Problem 2.1

[Difficulty: 1]

2.1	For the velocity fields given below, determine:
a.	whether the flow field is one-, two-, or three-dimensional,
	and why.

b. whether the flow is steady or unsteady, and why. (The quantities a and b are constants.)

(1) $\vec{V} = [(ax + t)e^{by}]\hat{i}$ (2) $\vec{V} = (ax - by)\hat{i}$ (3) $\vec{V} = ax\hat{i} + [e^{bx}]\hat{j}$ (4) $\vec{V} = ax\hat{i} + bx^2\hat{j} + ax\hat{k}$ (5) $\vec{V} = ax\hat{i} + [e^{bx}]\hat{j}$ (6) $\vec{V} = ax\hat{i} + bx^2\hat{j} + ay\hat{k}$ (7) $\vec{V} = ax\hat{i} + [e^{bx}]\hat{j} + ay\hat{k}$ (8) $\vec{V} = ax\hat{i} + [e^{by}]\hat{j} + az\hat{k}$

Given: Velocity fields

Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(2)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$ \overrightarrow{V} \neq \overrightarrow{V}(t) $	Steady
(3)	$\overrightarrow{V} = \overrightarrow{V}(x)$	1D	$ \overrightarrow{V} \neq \overrightarrow{V}(t) $	Steady
(4)	$\overrightarrow{V} = \overrightarrow{V}(x)$	1D	$ \overrightarrow{V} \neq \overrightarrow{V}(t) $	Steady
(5)	$\overrightarrow{V} = \overrightarrow{V}(x)$	1D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(6)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D		Steady
(7)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(8)	$\overrightarrow{V} = \overrightarrow{V}(x,y,z)$	3D	$ \begin{array}{c} \rightarrow \rightarrow \\ V \neq V \ (t) \end{array} $	Steady

Problem 2.2

[Difficulty: 1]

- 2.2 For the velocity fields given below, determine: a. whether the flow field is one-, two-, or three-dimensional, and why.
- b. whether the flow is steady or unsteady, and why.
 - (The quantities a and b are constants.)
 - (1) $\vec{V} = [ay^2e^{-bt}]\hat{i}$ (2) $\vec{V} = ax^2\hat{i} + bx\hat{j} + c\hat{k}$
- (3) $\vec{V} = axy\hat{i} by\hat{j}$ (4) $\vec{V} = ax\hat{i} by\hat{j} + ct\hat{k}$ (5) $\vec{V} = [ae^{-bx}]\hat{i} + bt^2\hat{j}$ (6) $\vec{V} = a(x^2 + y^2)^{1/2}(1/z^3)\hat{k}$ (7) $\vec{V} = (ax + t)\hat{i} by^2\hat{j}$ (8) $\vec{V} = ax^2\hat{i} + bxz\hat{j} + cy\hat{k}$

Given: Velocity fields

Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1)	$\overrightarrow{V} = \overrightarrow{V}(y)$	1D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(2)	$\overrightarrow{V} = \overrightarrow{V}(x)$	1D		Steady
(3)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(4)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(5)	$\overrightarrow{V} = \overrightarrow{V}(x)$	1D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(6)	$\overrightarrow{V} = \overrightarrow{V}(x,y,z)$	3D		Steady
(7)	$\overrightarrow{V} = \overrightarrow{V}(x,y)$	2D	$\overrightarrow{V} = \overrightarrow{V}(t)$	Unsteady
(8)	$\overrightarrow{V} = \overrightarrow{V}(x,y,z)$	3D		Steady

Problem 2.3

[Difficulty: 2]

2.3 A viscous liquid is sheared between two parallel disks; the upper disk rotates and the lower one is fixed. The velocity field between the disks is given by $\vec{V} = \hat{e}_0 r \omega z/h$. (The origin of coordinates is located at the center of the lower disk; the upper disk is located at z = h.) What are the dimensions of this velocity field? Does this velocity field satisfy appropriate physical boundary conditions? What are they?

Given:

Viscous liquid sheared between parallel disks.

Upper disk rotates, lower fixed.

Velocity field is:

Find:

- a. Dimensions of velocity field.
- b. Satisfy physical boundary conditions.

Solution: To find dimensions, compare to $\vec{V} = \vec{V}(x, y, z)$ form.

The given field is $\vec{V} = \vec{V}(r, z)$. Two space coordinates are included, so the field is 2-D.

 $\vec{V} = \hat{e}_{\theta} \frac{r\omega z}{h}$

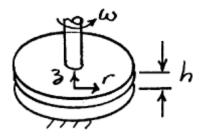
Flow must satisfy the no-slip condition:

1. At lower disk, $\vec{V} = 0$ since stationary.

$$z = 0$$
, so $\vec{V} = \hat{e}_{\theta} \frac{r\omega 0}{h} = 0$, so satisfied.

2. At upper disk, $\vec{V} = \hat{e}_{\theta} r \omega$ since it rotates as a solid body.

$$z = h$$
, so $\vec{V} = \hat{e}_{\theta} \frac{r\omega h}{h} = \hat{e}_{\theta} r\omega$, so satisfied.



Problem 2.4

[Difficulty: 1]

2.4 For the velocity field $\vec{V} = Ax^2y\hat{i} + Bxy^2\hat{j}$, where $A = 2 \text{ m}^{-2}\text{s}^{-1}$ and $B = 1 \text{ m}^{-2}\text{s}^{-1}$, and the coordinates are measured in meters, obtain an equation for the flow streamlines. Plot several streamlines in the first quadrant.					
Given:	Velocity field				
Find:	Equation for streamlines				
Solution:		Streamline Plots			
For streamlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \frac{\mathbf{B} \cdot \mathbf{x} \cdot \mathbf{y}^2}{\mathbf{A} \cdot \mathbf{x}^2 \cdot \mathbf{y}} = \frac{\mathbf{B} \cdot \mathbf{y}}{\mathbf{A} \cdot \mathbf{x}}$	4 4 C = 1 C = 2 C = 3 C = 4			
So, separating variables	$\frac{\mathrm{d}y}{\mathrm{y}} = \frac{\mathrm{B}}{\mathrm{A}} \cdot \frac{\mathrm{d}x}{\mathrm{x}}$	$(\tilde{E}) = \frac{3}{2}$			
Integrating	$\ln(y) = \frac{B}{A} \cdot \ln(x) + c = -\frac{1}{2} \cdot \ln(x) + c$	μ			
The solution is	$y = \frac{C}{\sqrt{x}}$				
		x (m)			

The plot can be easily done in *Excel*.

Prob	lem	2.5
------	-----	-----

[Difficulty: 2]

interpreted to repres for the flow streamli several streamlines in	2.5 The velocity field $\vec{V} = Ax\hat{i} - Ay\hat{j}$, where $A = 2 \text{ s}^{-1}$, can be interpreted to represent flow in a corner. Find an equation for the flow streamlines. Explain the relevance of A . Plot several streamlines in the first quadrant, including the one that passes through the point $(x, y) = (0, 0)$.				
Given:	Velocity field				
Find:	Equation for streamli	nes; Plot several in the first quad	drant, including one that passes through point (0,0)		
Solution:					
Governing equation:	For streamlines	$\frac{v}{u} = \frac{dy}{dx}$			
Assumption: 2D flow	7				
Hence		$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = -\frac{\mathbf{A}\cdot\mathbf{y}}{\mathbf{A}\cdot\mathbf{x}} = -\frac{\mathbf{y}}{\mathbf{x}}$	Streamline Plots		
So, separating variable	'S	$\frac{\mathrm{d}y}{\mathrm{y}} = -\frac{\mathrm{d}x}{\mathrm{x}}$	4 $C = 1$ C = 2 C = 3 C = 4		
Integrating		$\ln(y) = -\ln(x) + c$	$(\widehat{\mathbf{E}})^{3}$		
The solution is		$\ln(\mathbf{x} \cdot \mathbf{y}) = \mathbf{c}$	^{>} 2 ⁻		
or		$y = \frac{C}{x}$			
The plot can be easily o	done in Excel.		0 1 2 3 4 5 x (m)		

The streamline passing through (0,0) is given by the vertical axis, then the horizontal axis. The value of A is irrelevant to streamline shapes but IS relevant for computing the velocity at each point.

Problem 2.6

[Difficulty: 1]

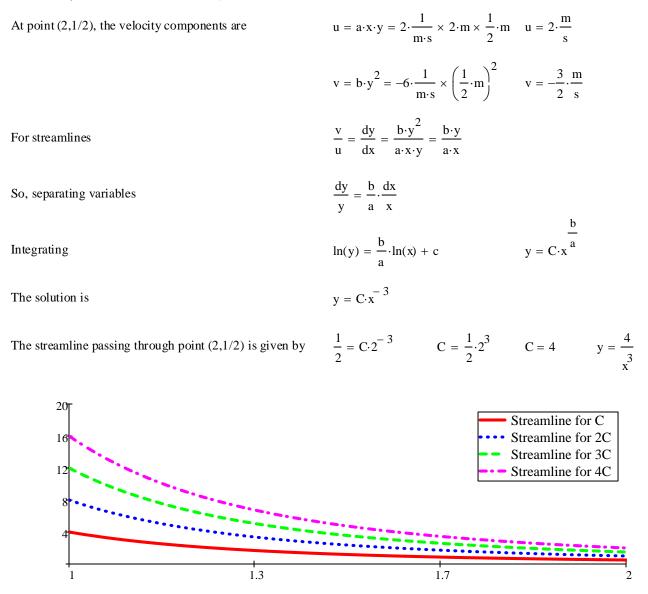
2.6 A velocity field is specified as $\vec{V} = axy\hat{i} + by^2\hat{j}$, where $a = 2 \text{ m}^{-1}\text{s}^{-1}$, $b = -6 \text{ m}^{-1}\text{s}^{-1}$, and the coordinates are measured in meters. Is the flow field one-, two-, or three-dimensional? Why? Calculate the velocity components at the point (2, $\frac{1}{2}$). Develop an equation for the streamline passing through this point. Plot several streamlines in the first quadrant including the one that passes through the point (2, $\frac{1}{2}$).

Given: Velocity field

Find: Whether field is 1D, 2D or 3D; Velocity components at (2,1/2); Equation for streamlines; Plot

Solution:

The velocity field is a function of x and y. It is therefore 2D.



This can be plotted in Excel.

Prob	lem 2.	7
------	--------	---

2.7 A velocity field is given by $\vec{V} = ax\hat{i} - bty\hat{j}$, where $a = 1 \text{ s}^{-1}$ and $b = 1 \text{ s}^{-2}$. Find the equation of the streamlines at any time t. Plot several streamlines in the first quadrant at t = 0 s, t = 1 s, and t = 20 s.

Given:	Velocity field			
Find:	Equation for st	treamlines; Plot streamlines		
Solution:				
For streamlines		$\frac{v}{u} = \frac{dy}{dx} = \frac{-b \cdot t \cdot y}{a \cdot x}$		
So, separating v	ariables	$\frac{\mathrm{d}y}{\mathrm{y}} = \frac{-\mathrm{b}\cdot\mathrm{t}}{\mathrm{a}}\cdot\frac{\mathrm{d}x}{\mathrm{x}}$		
Integrating		$\ln(y) = \frac{-b \cdot t}{a} \cdot \ln(x)$		
The solution is		$y = c \cdot x^{a} \cdot t$		
For $t = 0$ s	y = c	For $t = 1$ s $y = \frac{c}{x}$	For <i>t</i> = 20 s	y = c·x

t =1 s

t = 0

	c = 1	c = 2	c = 3
Х	У	У	У
0.05	1.00	2.00	3.00
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

<u>`</u>	c = 1	c = 2	c = 3
X	У	У	У
0.05	20.00	40.00	60.00
0.10	10.00	20.00	30.00
0.20	5.00	10.00	15.00
0.30	3.33	6.67	10.00
0.40	2.50	5.00	7.50
0.50	2.00	4.00	6.00
0.60	1.67	3.33	5.00
0.70	1.43	2.86	4.29
0.80	1.25	2.50	3.75
0.90	1.11	2.22	3.33
1.00	1.00	2.00	3.00
1.10	0.91	1.82	2.73
1.20	0.83	1.67	2.50
1.30	0.77	1.54	2.31
1.40	0.71	1.43	2.14
1.50	0.67	1.33	2.00
1.60	0.63	1.25	1.88
1.70	0.59	1.18	1.76
1.80	0.56	1.11	1.67
1.90	0.53	1.05	1.58
2.00	0.50	1.00	1.50

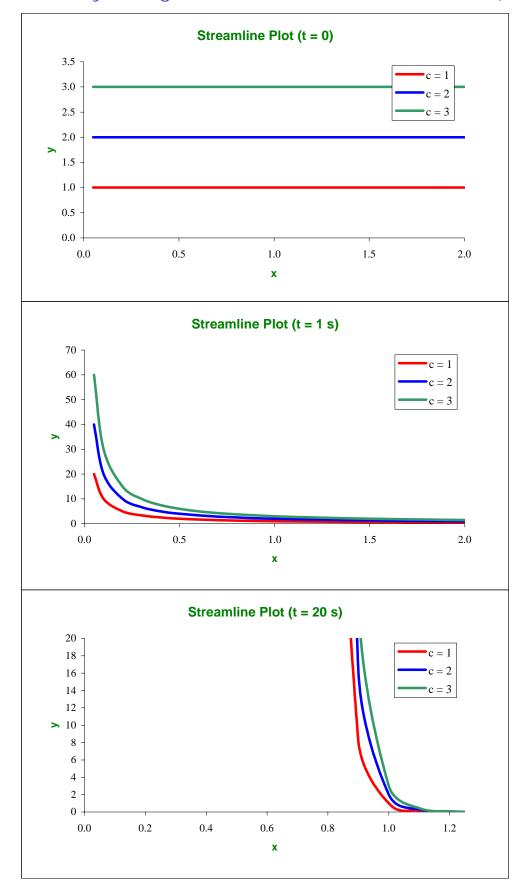
(### means too large to view)

t =	20	S
-----	----	---

20

	c = 1	c = 2	c = 3
X	У	У	у
0.05	######	######	######
0.10	######	######	######
0.20	######	######	######
0.30	######	######	######
0.40	######	######	######
0.50	######	######	######
0.60	######	######	######
0.70	######	######	######
0.80	86.74	173.47	260.21
0.90	8.23	16.45	24.68
1.00	1.00	2.00	3.00
1.10	0.15	0.30	0.45
1.20	0.03	0.05	0.08
1.30	0.01	0.01	0.02
1.40	0.00	0.00	0.00
1.50	0.00	0.00	0.00
1.60	0.00	0.00	0.00
1.70	0.00	0.00	0.00
1.80	0.00	0.00	0.00
1.90	0.00	0.00	0.00
2.00	0.00	0.00	0.00

[Difficulty: 2]



С

Problem 2.8

[Difficulty: 2]

2.8 A velocity field is given by $\vec{V} = ax^3\hat{i} + bxy^3\hat{j}$, where $a = 1 \text{ m}^{-2}\text{s}^{-1}$ and $b = 1 \text{ m}^{-3}\text{s}^{-1}$. Find the equation of the streamlines. Plot several streamlines in the first quadrant.

