s]-1);
alt-1=2/t Sum[Re[K[[i]]abar[alph[[i]1]1/t]],{i,5}];
Plot[alt],{t,0,5},PlotRange->{0,2.5}]

Mathematica ®) code for the evaluation of (3.19):

plt_, x_1:=(1/Sqrt[2Pi t]) Exp[-0.5(x-1+t) " 2/t]+
NIntegratel (a[tp]/Sqrt[2Pi(t-tp)]) Exp[-0.5(x+t-tp) 2/ (t-tp)],{tp,0,t}]
Plot[p[0.3,x],{x,0,2}]

Exercise 4.1
From (4.15) and (4.21) we have

1oy W R
T \oUu/vn  2U
which gives (4.22a). Similarly, from (4.16) and (4.21) we have

2= ()=

which gives (4.22b). Finally, from (4.17) and (4.21) we have for a single-
component fluid

7= (ow)o =50 P () (75)] - 3%

Rearranging and using previous results, we can write

fi= T3 — RTIn [(2)3/2@;)} + gRT

where we have used @y = %RT 0. Collecting all terms depending on T in
f°(T) leads to (4.22c).
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Solutions to Exercises 9

FExercise 4.2
We first invert (4.21) to obtain

Vo\—2/3 25— N5g
U(S,V,N :N~( ) {,4~ }
( ) o{ N5 XP\3 N7
as a starting point for our Legendre transformation. By differentiation with
respect to S we obtain

=) e

and by inversion

4 <SRT>3/2]

Ny ’

Now, from (4.24) the Helmholtz free energy is then given by F(T,V,N) =
US(T,v,N),V,N)—-TS(T,V,N),

S(T.V,N) = Nio + NRIn| S
0

1% <3RT>3/2]
i Ny
AT (32 e 2]

This expression can be simplified considerably by introducing a new constant

F(T,V,N) = gNRT — N3T — NRT ln[ .
0

¢ in terms of all the other constants,

e= (Y ep (B},

Ezercise 4.3 .
By integrating p = NRT/V we find
- 14
F(T,V.N) = —NRT1 {7}
(T,V,N) RTIn G

where C(T', N) represents an additive integration constant. To obtain an
extensive free energy, C(T, N) must be of the form C(T,N) = N C(T).
Equation (4.25) then leads to the entropy

. - 1 dO(T
S(T,V,N)=NRIn [Y] — NRT—— o) .
NC(T) c(r) dr
For reproducing the ideal-gas entropy (see solution to Exercise 4.2) we need

to choose
= L = T3/ ,
c(T)
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10 A Modern Course in Transport Phenomena

where ¢ plays the role of a further integration constant. For a suitable match-
ing of constants, the resulting Helmholtz free energy (4.39) coincides with
the solution to Exercise 4.2.

Exercise 4.4
In terms of intensive quantities we can write (4.15) as 1/T = (9s/0u), and
(4.17) as —f1/T = (0s/0p)y. Applying these to (4.56) we obtain

1 3kpp ﬂ_s_i_k:]g{é)lnRo(p) 5]

T 2mu’ T p m

dlnp 2

Combining these using the Euler equation (4.44) gives the following equa-
tions of state:

2 m m

u_%PkBT7 p:pszT 1_81nR0(p) 7
dlnp

which match the equations of state for an ideal gas if Ry(p) is constant.

FExercise 4.5
Using the Maxwell relation (05/00)71., = (0p/0T)sw, and definition for
specific heat capacity ¢; = T'(05/0T )44, in (4.49) gives

03

dii = &dT + [T(g)ﬁ’wl - p} do + {T(aT“)T’ﬁ + (i — /12)] duw,.

Focusing on the last term in square brackets, we use (4.52) and write
T(pm), = T(1 = 2) = i — i+ (01 — ) — (3 — i)
— =T(51—82) =101 — 1 01 — Ug) — -
wi ) 1 1 2 1 2 T plv1 2 H1— H2),
which can be arranged to give
05 . .
T(5>-) i — fiz) = (B — ha).
Gwy )z, T i1~ fi2) = (h1 = ho)

Now, to change the independent variables in the derivative on the left-hand
side, we write

0§ 0§ 08 o 08 dp L
(Gar) o = Gar) o™ (58 r G ) = G ) (G ), (120
where have used the Maxwell relation and (4.52) to obtain the second equal-
ity. Combining the last two results, we obtain

03 op

(), + = i +7(), )

Substitution in the expression above for du gives the result in (4.53).
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