Given: Velocity field

Find: Equation for streamlines; Plot streamlin
--

Solution:

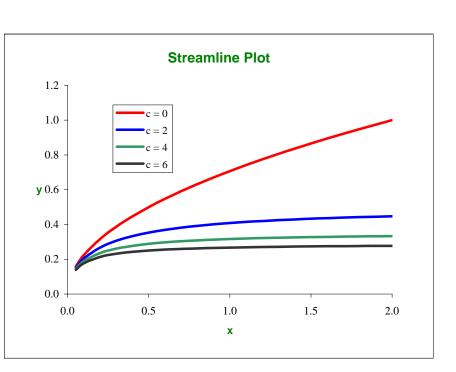
Streamlines are given by	$\frac{v}{u} = \frac{dy}{dx} = \frac{b \cdot x \cdot y^3}{a \cdot x^3}$
So, separating variables	$\frac{\mathrm{d}y}{\mathrm{y}^3} = \frac{\mathrm{b} \cdot \mathrm{d}x}{\mathrm{a} \cdot \mathrm{x}^2}$
Integrating	$-\frac{1}{2 \cdot y^2} = \frac{b}{a} \cdot \left(-\frac{1}{x}\right) +$
The solution is	$y = \frac{1}{\sqrt{2 \cdot \left(\frac{b}{a \cdot x} + C\right)}}$

Note: For convenience the sign of C is changed.

a = 1

b	=	1

C =	0	2	4	6
X	У	У	У	У
0.05	0.16	0.15	0.14	0.14
0.10	0.22	0.20	0.19	0.18
0.20	0.32	0.27	0.24	0.21
0.30	0.39	0.31	0.26	0.23
0.40	0.45	0.33	0.28	0.24
0.50	0.50	0.35	0.29	0.25
0.60	0.55	0.37	0.30	0.26
0.70	0.59	0.38	0.30	0.26
0.80	0.63	0.39	0.31	0.26
0.90	0.67	0.40	0.31	0.27
1.00	0.71	0.41	0.32	0.27
1.10	0.74	0.41	0.32	0.27
1.20	0.77	0.42	0.32	0.27
1.30	0.81	0.42	0.32	0.27
1.40	0.84	0.43	0.33	0.27
1.50	0.87	0.43	0.33	0.27
1.60	0.89	0.44	0.33	0.27
1.70	0.92	0.44	0.33	0.28
1.80	0.95	0.44	0.33	0.28
1.90	0.97	0.44	0.33	0.28
2.00	1.00	0.45	0.33	0.28



2.9 A flow is described by the velocity field $\vec{V} = (Ax + B)\hat{i} + (-Ay)\hat{j}$, where A = 3 m/s/m and B = 6 m/s. Plot a few streamlines in the *xy* plane, including the one that passes through the point (x, y) = (0.3, 0.6).

Given: Velocity field.

Find: Plot streamlines.

Solution:

Streamlines are given by

So, separating variables

Integrating

 $\frac{v}{u} = \frac{dy}{dx} = \frac{-A \cdot y}{A \cdot x + B}$ $\frac{dy}{-A \cdot y} = \frac{dx}{A \cdot x + B}$ $-\frac{1}{A} \ln(y) = \frac{1}{A} \cdot \ln\left(x + \frac{B}{A}\right)$ $y = \frac{C}{x + \frac{B}{A}}$

The solution is

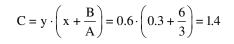
For the streamline that passes through point (x, y) = (0.3, 0.6)

$$y = \frac{1.4}{x + \frac{6}{3}}$$

$$A = 3$$
$$B = 6$$

C = 0.5, 0.8, 1.0, and 1.4

	0.5	0.8	1.0	1.4
х	у	у	у	у
0.00	0.25	0.40	0.50	0.70
0.10	0.24	0.38	0.48	0.67
0.20	0.23	0.36	0.45	0.64
0.30	0.22	0.35	0.43	0.61
0.40	0.21	0.33	0.42	0.58
0.50	0.20	0.32	0.40	0.56
0.60	0.19	0.31	0.38	0.54
0.70	0.18	0.30	0.37	0.52
0.80	0.18	0.29	0.36	0.50
0.90	0.17	0.28	0.34	0.48
1.00	0.17	0.27	0.33	0.47
1.10	0.16	0.26	0.32	0.45
1.20	0.16	0.25	0.31	0.44
1.30	0.15	0.24	0.29	0.42
1.40	0.15	0.24	0.29	0.41
1.50	0.14	0.23	0.29	0.40
1.60	0.14	0.22	0.28	0.39
1.70	0.14	0.22	0.27	0.38
1.80	0.13	0.21	0.26	0.37
1.90	0.13	0.21	0.26	0.36
2.00	0.13	0.20	0.25	0.35



Problem 2.10

[Difficulty: 2]

2.10 The velocity for a steady, incompressible flow in the xy	
plane is given by $\vec{V} = \hat{i}A/x + \hat{j}Ay/x^2$, where $A = 2 \text{ m}^2/\text{s}$, and	
the coordinates are measured in meters. Obtain an equation	
for the streamline that passes through the point $(x, y) =$	
(1, 3). Calculate the time required for a fluid particle to move	
from $x = 1$ m to $x = 2$ m in this flow field.	

Given:	Velocity field				
Find:	Equation for stream	line through (1,3)			
Solution:		Δ. <u>Υ</u>			
For streamlines		$\frac{v}{u} = \frac{dy}{dx} = \frac{A \cdot \frac{y}{x^2}}{\underline{A}}$	$=\frac{y}{x}$		
So, separating variables		$\frac{\mathrm{d}y}{\mathrm{y}} = \frac{\mathrm{d}x}{\mathrm{x}}$			
Integrating		$\ln(y) = \ln(x) + c$			
The solution is		$y = C \cdot x$	which is	the equation of a st	raight line.
For the streamline throug	gh point (1,3)	$3 = C \cdot 1$	C = 3	and	$y = 3 \cdot x$
For a particle		$u_p = \frac{dx}{dt} = \frac{A}{x}$	or	$x \cdot dx = A \cdot dt$	$x = \sqrt{2 \cdot A \cdot t + c}$ $t = \frac{x^2}{2 \cdot A} - \frac{1}{2}$

Hence the time for a particle to go from x = 1 to x = 2 m is

$$\Delta t = t(x = 2) - t(x = 1) \qquad \Delta t = \frac{(2 \cdot m)^2 - c}{2 \cdot A} - \frac{(1 \cdot m)^2 - c}{2 \cdot A} = \frac{4 \cdot m^2 - 1 \cdot m^2}{2 \times 2 \cdot \frac{m^2}{s}} \qquad \Delta t = 0.75 \cdot s$$

Problem 2.11

[Difficulty: 3]

2.11 The flow field for an atmospheric flow is given by

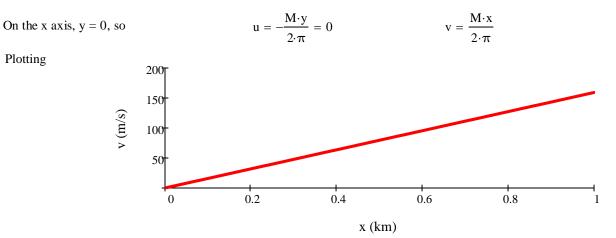
$$\vec{V} = -\frac{My}{2\pi}\hat{i} + \frac{Mx}{2\pi}\hat{j}$$

where $M = 1 \text{ s}^{-1}$, and the x and y coordinates are the parallel to the local latitude and longitude. Plot the velocity magnitude along the x axis, along the y axis, and along the line y = x, and discuss the velocity direction with respect to these three axes. For each plot use a range x or y = 0 kmto 1 km. Find the equation for the streamlines and sketch several of them. What does this flow field model?

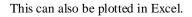
Given: Flow field

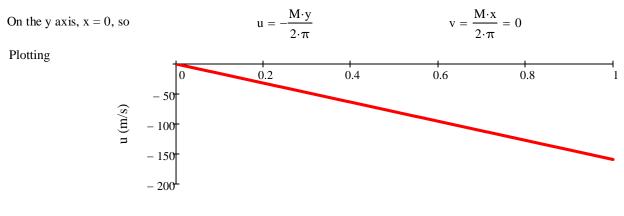
Find: Plot of velocity magnitude along axes, and y = x; Equation for streamlines

Solution:



The velocity is perpendicular to the axis and increases linearly with distance x.





y (km)

The velocity is perpendicular to the axis and increases linearly with distance y. This can also be plotted in Excel.

On the
$$y = x$$

axis

$$u = -\frac{M \cdot y}{2 \cdot \pi} = -\frac{M \cdot x}{2 \cdot \pi}$$

$$v = \frac{M \cdot x}{2 \cdot \pi}$$
The flow is perpendicular to line $y = x$:
Slope of trajectory of
motion:
If we define the radial position:

$$r = \sqrt{x^2 + y^2}$$
then along $y = r = \sqrt{x^2 + x^2} = \sqrt{2} \cdot x$
Then the magnitude of the velocity along $y = x$ is $v = \sqrt{u^2 + v^2} = \frac{M}{2 \cdot \pi} \sqrt{x^2 + x^2} = \frac{M \cdot \sqrt{2} \cdot x}{2 \cdot \pi} = \frac{M \cdot r}{2 \cdot \pi}$
Plotting

$$\int_{0}^{\infty} \int_{0}^{150} \int$$

The streamlines form a set of concentric circles.

This flow models a rigid body vortex flow. See Example 5.6 for streamline plots. Streamlines are circular, and the velocity approaches zero as we approach the center. In Problem 2.10, we see that the streamlines are also circular. In a real tornado, at large distances from the center, the velocities behave as in Problem 2.10; close to the center, they behave as in this problem.

Problem 2.12

[Difficulty: 3]

2.12 The flow field for an atmospheric flow is given by

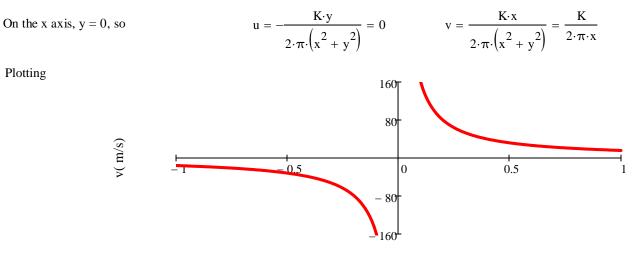
$$\vec{V} = -\frac{Ky}{2\pi(x^2+y^2)}\hat{i} + \frac{Kx}{2\pi(x^2+y^2)}\hat{j}$$

where $K = 10^5 \text{ m}^2/\text{s}$, and the x and y coordinates are parallel to the local latitude and longitude. Plot the velocity magnitude along the x axis, along the y axis, and along the line y = x, and discuss the velocity direction with respect to these three axes. For each plot use a range x or y = -1 km to 1 km, excluding |x|or |y| < 100 m. Find the equation for the streamlines and sketch several of them. What does this flow field model?

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equation of streamlines

Solution:



x (km)

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.

This can also be plotted in Excel.

Plotting

 $\mathbf{u} = -\frac{\mathbf{K} \cdot \mathbf{y}}{2 \cdot \pi \cdot \left(\mathbf{x}^2 + \mathbf{y}^2\right)} = -\frac{\mathbf{K}}{2 \cdot \pi \cdot \mathbf{y}} \qquad \mathbf{v} = \frac{\mathbf{K} \cdot \mathbf{x}}{2 \cdot \pi \cdot \left(\mathbf{x}^2 + \mathbf{y}^2\right)} = 0$ On the y axis, x = 0, so 16080 v(m/s) -0.50 0.5-80- 160

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero. This can also be plotted in Excel.

On the y = x axis
$$u = -\frac{K \cdot x}{2 \cdot \pi \cdot \left(x^2 + x^2\right)} = -\frac{K}{4 \cdot \pi \cdot x} \qquad v = \frac{K \cdot x}{2 \cdot \pi \cdot \left(x^2 + x^2\right)} = \frac{K}{4 \cdot \pi \cdot x}$$

The flow is perpendicular to line y = x: Slope of line y = x: 1 $\frac{u}{v} = -1$ Slope of trajectory of motion: then along y = x $r = \sqrt{x^2 + x^2} = \sqrt{2} \cdot x$ $r = \sqrt{x^2 + y^2}$ If we define the radial position: $V = \sqrt{u^{2} + v^{2}} = \frac{K}{4 \cdot \pi} \cdot \sqrt{\frac{1}{x^{2}} + \frac{1}{x^{2}}} = \frac{K}{2 \cdot \pi \cdot \sqrt{2} \cdot x} = \frac{K}{2 \cdot \pi \cdot r}$ Then the magnitude of the velocity along y = x is Plotting 16080 v(m/s) 0.5 0 0.5 - 80 160

This can also be plotted in Excel.

$$\frac{\mathbf{v}}{\mathbf{u}} = \frac{d\mathbf{y}}{d\mathbf{x}} = \frac{\frac{\mathbf{K}\cdot\mathbf{x}}{2\cdot\boldsymbol{\pi}\cdot\left(\mathbf{x}^2+\mathbf{y}^2\right)}}{-\frac{\mathbf{K}\cdot\mathbf{y}}{2\cdot\boldsymbol{\pi}\cdot\left(\mathbf{x}^2+\mathbf{y}^2\right)}} = -\frac{\mathbf{x}}{\mathbf{y}}$$

So, separating variables

 $y{\cdot}dy=-x{\cdot}dx$

Integrating

For streamlines

 $\frac{y^2}{2} = -\frac{x^2}{2} + c$

The solution is

 $x^{2} + y^{2} = C$ which is the equation of a circle.

Streamlines form a set of concentric circles.

This flow models a vortex flow. See Example 5.6 for streamline plots. Streamlines are circular, and the velocity approaches infinity as we approach the center. In Problem 2.11, we see that the streamlines are also circular. In a real tornado, at large distances from the center, the velocities behave as in this problem; close to the center, they behave as in Problem 2.11.

Problem 2.13

[Difficulty: 3]

2.13 A flow field is given by

$$\vec{V} = -\frac{qx}{2\pi(x^2+y^2)}\hat{i} - \frac{qy}{2\pi(x^2+y^2)}\hat{j}$$

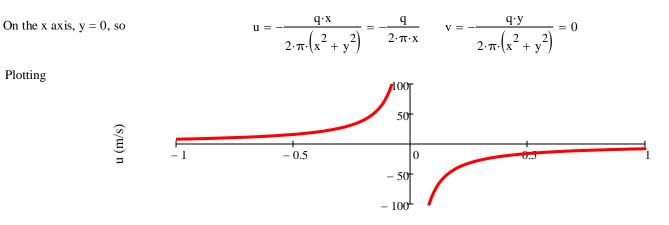
where $q = 5 \times 10^4$ m²/s. Plot the velocity magnitude along the x axis, along the y axis, and along the line y = x, and discuss the velocity direction with respect to these three axes. For each plot use a range x or y = -1 km to 1 km, excluding |x| or |y| < 100 m. Find the equation for the streamlines and sketch several of them. What does this flow field model?

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equations of streamlines

Solution:

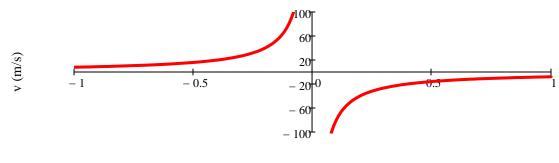
Plotting



x (km)

The velocity is very high close to the origin, and falls off to zero. It is also along the axis. This can be plotted in *Excel*.

On the y axis,
$$x = 0$$
, so
$$u = -\frac{q \cdot x}{2 \cdot \pi \cdot \left(x^2 + y^2\right)} = 0 \qquad v = -\frac{q \cdot y}{2 \cdot \pi \cdot \left(x^2 + y^2\right)} = -\frac{q}{2 \cdot \pi \cdot y}$$



y (km)

The velocity is again very high close to the origin, and falls off to zero. It is also along the axis.

This can also be plotted in *Excel*.

On the y = x axis

$$u = -\frac{q \cdot x}{2 \cdot \pi \cdot (x^2 + x^2)} = -\frac{q}{4 \cdot \pi \cdot x} \quad v = -\frac{q \cdot x}{2 \cdot \pi \cdot (x^2 + x^2)} = -\frac{q}{4 \cdot \pi \cdot x}$$
The flow is parallel to line y = x:
Slope of line y = x:
If we define the radial position:

$$r = \sqrt{x^2 + y^2} \quad \text{then along y = x} \quad r = \sqrt{x^2 + x^2} = \sqrt{2} \cdot x$$
Then the magnitude of the velocity along y = x is

$$V = \sqrt{u^2 + v^2} = \frac{q}{4 \cdot \pi} \cdot \sqrt{\frac{1}{x^2} + \frac{1}{x^2}} = \frac{q}{2 \cdot \pi \cdot \sqrt{2} \cdot x} = \frac{q}{2 \cdot \pi \cdot \sqrt{2} \cdot x}$$
Plotting

$$\int_{U}^{U} = \frac{1}{0 \cdot x} = \frac{1}{0 \cdot x}$$
This can also be plotted in Excel.
For streamlines

$$\frac{v}{u} = \frac{dy}{dx} = \frac{\frac{q \cdot y}{2 \cdot \pi \cdot (x^2 + y^2)}}{\frac{q \cdot x}{\sqrt{2} \cdot x}} = \frac{y}{x}$$

So, separating variables $\frac{dy}{y} = \frac{dx}{x}$ Integrating $\ln(y) = \ln(x) + c$

The solution is $y = C \cdot x$ which is the equation of a straight line.

This flow field corresponds to a sink (discussed in Chapter 6).

Problem 2.14

[Difficulty: 2]

that the para by $x_p = c_1 e^A$ pathline of t	ametric equation x^{t} and $y_p = c$ the particle 1 x = 0. Compa	velocity field of Problem 2. ations for particle motion as $2e^{-At}$. Obtain the equation ocated at the point $(x, y) = 0$ re this pathline with the structure	re given for the (2, 2) at		
Given:	Velocity f	ield			
Find:		the parametric equations for = 0; compare to streamline the		1 1	
Solution:					
Governing eq	uations:	For pathlines $u_p = \frac{c}{c}$	$\frac{dx}{dt}$ $v_p = \frac{dy}{dt}$	For streamlines	$\frac{v}{u} = \frac{dy}{dx}$
Assumption:	2D flow				
Hence for path	llines	$u_p = \frac{dx}{dt} = A \cdot x$		$v_p = \frac{dy}{dt} = -A \cdot y$	
So, separating	variables	$\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{A} \cdot \mathrm{d}t$		$\frac{\mathrm{d}y}{\mathrm{y}} = -\mathbf{A} \cdot \mathrm{d}t$	
Integrating		$\ln(\mathbf{x}) = \mathbf{A} \cdot \mathbf{t} + \mathbf{C}_1$		$\ln(\mathbf{y}) = -\mathbf{A} \cdot \mathbf{t} + \mathbf{C}_2$	
		$\mathbf{x} = \mathbf{e}^{\mathbf{A} \cdot \mathbf{t} + \mathbf{C}_1} = \mathbf{e}^{\mathbf{C}_1} \cdot \mathbf{e}^{\mathbf{A} \cdot \mathbf{t}}$	$= c_1 \cdot e^{A \cdot t}$	$y = e^{-A \cdot t + C_2} = e^{C_2}$	$c^2 \cdot e^{-A \cdot t} = c_2 \cdot e^{-A \cdot t}$
The pathlines	are	$x = c_1 \cdot e^{A \cdot t}$		$y = c_2 \cdot e^{-A \cdot t}$	
Eliminating t		$t = \frac{1}{A} \cdot \ln \left(\frac{x}{c_1} \right) = -\frac{1}{A} \cdot \ln \left(\frac{x}{c_1} \right)$	$\left(\frac{y}{c_2}\right)$	$\ln\left(x\frac{1}{A}, \frac{1}{y}\right) = \cos(x)$	st or $\ln(x^A \cdot y^A) = \text{const}$
			SO	$x^{A} \cdot y^{A} = const$ or	$x \cdot y = 4$ for given data
For streamline	8	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = -\frac{\mathbf{A}\cdot\mathbf{y}}{\mathbf{A}\cdot\mathbf{x}} = \frac{\mathbf{y}}{\mathbf{x}}$			
So, separating	variables	$\frac{\mathrm{d}y}{\mathrm{y}} = -\frac{\mathrm{d}x}{\mathrm{x}}$			
Integrating		$\ln(y) = -\ln(x) + c$			
The solution is	5	$\ln(x \cdot y) = c$ or	$x \cdot y = const$	or $x \cdot y = 4$ f	for given data

The streamline passing through (2,2) and the pathline that started at (2,2) coincide because the flow is steady!

Problem 2.15

[Difficulty: 2]

Verify that given by x_p pathline of instant $t =$	the paramet = $c_1 e^{At}$ and y the particle k	by $\vec{V} = Ax\hat{i} + 2Ay\hat{j}$, where tric equations for particle $c_{ip} = c_2 e^{2At}$. Obtain the equal ocated at the point $(x, y) =$ this pathline with the	motion are tion for the (2,2) at the	
Given:	Velocity	field		
Find:				$x_p = c_1 \cdot e^{A \cdot t}$ and $y_p = c_2 \cdot e^{2 \cdot A \cdot t}$; pathline that was at nd explain why they are similar or not.
Solution:				
Governing e	quations:	For pathlines u _p =	$= \frac{\mathrm{dx}}{\mathrm{dt}} \qquad \mathbf{v}_{\mathrm{p}} = \frac{\mathrm{dy}}{\mathrm{dt}}$	For $\frac{v}{u} = \frac{dy}{dx}$
Assumption:	2D flow			
Hence for pat	hlines	$u_p = \frac{dx}{dt} = A \cdot x$		$\mathbf{v}_{\mathbf{p}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{t}} = 2 \cdot \mathbf{A} \cdot \mathbf{y}$
So, separating	g variables	$\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{A} \cdot \mathrm{d}t$		$\frac{\mathrm{d}y}{\mathrm{y}} = 2 \cdot \mathbf{A} \cdot \mathrm{d}t$
Integrating		$\ln(\mathbf{x}) = \mathbf{A} \cdot \mathbf{t} + \mathbf{C}_1$		$\ln(y) = 2 \cdot A \cdot t + C_2$
		$\mathbf{x} = \mathbf{e}^{\mathbf{A} \cdot \mathbf{t} + \mathbf{C}_1} = \mathbf{e}^{\mathbf{C}}$	$e^{A \cdot t} = c_1 \cdot e^{A \cdot t}$	$y = e^{2 \cdot A \cdot t + C_2} = e^{C_2} \cdot e^{2 \cdot A \cdot t} = c_2 \cdot e^{2 \cdot A \cdot t}$
The pathlines	are	$\mathbf{x} = \mathbf{c}_1 \cdot \mathbf{e}^{\mathbf{A} \cdot \mathbf{t}}$		$y = c_2 \cdot e^{2 \cdot A \cdot t}$
Eliminating t		$y = c_2 \cdot e^{2 \cdot A \cdot t} = c$	$2 \cdot \left(\frac{x}{c_1}\right)^2$ so	$y = c \cdot x^2$ or $y = \frac{1}{2} \cdot x^2$ for given data
For streamline	es	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \frac{2 \cdot \mathbf{A} \cdot \mathbf{y}}{\mathbf{A} \cdot \mathbf{x}}$	$=\frac{2 \cdot y}{x}$	
So, separating	g variables	$\frac{\mathrm{d}y}{\mathrm{y}} = \frac{2 \cdot \mathrm{d}x}{\mathrm{x}}$	Integrating	$\ln(y) = 2 \cdot \ln(x) + c$
The solution i	is	$\ln\left(\frac{y}{x^2}\right) = c$		
or		$y = C \cdot x^2$	or	$y = \frac{1}{2} \cdot x^2$ for given data

The streamline passing through (2,2) and the pathline that started at (2,2) coincide because the flow is steady!

Problem 2.16

[Difficulty: 2]

2.16 A velocity field is given by $\vec{V} = ayt\hat{t} - bx\hat{j}$, where $a = 1 \text{ s}^{-2}$ and $b = 4 \text{ s}^{-1}$. Find the equation of the streamlines at any time *t*. Plot several streamlines at t = 0 s, t = 1 s, and t = 20 s.

Given:	Velocity field
--------	----------------

Find:

Equation of streamlines; Plot streamlines

Solution:

Streamlines are given by

So, separating variables

 $\mathbf{a} \cdot \mathbf{t} \cdot \mathbf{y} \cdot \mathbf{dy} = -\mathbf{b} \cdot \mathbf{x} \cdot \mathbf{dx}$

 $\frac{v}{u} = \frac{dy}{dx} = \frac{-b \cdot x}{a \cdot y \cdot t}$

Integrating

 $\frac{1}{2} \cdot \mathbf{a} \cdot \mathbf{t} \cdot \mathbf{y}^2 = -\frac{1}{2} \cdot \mathbf{b} \cdot \mathbf{x}^2 + \mathbf{C}$ $\mathbf{y} = \sqrt{\mathbf{C} - \frac{\mathbf{b} \cdot \mathbf{x}^2}{\mathbf{a} \cdot \mathbf{t}}}$

For
$$t = 0$$
 s $x = c$

The solution is

For t = 1 s $y = \sqrt{C - 4 \cdot x^2}$ For t = 20 s

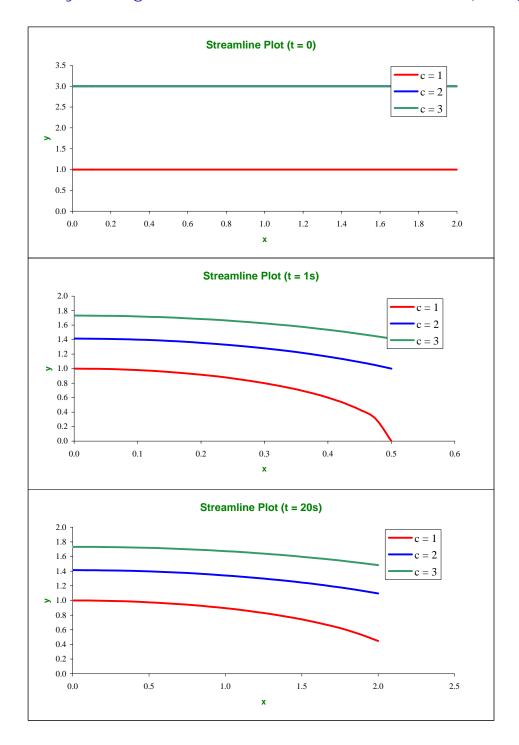
t = 0

t = 0			
	C = 1	C = 2	C = 3
Х	У	У	У
0.00	1.00	2.00	3.00
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

t =1 s			
	C = 1	C = 2	C = 3
x	У	У	У
0.000	1.00	1.41	1.73
0.025	1.00	1.41	1.73
0.050	0.99	1.41	1.73
0.075	0.99	1.41	1.73
0.100	0.98	1.40	1.72
0.125	0.97	1.39	1.71
0.150	0.95	1.38	1.71
0.175	0.94	1.37	1.70
0.200	0.92	1.36	1.69
0.225	0.89	1.34	1.67
0.250	0.87	1.32	1.66
0.275	0.84	1.30	1.64
0.300	0.80	1.28	1.62
0.325	0.76	1.26	1.61
0.350	0.71	1.23	1.58
0.375	0.66	1.20	1.56
0.400	0.60	1.17	1.54
0.425	0.53	1.13	1.51
0.450	0.44	1.09	1.48
0.475	0.31	1.05	1.45
0.500	0.00	1.00	1.41

t = 20 s			
	C = 1	C = 2	C = 3
х	У	У	У
0.00	1.00	1.41	1.73
0.10	1.00	1.41	1.73
0.20	1.00	1.41	1.73
0.30	0.99	1.41	1.73
0.40	0.98	1.40	1.72
0.50	0.97	1.40	1.72
0.60	0.96	1.39	1.71
0.70	0.95	1.38	1.70
0.80	0.93	1.37	1.69
0.90	0.92	1.36	1.68
1.00	0.89	1.34	1.67
1.10	0.87	1.33	1.66
1.20	0.84	1.31	1.65
1.30	0.81	1.29	1.63
1.40	0.78	1.27	1.61
1.50	0.74	1.24	1.60
1.60	0.70	1.22	1.58
1.70	0.65	1.19	1.56
1.80	0.59	1.16	1.53
1.90	0.53	1.13	1.51
2.00	0.45	1.10	1.48

 $y = \sqrt{C - \frac{x^2}{5}}$



Problem 2.17

[Difficulty: 4]

2.17 Verify that $x_p = -a\sin(\omega t)$, $y_p = a\cos(\omega t)$ is the equation for the pathlines of particles for the flow field of Problem 2.12. Find the frequency of motion ω as a function of the amplitude of motion, a, and K. Verify that $x_p = -a\sin(\omega t)$, $y_p = a\cos(\omega t)$ is also the equation for the pathlines of particles for the flow field of Problem 2.11, except that ω is now a function of M. Plot typical pathlines for both flow fields and discuss the difference.

Given: Pathlines of particles

Find: Conditions that make them satisfy Problem 2.10 flow field; Also Problem 2.11 flow field; Plot pathlines

Solution:

The given pathlines are $x_p = -a \cdot sin(\omega \cdot t)$

The velocity field of Problem 2.12 is

If the pathlines are correct we should be able to substitute x_p and y_p into the velocity field to find the velocity as a function of time:

$$u = -\frac{K \cdot y}{2 \cdot \pi \cdot \left(x^2 + y^2\right)} = -\frac{K \cdot a \cdot \cos(\omega \cdot t)}{2 \cdot \pi \cdot \left(a^2 \cdot \sin(\omega \cdot t)^2 + a^2 \cdot \cos(\omega \cdot t)^2\right)} = -\frac{K \cdot \cos(\omega \cdot t)}{2 \cdot \pi \cdot a}$$
(1)
$$v = \frac{K \cdot x}{1 - \frac{K \cdot (-a \cdot \sin(\omega \cdot t))}{1 - \frac{K \cdot (-a \cdot \sin(\omega \cdot t))}{1 - \frac{K \cdot \sin(\omega \cdot t)}{1 - \frac{K \cdot \sin($$

 $y_p = a \cdot \cos(\omega \cdot t)$

$$\mathbf{v} = \frac{\mathbf{r} \cdot \mathbf{x}}{2 \cdot \pi \cdot \left(\mathbf{x}^2 + \mathbf{y}^2\right)} = -\frac{\mathbf{r} \cdot \left(\mathbf{u} \cdot \sin(\omega \cdot \mathbf{y})^2 + \mathbf{a}^2 \cdot \cos(\omega \cdot \mathbf{y})^2\right)}{2 \cdot \pi \cdot \left(\mathbf{a}^2 \cdot \sin(\omega \cdot \mathbf{y})^2 + \mathbf{a}^2 \cdot \cos(\omega \cdot \mathbf{y})^2\right)} = -\frac{\mathbf{r} \cdot \sin(\omega \cdot \mathbf{y})}{2 \cdot \pi \cdot \mathbf{a}}$$
(2)

 $u = -\frac{K \cdot y}{2 \cdot \pi \cdot \left(x^2 + y^2\right)} \qquad v = \frac{K \cdot x}{2 \cdot \pi \cdot \left(x^2 + y^2\right)}$

We should also be able to find the velocity field as a function of time from the pathline equations (Eq. 2.9):

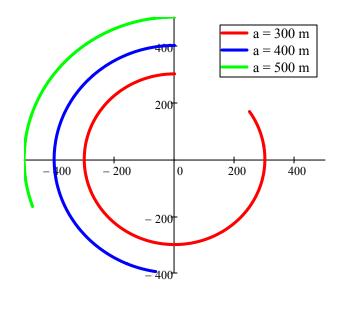
$$\frac{\mathrm{d}x_{\mathrm{p}}}{\mathrm{d}t} = \mathrm{u} \qquad \qquad \frac{\mathrm{d}x_{\mathrm{p}}}{\mathrm{d}t} = \mathrm{v} \qquad (2.9)$$

$$u = \frac{dx_p}{dt} = -a \cdot \omega \cdot \cos(\omega \cdot t) \qquad \qquad v = \frac{dy_p}{dt} = -a \cdot \omega \cdot \sin(\omega \cdot t) \qquad (3)$$

Comparing Eqs. 1, 2 and 3
$$u = -a \cdot \omega \cdot \cos(\omega \cdot t) = -\frac{K \cdot \cos(\omega \cdot t)}{2 \cdot \pi \cdot a}$$
 $v = -a \cdot \omega \cdot \sin(\omega \cdot t) = -\frac{K \cdot \sin(\omega \cdot t)}{2 \cdot \pi \cdot a}$

Hence we see that
$$a \cdot \omega = \frac{K}{2 \cdot \pi \cdot a}$$
 or $\omega = \frac{K}{2 \cdot \pi \cdot a^2}$ for the pathlines to be correct.

The pathlines are



To plot this in Excel, compute x_p and y_p for t ranging from 0 to 60 s, with ω given by the above formula. Plot y_p versus x_p . Note that outer particles travel much slower!

This is the free vortex flow discussed in Example 5.6

The velocity field of Problem 2.11 is
$$u = -\frac{M \cdot y}{2 \cdot \pi}$$
 $v = \frac{M \cdot x}{2 \cdot \pi}$

If the pathlines are correct we should be able to substitute x_p and y_p into the velocity field to find the velocity as a function of time:

$$u = -\frac{M \cdot y}{2 \cdot \pi} = -\frac{M \cdot (a \cdot \cos(\omega \cdot t))}{2 \cdot \pi} = -\frac{M \cdot a \cdot \cos(\omega \cdot t)}{2 \cdot \pi}$$
(4)

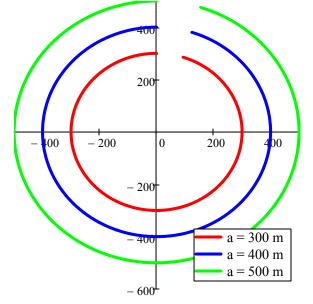
$$\mathbf{v} = \frac{\mathbf{M} \cdot \mathbf{x}}{2 \cdot \pi} = \frac{\mathbf{M} \cdot (-\mathbf{a} \cdot \sin(\omega \cdot \mathbf{t}))}{2 \cdot \pi} = -\frac{\mathbf{M} \cdot \mathbf{a} \cdot \sin(\omega \cdot \mathbf{t})}{2 \cdot \pi}$$
(5)

 $u = \frac{dx_p}{dt} = -a \cdot \omega \cdot \cos(\omega \cdot t)$ $\mathbf{v} = \frac{\mathrm{d}\mathbf{y}_{\mathbf{p}}}{\mathrm{d}\mathbf{t}} = -\mathbf{a} \cdot \boldsymbol{\omega} \cdot \sin(\boldsymbol{\omega} \cdot \mathbf{t})$ (3)

Comparing Eqs. 1, 4 and 5
$$u = -a \cdot \omega \cdot \cos(\omega \cdot t) = -\frac{M \cdot a \cdot \cos(\omega \cdot t)}{2 \cdot \pi}$$
 $v = -a \cdot \omega \cdot \sin(\omega \cdot t) = -\frac{M \cdot a \cdot \sin(\omega \cdot t)}{2 \cdot \pi}$

 $\omega = \frac{M}{2 \cdot \pi}$ Hence we see that for the pathlines to be correct.

Recall that



To plot this in Excel, compute x_p and y_p for t ranging from 0 to 75 s, with ω given by the above formula. Plot y_p versus x_p . Note that outer particles travel faster!

This is the forced vortex flow discussed in Example 5.6

Note that this is rigid body rotation!

Problem 2.18

[Difficulty: 2]

2.18 Air flows downward toward an infinitely wide horizontal flat plate. The velocity field is given by $\vec{V} = (ax\hat{i} - ay\hat{j})(2 + \cos \omega t)$, where $a = 5 \text{ s}^{-1}$, $\omega = 2\pi \text{ s}^{-1}$, x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in s. Obtain an algebraic equation for a streamline at t = 0. Plot the streamline that passes through point (x, y) = (3, 3) at this instant. Will the streamline change with time? Explain briefly. Show the velocity vector on your plot at the same point and time. Is the velocity vector tangent to the streamline? Explain.

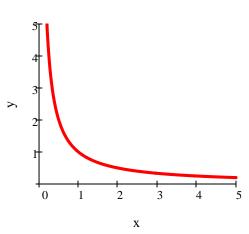
Given: Time-varying velocity field

Find: Streamlines at t = 0 s; Streamline through (3,3); velocity vector; will streamlines change with time

Solution:

For streamlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{d\mathbf{y}}{d\mathbf{x}} = -\frac{\mathbf{a} \cdot \mathbf{y} \cdot (2 + \cos(\omega \cdot \mathbf{t}))}{\mathbf{a} \cdot \mathbf{x} \cdot (2 + \cos(\omega \cdot \mathbf{t}))} = -\frac{\mathbf{y}}{\mathbf{x}}$
At $t = 0$ (actually all times!)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y}{x}$
So, separating variables	$\frac{\mathrm{d}y}{\mathrm{y}} = -\frac{\mathrm{d}x}{\mathrm{x}}$
Integrating	$\ln(y) = -\ln(x) + c$
The solution is	$y = \frac{C}{x}$ which is the equation of a hyperbola.
For the streamline through point $(3,3)$	$C = \frac{3}{3} \qquad C = 1 \qquad \text{and} \qquad y = \frac{1}{x}$

The streamlines will not change with time since dy/dx does not change with time.



At
$$t = 0$$

 $u = a \cdot x \cdot (2 + \cos(\omega \cdot t)) = 5 \cdot \frac{1}{s} \times 3 \cdot m \times 3$
 $u = 45 \cdot \frac{m}{s}$
 $v = -a \cdot y \cdot (2 + \cos(\omega \cdot t)) = 5 \cdot \frac{1}{s} \times 3 \cdot m \times 3$
 $v = -45 \cdot \frac{m}{s}$

The velocity vector is tangent to the curve;

Tangent of curve at (3,3) is
$$\frac{dy}{dx} = -\frac{y}{x} = -1$$

Direction of velocity at (3,3) is $\frac{v}{u} = -1$

This curve can be plotted in Excel.

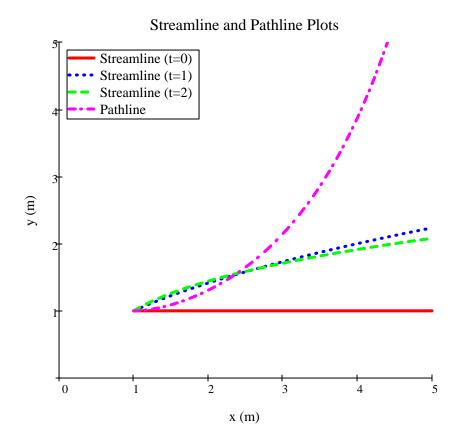
Problem 2.19

[Difficulty: 3]

$\vec{V} = A(1 + Bt)\hat{i} + Cty$ s ⁻² . Coordinates are traced out by the parti	flow described by the velocity \hat{j} , with $A = 1$ m/s, $B = 1$ s ⁻¹ , and C measured in meters. Plot the path cle that passes through the point (1, with the streamlines plotted through ants $t = 0, 1, \text{ and } 2$ s.	C = 1 nline 1) at
Given: Veloci	ty field	
	F pathline traced out by particle that at the instants $t = 0, 1$ and 2s	t passes through point $(1,1)$ at t = 0; compare to streamlines through same
Solution:		
Governing equations:	For pathlines $u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$ For streamlines $\frac{v}{u} = \frac{dy}{dx}$
Assumption: 2D flow		
Hence for pathlines	$u_p = \frac{dx}{dt} = A \cdot (1 + B \cdot t)$	A = $1 \cdot \frac{m}{s}$ B = $1 \cdot \frac{1}{s}$ v _p = $\frac{dy}{dt}$ = C·t·y C = $1 \cdot \frac{1}{s^2}$
So, separating variable	$d\mathbf{x} = \mathbf{A} \cdot (1 + \mathbf{B} \cdot \mathbf{t}) \cdot d\mathbf{t}$	$\frac{\mathrm{d}y}{\mathrm{y}} = \mathbf{C} \cdot \mathbf{t} \cdot \mathrm{d}t$
Integrating	$\mathbf{x} = \mathbf{A} \cdot \left(\mathbf{t} + \mathbf{B} \cdot \frac{\mathbf{t}^2}{2} \right) + \mathbf{C}_1$	$\ln(y) = \frac{1}{2} \cdot C \cdot t^2 + C_2$
		$y = e^{\frac{1}{2} \cdot C \cdot t^{2} + C_{2}} = e^{C_{2}} \cdot e^{\frac{1}{2} \cdot C \cdot t^{2}} = c_{2} \cdot e^{\frac{1}{2} \cdot C \cdot t^{2}}$
The pathlines are	$\mathbf{x} = \mathbf{A} \cdot \left(\mathbf{t} + \mathbf{B} \cdot \frac{\mathbf{t}^2}{2} \right) + \mathbf{C}_1$	$y = c_2 \cdot e^{\frac{1}{2}} \cdot C \cdot t^2$
Using given data	$\mathbf{x} = \mathbf{A} \cdot \left(\mathbf{t} + \mathbf{B} \cdot \frac{\mathbf{t}^2}{2} \right) + 1$	$y = e^{\frac{1}{2} \cdot C \cdot t^2}$
For streamlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\mathbf{C} \cdot \mathbf{y} \cdot \mathbf{t}}{\mathbf{A} \cdot (1 + \mathbf{B} \cdot \mathbf{t})}$	
So, separating variable	$(1 + B \cdot t) \cdot \frac{dy}{y} = \frac{C}{A} \cdot t \cdot dx$	which we can integrate for any given t (t is treated as a constant)
Integrating	$(1 + B \cdot t) \cdot \ln(y) = \frac{C}{A} \cdot t \cdot x + c$	
The solution is	$y^{1+B\cdot t} = \frac{C}{A} \cdot t \cdot x + const$	$y = \left(\frac{C}{A} \cdot t \cdot x + const\right)^{\frac{1}{(1+B \cdot t)}}$

For particles at (1,1) at t = 0, 1, and 2s, using A, B, and C data:

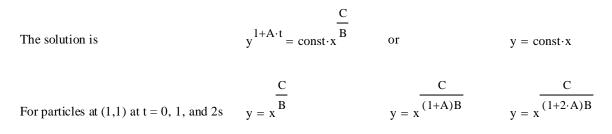
$$y = 1$$
 $y = x^{\frac{1}{2}}$ $y = (2 \cdot x - 1)^{\frac{1}{3}}$

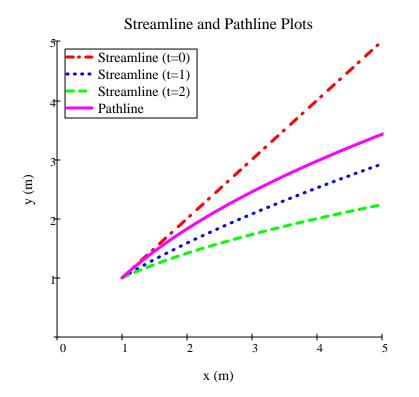


Problem 2.20

[Difficulty: 3]

2.20 Consider the flow described by the velocity field $\vec{V} = Bx(1 + At)\hat{i} + Cy\hat{j}$, with $A = 0.5 \text{ s}^{-1}$ and $B = C = 1 \text{ s}^{-1}$. Coordinates are measured in meters. Plot the pathline traced out by the particle that passes through the point (1, 1) at time $t = 0$. Compare with the streamlines plotted through the same point at the instants $t = 0, 1, \text{ and } 2$ s.						
Given:	Velocity f	ield				
Find:	Find: Plot of pathline traced out by particle that passes through point $(1,1)$ at $t = 0$; compare to streamlines through same point at the instants $t = 0$, 1 and 2s					mlines through
Solution:						
Governing equ	uations:	For pathlines $u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$	For stream	mlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}}$
Assumption:	2D flow					
Hence for pathl	lines	$u_p = \frac{dx}{dt} = B \cdot x \cdot (1 + A \cdot t)$	$A = 0.5 \cdot \frac{1}{s}$	$B = 1 \cdot \frac{1}{s}$	$v_p = \frac{dy}{dt} = C \cdot y$	$C = 1 \cdot \frac{1}{s}$
So, separating	variables	$\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{B} \cdot (1 + \mathrm{A} \cdot \mathrm{t}) \cdot \mathrm{d}\mathrm{t}$			$\frac{\mathrm{d}y}{\mathrm{y}} = \mathbf{C} \cdot \mathrm{d}t$	
Integrating		$\ln(x) = B \cdot \left(t + A \cdot \frac{t^2}{2} \right) + C_1$			$\ln(y) = C \cdot t + C_2$	
x =	$= e^{B \cdot \left(t + A \cdot \frac{t}{2}\right)}$	$\frac{e^2}{2} + C_1 = e^{C_1} \cdot e^{B \cdot \left(t + A \cdot \frac{t^2}{2}\right)} = c_1$	$\mathbf{B} \cdot \left(\mathbf{t} + \mathbf{A} \cdot \frac{\mathbf{t}^2}{2} \right)$		$y = e^{C \cdot t + C_2} = e^{C}$	$^{2} \cdot e^{\mathbf{C} \cdot \mathbf{t}} = c_{2} \cdot e^{\mathbf{C} \cdot \mathbf{t}}$
The pathlines a	ıre	$\mathbf{x} = \mathbf{c}_1 \cdot \mathbf{e}^{\mathbf{B} \cdot \left(t + \mathbf{A} \cdot \frac{t^2}{2}\right)}$		$y = c_2 \cdot e$	C·t	
Using given da	ta	$\mathbf{x} = \mathbf{e}^{\mathbf{B} \cdot \left(t + \mathbf{A} \cdot \frac{t^2}{2}\right)}$		$y = e^{C \cdot t}$		
For streamlines	3	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{C}\cdot\mathbf{y}}{\mathbf{B}\cdot\mathbf{x}\cdot(1+\mathbf{A}\cdot\mathbf{t})}$				
So, separating	variables	$(1 + A \cdot t) \cdot \frac{dy}{y} = \frac{C}{B} \cdot \frac{dx}{x}$	which we can int	egrate for any	given t (t is treate	d as a constant)
Integrating		$(1 + A \cdot t) \cdot \ln(y) = \frac{C}{B} \cdot \ln(x) +$	c			





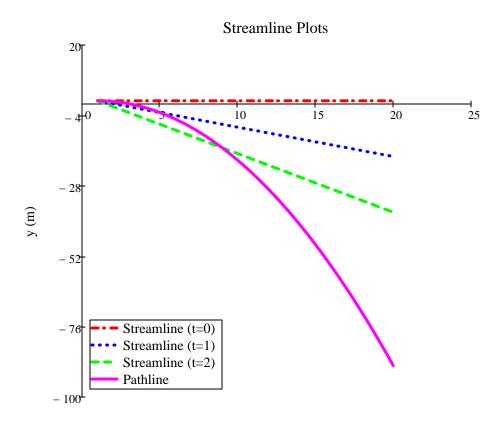
Problem 2.21

[Difficulty: 3]

2.21 Consider the flow field given in Eulerian description by the expression $\vec{V} = A\hat{i} - Bt\hat{j}$, where $A = 2 \text{ m/s}$, $B = 2 \text{ m/s}^2$, and the coordinates are measured in meters. Derive the Lagrangian position functions for the fluid particle that was located at the point $(x, y) = (1, 1)$ at the instant $t = 0$. Obtain an algebraic expression for the pathline followed by this particle. Plot the pathline and compare with the stream-lines plotted through the same point at the instants $t = 0, 1$, and 2 s.					
Given:	Eulerian Velocity field				
Find:	Lagrangian position function that was at point $(1,1)$ at $t = 0$; expression for pathline; plot pathline and compare to streamlines through same point at the instants $t = 0$, 1 and 2s				
Solution:					
Governing eq	uations:	For pathlines (Lagrangian de	escription) $u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$ For streamlines $\frac{v}{u} = \frac{dy}{dx}$	
Assumption:	2D flow				
Hence for path	lines	$u_p = \frac{dx}{dt} = A$	$A = 2 \frac{m}{s}$	$v_p = \frac{dy}{dt} = -B \cdot t$ $B = 2 - \frac{m}{s^2}$	
So, separating	variables	$d\mathbf{x} = \mathbf{A} \cdot d\mathbf{t}$		$dy = -\mathbf{B} \cdot \mathbf{t} \cdot dt$	
Integrating		$\mathbf{x} = \mathbf{A} \cdot \mathbf{t} + \mathbf{x}_0$	$x_0 = 1 m$	$y = -B \cdot \frac{t^2}{2} + y_0$ $y_0 = 1$ m	
The Lagrangia	n descriptio	n is	$\mathbf{x}(t) = \mathbf{A} \cdot \mathbf{t} + \mathbf{x}_0$	$\mathbf{y}(t) = -\mathbf{B} \cdot \frac{t^2}{2} + \mathbf{y}_0$	
Using given da	ıta		$\mathbf{x}(\mathbf{t}) = 2 \cdot \mathbf{t} + 1$	$y(t) = 1 - t^2$	
The pathlines are given by combining the equations $t = \frac{x - x_0}{A}$ $y = -B \cdot \frac{t^2}{2} + y_0 = -B \cdot \frac{(x - x_0)^2}{2 \cdot A^2} + y_0$					
Hence		$y(x) = y_0 - B \cdot \frac{(x - x_0)^2}{2 \cdot A^2}$	or, using given data	$y(x) = 1 - \frac{(x-1)^2}{4}$	
For streamlines	5	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \frac{-\mathbf{B}\cdot\mathbf{t}}{\mathbf{A}}$			
So, separating	variables	$dy = -\frac{B \cdot t}{A} \cdot dx$	which we can integrate	for any given t (t is treated as a constant)	

x = 1, 1.1..20

The solution is
$$y = -\frac{B \cdot t}{A} \cdot x + c$$
 and for the one through (1,1) $1 = -\frac{B \cdot t}{A} \cdot 1 + c$ $c = 1 + \frac{B \cdot t}{A}$
 $y = -\frac{B \cdot t}{A} \cdot (x - 1) + 1$ $y = 1 - t \cdot (x - 1)$



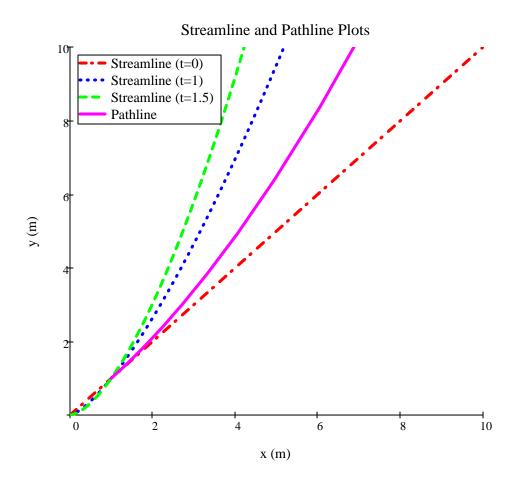
x (m)

Problem 2.22

[Difficulty: 3]

2.22 Consider the velocity field $V = ax\hat{i} + by(1 + ct)\hat{j}$, where $a = b = 2 \text{ s}^{-1}$ and $c = 0.4 \text{ s}^{-1}$. Coordinates are measured in meters. For the particle that passes through the point $(x, y) = (1, 1)$ at the instant $t = 0$, plot the pathline during the interval from $t = 0$ to 1.5 s. Compare this pathline with the streamlines plotted through the same point at the instant $t = 0$, 1, and 1.5 s.					
Given: Veloci	ty field				
Find: Plot of pathline of particle for $t = 0$ to 1.5 s that was at point (1,1) at $t = 0$; compare to streamlines through same point at the instants $t = 0$, 1 and 1.5 s					
Solution:					
Governing equations:	For pathlines	$u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$	For streamlines	$\frac{v}{u} = \frac{dy}{dx}$
Assumption: 2D flow					
Hence for pathlines	$u_p = \frac{dx}{dt} = ax$	$a = 2 \frac{1}{s}$	$v_p = \frac{dy}{dt} =$	$\mathbf{b} \cdot \mathbf{y} \cdot (1 + \mathbf{c} \cdot \mathbf{t}) \qquad \mathbf{b} = 2 - \frac{1}{2}$	$\frac{1}{s^2}$ c = 0.4 $\frac{1}{s}$
So, separating variable	$s = \frac{dx}{x} = a \cdot dt$		$dy = b \cdot y \cdot (1)$	$+ c \cdot t$) $\cdot dt$ $\frac{dy}{y} = b \cdot (1)$	$+ c \cdot t) \cdot dt$
Integrating	$\ln\left(\frac{x}{x_0}\right) = a \cdot t$	$x_0 = 1 m$	$\ln\left(\frac{y}{y_0}\right) = t$	$\mathbf{y}_0 = \mathbf{y}_0 = \mathbf{y}_0$	m
Hence	$\mathbf{x}(t) = \mathbf{x}_0 \cdot \mathbf{e}^{\mathbf{a} \cdot \mathbf{t}}$		$y(t) = e^{b \cdot \left(\int_{-\infty}^{\infty} b \cdot \int_$	$\left(\frac{1}{2}\cdot \cdot \cdot \cdot \right)$	
Using given data	$\mathbf{x}(t) = \mathbf{e}^{2 \cdot t}$		$y(t) = e^{2 \cdot t}$	$+0.4 \cdot t^2$	
For streamlines	$\frac{v}{u} = \frac{dy}{dx} = \frac{b \cdot y \cdot (1 + c \cdot t)}{a \cdot x}$				
So, separating variable	s $\frac{dy}{y} = \frac{b \cdot (1 + c \cdot t)}{a \cdot x} \cdot dx$	which we ca	n integrate for any	given t (t is treated as a c	onstant)
Hence	$\ln\left(\frac{y}{y_0}\right) = \frac{b}{a} \cdot (1 + c \cdot t) \cdot \ln\left(\frac{b}{a}\right)$	$\left(\frac{\mathbf{x}}{\mathbf{x}_0}\right)$			
The solution is	$y = y_0 \cdot \left(\frac{x}{x_0}\right)^{\frac{b}{a}} \cdot (1 + c \cdot t)$				

For
$$t = 0$$
 $y = y_0 \cdot \left(\frac{x}{x_0}\right)^a$ $= x$ $t = 1$ $y = y_0 \cdot \left(\frac{x}{x_0}\right)^a$ $= x^{1.4}$ $t = 1.5$ $y = y_0 \cdot \left(\frac{x}{x_0}\right)^a$ $= x^{1.6}$



Problem 2.23

[Difficulty: 3]

2.23 Consider the flow field given in Eulerian descriptionby the expression $\vec{V} = ax\hat{i} + by\hat{j}$, where $a = 0.2 \text{ s}^{-1}$, $b = 0.04 \text{ s}^{-2}$, and the coordinates are measured in meters. Derive the Lagrangian position functions for the fluid particle that was located at the point $(x, y) = (1, 1)$ at the instant $t = 0$. Obtain an algebraic expression for the pathline followed by this particle. Plot the pathline and compare with the streamlines plotted through the same point at the instants $t = 0$, 10, and 20 s.					
Given: Velocity field					
Find: Plot of pathline of particle for $t = 0$ to 1.5 s that was at point (1,1) at $t = 0$; compare to streamlines through same point at the instants $t = 0$, 1 and 1.5 s					igh same
Solution:					
Governing equations	: For pathlines	$u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$	For streamlines	$\frac{v}{u} = \frac{dy}{dx}$
Assumption: 2D flow	v				
Hence for pathlines	$u_p = \frac{dx}{dt} = a \cdot x$	$a = \frac{1}{5} \frac{1}{s}$	$v_p = \frac{dy}{dt} = b \cdot y$	$b = \frac{1}{25} \frac{1}{s^2}$	
So, separating variabl	es $\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{a} \cdot \mathrm{d}t$		$dy = b \cdot y \cdot t \cdot dt$	$\frac{\mathrm{d}y}{\mathrm{y}} = \mathrm{b} \cdot \mathrm{t} \cdot \mathrm{d}\mathrm{t}$	
Integrating	$\ln\left(\frac{x}{x_0}\right) = a \cdot t$	$x_0 = 1 m$	$\ln\left(\frac{y}{y_0}\right) = b \cdot \frac{1}{2}$	$\cdot t^2$ $y_0 = 1$	m
Hence	$\mathbf{x}(t) = \mathbf{x}_0 \cdot \mathbf{e}^{\mathbf{a} \cdot \mathbf{t}}$		$y(t) = y_0 \cdot e^{\frac{1}{2}t}$		
Using given data	$x(t) = e^{\frac{t}{5}}$		$y(t) = e^{\frac{t^2}{50}}$		
For streamlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\mathbf{b} \cdot \mathbf{y} \cdot \mathbf{t}}{\mathbf{a} \cdot \mathbf{x}}$				
So, separating variable	es $\frac{\mathrm{d}y}{\mathrm{y}} = \frac{\mathrm{b} \cdot \mathrm{t}}{\mathrm{a} \cdot \mathrm{x}} \cdot \mathrm{d}\mathrm{x}$	which we ca	n integrate for any giv	ven t (t is treated as a con	ustant)
Hence	$\ln\left(\frac{y}{y_0}\right) = \frac{b}{a} \cdot t \cdot \ln\left(\frac{x}{x_0}\right)$				
The solution is	$y = y_0 \cdot \left(\frac{x}{x_0}\right)^a \cdot t$	<u>b</u> a	= 0.2 x ₀ =	$= 1$ $y_0 = 1$	

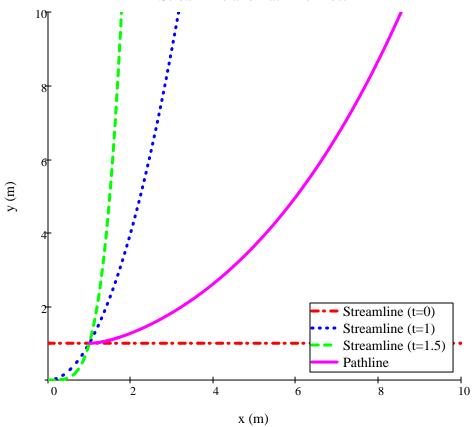
For

$$t = 0 y = y_0 \cdot \left(\frac{x}{x_0}\right)^{\frac{b}{a} \cdot t} = 1$$

$$t = 5 y = y_0 \cdot \left(\frac{x}{x_0}\right)^{\frac{b}{a} \cdot t} = x \frac{b}{a} \cdot t = 1$$

$$t = 10 y = y_0 \cdot \left(\frac{x}{x_0}\right)^{\frac{b}{a}} = x^2 \frac{b}{a} \cdot t = 2$$

Streamline and Pathline Plots



Problem 2.24

[Difficulty: 3]

2.24 A velocity field is given by $\vec{V} = axt\hat{i} - by\hat{j}$, where $a = 0.1 \text{ s}^{-2}$ and $b = 1 \text{ s}^{-1}$. For the particle that passes through the point (x, y) = (1, 1) at instant t = 0 s, plot the pathline during the interval from t = 0 to t = 3 s. Compare with the streamlines plotted through the same point at the instants t = 0, 1, and 2 s.

Given: Velocity field

Find: Plot pathlines and streamlines

Solution:

Pathlines are given by	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{u} = \mathbf{a} \cdot \mathbf{x} \cdot \mathbf{t}$	$\frac{dy}{dt} = v = -b \cdot y$
So, separating variables	$\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{a} \cdot \mathrm{t} \cdot \mathrm{d}\mathrm{t}$	$\frac{dy}{y} = -b \cdot dt$
Integrating	$\ln(x) = \frac{1}{2} \cdot a \cdot t^2 + c_1$	$\ln(y) = -b \cdot t + c_2$
For initial position (x ₀ ,y ₀)	$x = x_0 \cdot e^{\frac{a}{2} \cdot t^2}$	$y = y_0 \cdot e^{-b \cdot t}$
Using the given data, and IC $(x_0,y_0) = (1)$	l,1) at t = 0	
	$x = e^{0.05 \cdot t^2}$	$y = e^{-t}$

Streamlines are given by	$\frac{v}{u} = \frac{dy}{dx} = \frac{-b \cdot y}{a \cdot x \cdot t}$
So, separating variables	$\frac{\mathrm{d}y}{\mathrm{y}} = -\frac{\mathrm{b}}{\mathrm{a}\cdot\mathrm{t}}\cdot\frac{\mathrm{d}x}{\mathrm{x}}$
	$y = C \cdot x$ $\frac{b}{a \cdot t}$
The solution is	$y = C \cdot x$ a.t
For streamline at $(1,1)$ at $t = 0$ s	x = c
For streamline at $(1,1)$ at $t=1$ s	$y = x^{-10}$
For streamline at $(1,1)$ at $t = 2$ s	$y = x^{-5}$

Integrating $\ln(y) = -$

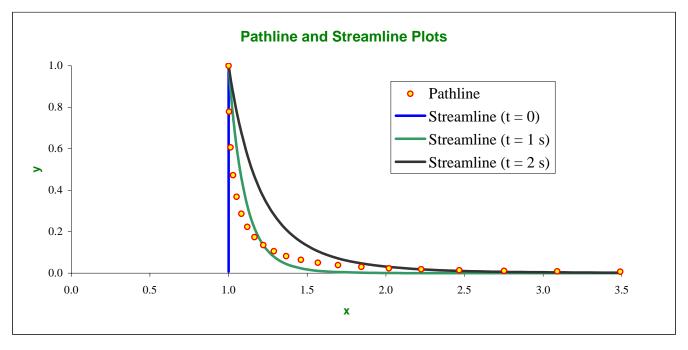
$$= -\frac{b}{a \cdot t} \cdot \ln(x) + C$$

Pathline									
t	t x y								
0.00	1.00	1.00							
0.25	1.00	0.78							
0.50	1.01	0.61							
0.75	1.03	0.47							
1.00	1.05	0.37							
1.25	1.08	0.29							
1.50	1.12	0.22							
1.75	1.17	0.17							
2.00	1.22	0.14							
2.25	1.29	0.11							
2.50	1.37	0.08							
2.75	1.46	0.06							
3.00	1.57	0.05							
3.25	1.70	0.04							
3.50	1.85	0.03							
3.75	2.02	0.02							
4.00	2.23	0.02							
4.25	2.47	0.01							
4.50	2.75	0.01							
4.75	3.09	0.01							
5.00	3.49	0.01							

Streamlines						
t = 0						
X	у					
1.00	1.00					
1.00	0.78					
1.00	0.61					
1.00	0.47					
1.00	0.37					
1.00	0.29					
1.00	0.22					
1.00	0.17					
1.00	0.14					
1.00	0.11					
1.00	0.08					
1.00	0.06					
1.00	0.05					
1.00	0.04					
1.00	0.03					
1.00	0.02					
1.00	0.02					
1.00	0.01					
1.00	0.01					
1.00	0.01					
1.00	0.01					

t = 1 s	
X	У
1.00	1.00
1.00	0.97
1.01	0.88
1.03	0.75
1.05	0.61
1.08	0.46
1.12	0.32
1.17	0.22
1.22	0.14
1.29	0.08
1.37	0.04
1.46	0.02
1.57	0.01
1.70	0.01
1.85	0.00
2.02	0.00
2.23	0.00
2.47	0.00
2.75	0.00
3.09	0.00
3.49	0.00

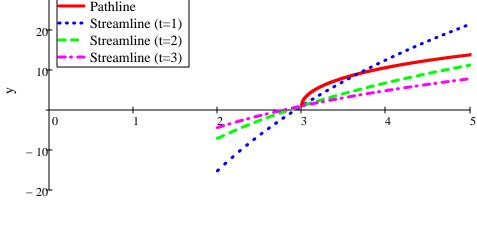
t = 2 s	
Х	у
1.00	1.00
1.00	0.98
1.01	0.94
1.03	0.87
1.05	0.78
1.08	0.68
1.12	0.57
1.17	0.47
1.22	0.37
1.29	0.28
1.37	0.21
1.46	0.15
1.57	0.11
1.70	0.07
1.85	0.05
2.02	0.03
2.23	0.02
2.47	0.01
2.75	0.01
3.09	0.00
3.49	0.00



Problem 2.25

[Difficulty: 3]

2.25 Consider the flow field $\vec{V} = axt\hat{i} + b\hat{j}$, where $a = 0.1 \text{ s}^{-2}$ and b = 4 m/s. Coordinates are measured in meters. For the particle that passes through the point (x, y) = (3, 1) at the instant t = 0, plot the pathline during the interval from t = 0to 3 s. Compare this pathline with the streamlines plotted through the same point at the instants t = 1, 2, and 3 s. Given: Flow field Find: Pathline for particle starting at (3,1); Streamlines through same point at t = 1, 2, and 3 sSolution: $\frac{\mathrm{d}x}{\mathrm{d}t} = u = a \cdot x \cdot t$ $\frac{\mathrm{d}y}{\mathrm{d}t} = v = b$ For particle paths an d $\ln(\mathbf{x}) = \frac{1}{2} \cdot \mathbf{a} \cdot \mathbf{t}^2 + \mathbf{c}_1$ $\frac{\mathrm{dx}}{\mathrm{x}} = \mathrm{a} \cdot \mathrm{t} \cdot \mathrm{dt}$ Separating variables and integrating or $y = b \cdot t + c_2$ $dy = b \cdot dt$ or Using initial condition (x,y) = (3,1) and the given values for a and b $c_1 = \ln(3 \cdot m)$ an $c_2 = 1 \cdot m$ d $x = 3 \cdot e^{0.05 \cdot t^2}$ The pathline is then and $y = 4 \cdot t + 1$ $\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\mathbf{b}}{\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{t}}$ For streamlines (at any time t) $dy = \frac{b}{a \cdot t} \cdot \frac{dx}{x}$ So, separating variables $y = \frac{b}{a \cdot t} \cdot \ln(x) + c$ Integrating We are interested in instantaneous streamlines at various times that always pass through point (3,1). Using a and b values: $c = y - \frac{b}{a \cdot t} \cdot \ln(x) = 1 - \frac{4}{0.1 \cdot t} \cdot \ln(3)$ $y = 1 + \frac{40}{t} \cdot \ln\left(\frac{x}{3}\right)$ The streamline equation is 30 Pathline



These curves can be plotted in Excel.

Problem 2.26

[Difficulty: 4]

2.26 Consider the garden hose of Fig. 2.5. Suppose the velocity field is given by $\vec{V} = u_0\hat{i} + v_0\sin[\omega(t - x/u_0)]\hat{j}$, where the x direction is horizontal and the origin is at the mean position of the hose, $u_0 = 10$ m/s, $v_0 = 2$ m/s, and $\omega = 5$ cycle/s. Find and plot on one graph the instantaneous streamlines that pass through the origin at t = 0 s, 0.05 s, 0.1 s, and 0.15 s. Also find and plot on one graph the pathlines of particles that left the origin at the same four times.

Given: Velocity field

Find: Plot streamlines that are at origin at various times and pathlines that left origin at these times

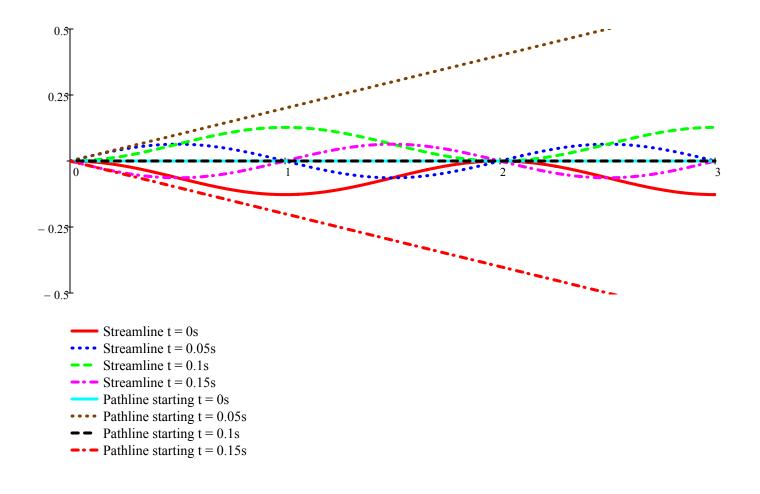
Solution:

For streamlines	$\frac{v}{u} = \frac{dy}{dx} = \frac{v_0 \cdot \sin\left[\omega \cdot \left(t - \frac{x}{u_0}\right)\right]}{u_0}$	
So, separating variables (t=const)	$dy = \frac{v_0 \cdot \sin \left[\omega \cdot \left(t - \frac{x}{u_0}\right)\right]}{u_0} \cdot dx$	
Integrating	$y = \frac{v_0 \cdot \cos\left[\omega \cdot \left(t - \frac{x}{u_0}\right)\right]}{\omega} + c$	
Using condition $y = 0$ when $x = 0$	$y = \frac{v_0 \cdot \left[\cos \left[\omega \cdot \left(t - \frac{x}{u_0} \right) \right] - \cos(\omega \cdot t) \right]}{\omega}$	This gives streamlines y(x) at each time t
For particle paths, first find x(t)	$\frac{dx}{dt} = u = u_0$	
Separating variables and integrating	$dx = u_0 \cdot dt$ o r	$x = u_0 \cdot t + c_1$
Using initial condition $x = 0$ at $t = \tau$	$c_1 = -u_0 \cdot \tau$	$x = u_0 \cdot (t - \tau)$
For y(t) we have	$\frac{dy}{dt} = v = v_0 \cdot \sin \left[\omega \cdot \left(t - \frac{x}{u_0} \right) \right] \text{so}$	$\frac{dy}{dt} = v = v_0 \cdot \sin \left[\omega \cdot \left[t - \frac{u_0 \cdot (t - \tau)}{u_0} \right] \right]$
and	$\frac{dy}{dt} = v = v_0 \cdot \sin(\omega \cdot \tau)$	
Separating variables and integrating	$dy = v_0 \cdot \sin(\omega \cdot \tau) \cdot dt$	$y = v_0 \cdot \sin(\omega \cdot \tau) \cdot t + c_2$
Using initial condition $y = 0$ at $t = \tau$	$c_2 = -v_0 \cdot \sin(\omega \cdot \tau) \cdot \tau$	$y = v_0 \cdot \sin(\omega \cdot \tau) \cdot (t - \tau)$
The pathline is then		

The pathline is then

 $\mathbf{x}(t,\tau) = \mathbf{u}_0 \cdot (t-\tau) \qquad \qquad \mathbf{y}(t,\tau) = \mathbf{v}_0 \cdot \sin(\omega \cdot \tau) \cdot (t-\tau)$

These terms give the path of a particle (x(t),y(t)) that started at $t = \tau$.



The streamlines are sinusoids; the pathlines are straight (once a water particle is fired it travels in a straight line). These curves can be plotted in *Excel*.

Problem 2.27

[Difficulty: 5]

2.27 Using the data of Problem 2.26, find and plot the streakline shape produced after the first second of flow.

Given: Velocity field

Find: Plot streakline for first second of flow

Solution:

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form

 $x_{p}(t) = x(t, x_{0}, y_{0}, t_{0})$ and $y_{p}(t) = y(t, x_{0}, y_{0}, t_{0})$

where x_0 , y_0 is the position of the particle at $t = t_0$, and re-interprete the results as streaklines

$$\mathbf{x}_{st}(t_0) = \mathbf{x}(t, \mathbf{x}_0, \mathbf{y}_0, t_0) \qquad \text{and} \qquad \mathbf{y}_{st}(t_0) = \mathbf{y}(t, \mathbf{x}_0, \mathbf{y}_0, t_0)$$

which gives the streakline at t, where x_0 , y_0 is the point at which dye is released (t_0 is varied from 0 to t)

 $\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{u} = \mathrm{u}_0$ For particle paths, first find x(t)Separating variables and integrating $dx = u_0 \cdot dt$ $\mathbf{x} = \mathbf{x}_0 + \mathbf{u}_0 \cdot \left(\mathbf{t} - \mathbf{t}_0 \right)$ $\frac{dy}{dt} = v = v_0 \cdot \sin \left[\omega \cdot \left(t - \frac{x}{u_0} \right) \right] \quad \text{so} \quad \frac{dy}{dt} = v = v_0 \cdot \sin \left[\omega \cdot \left[t - \frac{x_0 + u_0 \cdot \left(t - t_0 \right)}{u_0} \right] \right]$ For y(t) we have $\frac{\mathrm{dy}}{\mathrm{dt}} = \mathbf{v} = \mathbf{v}_0 \cdot \sin \left[\omega \cdot \left(\mathbf{t}_0 - \frac{\mathbf{x}_0}{\mathbf{u}_0} \right) \right]$ and $dy = v_0 \cdot \sin \left[\omega \cdot \left(t_0 - \frac{x_0}{u_0} \right) \right] \cdot dt$ $\mathbf{y} = \mathbf{y}_0 + \mathbf{v}_0 \cdot \sin \left[\omega \cdot \left(\mathbf{t}_0 - \frac{\mathbf{x}_0}{\mathbf{u}_0} \right) \right] \cdot \left(\mathbf{t} - \mathbf{t}_0 \right)$ Separating variables and integrating $\mathbf{y}_{st}(t_0) = \mathbf{y}_0 + \mathbf{v}_0 \cdot \sin \left[\omega \cdot \left(t_0 - \frac{\mathbf{x}_0}{\mathbf{u}_0} \right) \right] \cdot \left(t - t_0 \right)$ $x_{st}(t_0) = x_0 + u_0(t - t_0)$ The streakline is then With $x_0 = y_0 = 0$ $y_{st}(t_0) = v_0 \cdot \sin[\omega \cdot (t_0)] \cdot (t - t_0)$ $\mathbf{x}_{st}(t_0) = \mathbf{u}_0 \cdot (t - t_0)$ Streakline for First Second y (m) 10

x (m)

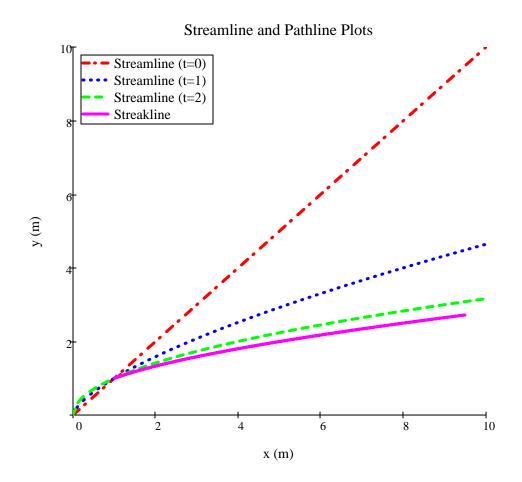
This curve can be plotted in *Excel*. For t = 1, t_0 ranges from 0 to t.

Problem 2.28

[Difficulty: 4]

) to 3 s at point $(1,1)$; compare to streamlines through same point at the insta	ants $t = 0, 1$
$u_p = \frac{dx}{dt}$ $v_p = \frac{dy}{dt}$ For streamlines $\frac{v}{u}$	$=\frac{\mathrm{d}y}{\mathrm{d}x}$
e discussion leading up to Eq. 2.10, we first find equations for the pathlines	in form
$x_{p}(t) = x(t, x_{0}, y_{0}, t_{0})$ and $y_{p}(t) = y(t, x_{0})$),y ₀ ,t ₀)
$\mathbf{x}_{st}(t_0) = \mathbf{x}(t, \mathbf{x}_0, \mathbf{y}_0, t_0)$ and $\mathbf{y}_{st}(t_0) = \mathbf{y}(t, t_0)$	(x_0, y_0, t_0)
e streakline at t, where x_0 , y_0 is the point at which dye is released (t_0 is varied	ed from 0 te
$B \cdot x \cdot (1 + A \cdot t)$ $A = 0.5 \frac{1}{s}$ $B = 1 \frac{1}{s}$ $v_p = \frac{dy}{dt} = C \cdot y$ $C = C$	$1 \frac{1}{s}$
$+ A \cdot t) \cdot dt \qquad \qquad \frac{dy}{y} = C \cdot dt$	
$\ln\left(t - t_0 + A \cdot \frac{t^2 - t_0^2}{2}\right) \qquad \ln\left(\frac{y}{y_0}\right) = C \cdot \left(t - t_0\right)$	
$t_{t-t_{0}+A} \cdot \frac{t^{2} - t_{0}^{2}}{2} $ (30) $y = y_{0} \cdot e^{C \cdot (t-t_{0})}$	
$B \cdot \left(t - t_0 + A \cdot \frac{t^2 - t_0^2}{2} \right)$ $y_p(t) = y_0 \cdot e^{C \cdot \left(t - t_0 - A \cdot \frac{t^2 - t_0^2}{2} \right)}$	o)
is the position of the particle at $t = t_0$. Re-interpreting the results as streaklin	nes:
$\mathbf{y} \cdot \mathbf{e}^{\mathbf{B} \cdot \left(t - t_0 + \mathbf{A} \cdot \frac{t^2 - t_0^2}{2}\right)} \qquad \qquad \mathbf{y}_{st}(t_0) = \mathbf{y}_0 \cdot \mathbf{e}^{\mathbf{C} \cdot \left(t - t_0\right)}$	

For streamlines	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\mathbf{C} \cdot \mathbf{y}}{\mathbf{B} \cdot \mathbf{x} \cdot (1 + \mathbf{A} \cdot \mathbf{t})}$	
So, separating variables	$(1 + A \cdot t) \cdot \frac{dy}{y} = \frac{C}{B} \cdot \frac{dx}{x}$	which we can integrate for any given t (t is treated as a constant)
Integrating	$(1 + A \cdot t) \cdot \ln(y) = \frac{C}{B} \cdot \ln(x) + c$	const
The solution is	$y^{1+A \cdot t} = const \cdot x^{\frac{C}{B}}$	
For particles at $(1,1)$ at t = 0	$y, 1, and 2s \qquad y = x \qquad y$	$= x^{\frac{2}{3}} \qquad y = x^{\frac{1}{2}}$



Problem 2.29

[Difficulty: 4]

2.29 Streaklines are traced out by neutrally buoyant marker fluid injected into a flow field from a fixed point in space. A particle of the marker fluid that is at point (x, y) at time t must have passed through the injection point (x_0, y_0) at some earlier instant $t = \tau$. The time history of a marker particle may be found by solving the pathline equations for the initial conditions that $x = x_0$, $y = y_0$ when $t = \tau$. The present locations of particles on the streakline are obtained by setting τ equal to values in the range $0 \le \tau \le t$. Consider the flow field $\vec{V} = ax(1 + bt)\hat{i} + cy\hat{j}$, where a = c = 1 s⁻¹ and b = 0.2 s⁻¹. Coordinates are measured in meters. Plot the streakline that passes through the initial point $(x_0, y_0) = (1, 1)$, during the interval from t = 0 to t = 3 s. Compare with the streamline plotted through the same point at the instants t = 0, 1, and 2 s.

Given: Velocity field

Find: Plot of streakline for t = 0 to 3 s at point (1,1); compare to streamlines through same point at the instants t = 0, 1 and 2 s

Solution:

Governing equations:	For pathlines	$u_m = \frac{dx}{dx}$	$v_m = \frac{dy}{dt}$	For streamlines	$\frac{v}{d} = \frac{d}{d}$	ly
	•	^p dt	^p dt		u d	lх

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form

$$\begin{aligned} x_{p}(t) &= x \Big(t, x_{0}, y_{0}, t_{0} \Big) & \text{and} & y_{p}(t) &= y \Big(t, x_{0}, y_{0}, t_{0} \Big) \\ x_{st} \Big(t_{0} \Big) &= x \Big(t, x_{0}, y_{0}, t_{0} \Big) & \text{and} & y_{st} \Big(t_{0} \Big) &= y \Big(t, x_{0}, y_{0}, t_{0} \Big) \end{aligned}$$

which gives the streakline at t, where x_0 , y_0 is the point at which dye is released (t_0 is varied from 0 to t)

Assumption: 2D flow

$$u_{p} = \frac{dx}{dt} = a \cdot x \cdot (1 + b \cdot t) \qquad a = 1 \quad \frac{1}{s} \qquad b = \frac{1}{5} \quad \frac{1}{s} \quad v_{p} = \frac{dy}{dt} = c \cdot y \qquad c = 1 \quad \frac{1}{s}$$
variables
$$\frac{dx}{x} = a \cdot (1 + b \cdot t) \cdot dt \qquad \qquad \frac{dy}{y} = c \cdot dt$$

Integrating

For pathlines

So, separating

$$\ln\left(\frac{x}{x_0}\right) = a \cdot \left(t - t_0 + b \cdot \frac{t^2 - t_0^2}{2}\right) \qquad \qquad \ln\left(\frac{y}{y_0}\right) = c \cdot \left(t - t_0\right)$$

$$x = x_0 \cdot e^{a \cdot \left(t - t_0 + b \cdot \frac{t^2 - t_0^2}{2}\right)} \qquad \qquad y = y_0 \cdot e^{c \cdot \left(t - t_0\right)}$$

The p

The pathlines are
$$x_p(t) = x_0 e^{-t} (t-t_0)^{2/3}$$
 $y_p(t) = y_0 e^{-t-t_0}$
where x_0, y_0 is the position of the particle at $t = t_0$. Re-interpreting the results as streaklines:
The streaklines are then $x_{st}(t_0) = x_0 e^{a} \left(\frac{t-t_0 + b - \frac{t^2 - a^2}{2}}{2} \right)$
where x_0, y_0 is the point at which dye is released $(t_0$ is varied from 0 to t)
For streamlines $\frac{v}{u} = \frac{dy}{dx} = \frac{c \cdot y}{a \cdot x \cdot (1 + b \cdot t)}$
So, separating variables $(1 + b \cdot t) \cdot \frac{dy}{y} = \frac{c}{a} \cdot \frac{dx}{x}$ which we can integrate for any given t (t is treated as a constant)
Integrating $(1 + b \cdot t) \cdot \ln(y) = \frac{c}{a} \cdot \ln(x) + \text{const}$
The solution is $y^{1+b \cdot t} = \text{const} \cdot x^{\frac{c}{a}}$
For particles at (1,1) at $t = 0, 1, \text{ and } 2s$ $y = x$ $y = x^{\frac{2}{3}}$ $y = x^{\frac{1}{2}}$
Streamline and Pathline Plots
 $\int \frac{dy}{dx} = \frac{dy}{dx$

x (m)

3

2

1

0

+ 5

4

Problem 2.30

[Difficulty: 4]

2.30 Consider the flow field $\vec{V} = axt\hat{i} + b\hat{j}$, where $a = 1/4 \text{ s}^{-2}$ and b = 1/3 m/s. Coordinates are measured in meters. For the particle that passes through the point (x, y) = (1, 2) at the instant t = 0, plot the pathline during the time interval from t = 0 to 3 s. Compare this pathline with the streakline through the same point at the instant t = 3 s.

Given: Velocity field

Find: Plot of pathline for t = 0 to 3 s for particle that started at point (1,2) at t = 0; compare to streakline through same point at the instant t = 3

Solution:

Governing equations:	For pathlines	$u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$
----------------------	---------------	-----------------------	-----------------------

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form

$$x_{p}(t) = x(t, x_{0}, y_{0}, t_{0})$$
 and $y_{p}(t) = y(t, x_{0}, y_{0}, t_{0})$

$$\mathbf{x}_{st}(t_0) = \mathbf{x}(t, \mathbf{x}_0, \mathbf{y}_0, t_0) \qquad \text{and} \qquad \mathbf{y}_{st}(t_0) = \mathbf{y}(t, \mathbf{x}_0, \mathbf{y}_0, t_0)$$

which gives the streakline at t, where x_0 , y_0 is the point at which dye is released (t_0 is varied from 0 to t)

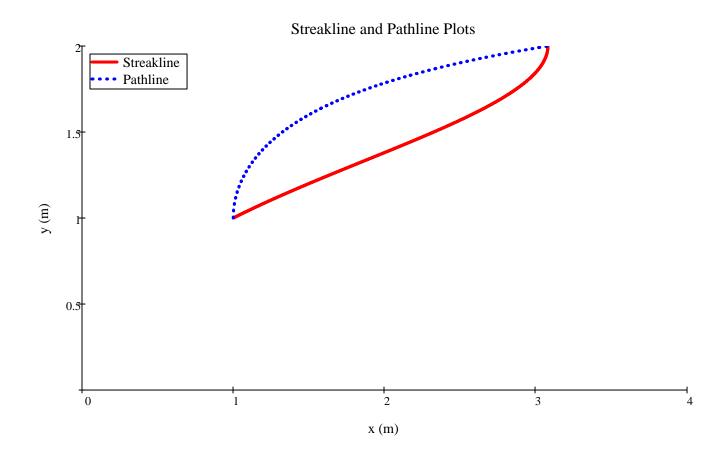
Assumption: 2D flow

For pathlines $u_p = \frac{dx}{dt} = a \cdot x \cdot t$ $a = \frac{1}{4} - \frac{1}{2}$ $b = \frac{1}{3} - \frac{m}{s}$ $v_p = \frac{dy}{dt} = b$ So, separating variables $\frac{dx}{x} = a \cdot t \cdot dt$ $dy = b \cdot dt$ Integrating $ln\left(\frac{x}{x_0}\right) = \frac{a}{2} \cdot \left(t^2 - t_0^2\right)$ $y - y_0 = b \cdot (t - t_0)$ $x = x_0 \cdot e^{\frac{a}{2} \cdot \left(t^2 - t_0^2\right)}$ $y = y_0 + b \cdot (t - t_0)$ The pathlines are $x_p(t) = x_0 \cdot e^{\frac{a}{2} \cdot \left(t^2 - t_0^2\right)}$ $y_p(t) = y_0 + b \cdot (t - t_0)$

where x_0 , y_0 is the position of the particle at $t = t_0$. Re-interpreting the results as streaklines:

The pathlines are then $x_{st}(t_0) = x_0 \cdot e^{\frac{a}{2} \cdot (t^2 - t_0^2)} \qquad y_{st}(t_0) = y_0 + b \cdot (t - t_0)$

where x_0 , y_0 is the point at which dye is released (t_0 is varied from 0 to t)



Problem 2.31

[Difficulty: 4]

2.31 A flow is described by velocity field $\vec{V} = ay^2\hat{i} + b\hat{j}$, where $a = 1 \text{ m}^{-1}\text{s}^{-1}$ and b = 2 m/s. Coordinates are measured in meters. Obtain the equation for the streamline passing through point (6, 6). At t=1 s, what are the coordinates of the particle that passed through point (1, 4) at t = 0? At t = 3 s, what are the coordinates of the particle that passed through point (-3, 0) 2 s earlier? Show that pathlines, streamlines, and streaklines for this flow coincide. Given: 2D velocity field Find: Streamlines passing through (6,6); Coordinates of particle starting at (1,4); that pathlines, streamlines and streaklines coincide Solution: $\frac{v}{u} = \frac{dy}{dx} = \frac{b}{a \cdot y^2} \qquad \text{or} \qquad \int a \cdot y^2 \, dy = \int b \, dx$ For streamlines $\frac{a \cdot y^5}{3} = b \cdot x + c$ Integrating $v^3 = 6 \cdot x + 180$ For the streamline through point (6,6)c = 60 and $\int 1 \, dx = x - x_0 = \int a \cdot y^2 \, dt \quad \text{We need } y(t)$ $u = \frac{dx}{dt} = a \cdot y^2$ For particle that passed through (1,4) at t = 0 $\int 1 \, dy = \int b \, dt \qquad y = y_0 + b \cdot t = y_0 + 2 \cdot t$ $v = \frac{dy}{dt} = b$ $x - x_0 = \int^t a \cdot (y_0 + b \cdot t)^2 dt \qquad x = x_0 + a \cdot \left(y_0^2 \cdot t + b \cdot y_0 \cdot t^2 + \frac{b^2 \cdot t^3}{3} \right)$ Then $x = 1 + 16 \cdot t + 8 \cdot t^{2} + \frac{4}{2} \cdot t^{3}$ At t = 1 s Hence, with $x_0 = 1$ $y_0 = 4$ $x = 26.3 \cdot m$ $y = 4 + 2 \cdot t$ $y = 6 \cdot m$ $1 dy = b dt y = y_0 + b \cdot (t - t_0)$ For particle that passed through (-3,0) at t = 1 $x = x_0 + a \cdot \left| y_0^2 \cdot (t - t_0) + b \cdot y_0 \cdot (t^2 - t_0^2) + \frac{b^2}{3} \cdot (t^3 - t_0^3) \right|$ $\mathbf{x} - \mathbf{x}_0 = \int_{-1}^{1} \mathbf{a} \cdot \left(\mathbf{y}_0 + \mathbf{b} \cdot \mathbf{t}\right)^2 d\mathbf{t}$ $x = -3 + \frac{4}{3} \cdot (t^3 - 1) = \frac{1}{3} \cdot (4 \cdot t^3 - 13)$ $y = 2 \cdot (t - 1)$ Hence, with $x_0 = -3$, $y_0 = 0$ at $t_0 = 1$ Evaluating at t = 3 $x = 31.7 \cdot m$ $y = 4 \cdot m$

This is a steady flow, so pathlines, streamlines and streaklines always coincide

https://ebookyab.ir/solution-manual-fluid-mechanics-fox-mcdonald-pritchard/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Problem 2.32

[Difficulty: 3]

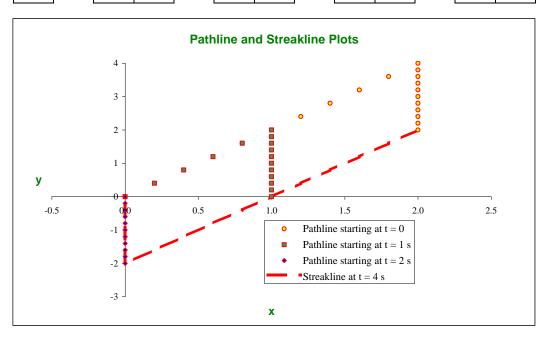
2.32 Tiny hydrogen bubbles are being used as tracers to visualize a flow. All the bubbles are generated at the origin (x = 0, y = 0). The velocity field is unsteady and obeys the equations: u = 1 m/s v = 2 m/s $0 \le t < 2 \text{ s}$

2, 3, and 4 s. Mark the locations of these five bubbles at t = 0, 1, 2, 3, and 4 s. Mark the locations of these five bubbles at t = 4 s. Use a dashed line to indicate the position of a streakline at t = 4 s.

Solution

The particle starting at t = 3 s follows the particle starting at t = 2 s; The particle starting at t = 4 s doesn't move!

Pathlines:	Startin	g at t = 0	5	Starting at t = 1 s		l s	Starting at t = 2 s		2 s	Streakline at t = 4 s		
t	x	У	Г	x	У		X	У		x	У	
0.00	0.00	0.00								2.00	2.00	
0.20	0.20	0.40								1.80	1.60	
0.40	0.40	0.80								1.60	1.20	
0.60	0.60	1.20								1.40	0.80	
0.80	0.80	1.60								1.20	0.40	
1.00	1.00	2.00		0.00	0.00					1.00	0.00	
1.20	1.20	2.40		0.20	0.40					0.80	-0.40	
1.40	1.40	2.80		0.40	0.80					0.60	-0.80	
1.60	1.60	3.20		0.60	1.20					0.40	-1.20	
1.80	1.80	3.60		0.80	1.60					0.20	-1.60	
2.00	2.00	4.00		1.00	2.00		0.00	0.00		0.00	-2.00	
2.20	2.00	3.80		1.00	1.80		0.00	-0.20		0.00	-1.80	
2.40	2.00	3.60		1.00	1.60		0.00	-0.40		0.00	-1.60	
2.60	2.00	3.40		1.00	1.40		0.00	-0.60		0.00	-1.40	
2.80	2.00	3.20		1.00	1.20		0.00	-0.80		0.00	-1.20	
3.00	2.00	3.00		1.00	1.00		0.00	-1.00		0.00	-1.00	
3.20	2.00	2.80		1.00	0.80		0.00	-1.20		0.00	-0.80	
3.40	2.00	2.60		1.00	0.60		0.00	-1.40		0.00	-0.60	
3.60	2.00	2.40		1.00	0.40		0.00	-1.60		0.00	-0.40	
3.80	2.00	2.20		1.00	0.20		0.00	-1.80		0.00	-0.20	
4.00	2.00	2.00		1.00	0.00		0.00	-2.00		0.00	0.00	



Problem 2.33

[Difficulty: 3]

$a = 1/5 \text{ s}^{-1}$ at meters. Obtain through point the particle t (1, 1)? What streamline and ticle. What co	nd $b=1$ m in the equ (1, 1). At hat initiall t are its of d the initial onclusions	by velocity field $\vec{V} = ax\hat{i} + b\hat{j}$, where in/s. Coordinates are measured in mation for the streamline passing t=5 s, what are the coordinates of y (at $t=0$) passed through point coordinates at $t=10$ s? Plot the l, 5 s, and 10 s positions of the par- can you draw about the pathline, e for this flow?								
Given:	Velocity	Velocity field								
Find:		Equation for streamline through point (1.1); coordinates of particle at $t = 5$ s and $t = 10$ s that was at (1,1) at $t = 0$; ompare pathline, streamline, streakline								
Solution:										
Governing equ	ations:	For streamlines $\frac{v}{u} = \frac{dy}{dx}$	For pathlines $u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$						
Assumption: 2	2D flow									
Given data		$a = \frac{1}{5} \frac{1}{s}$ $b = 1 \frac{m}{s}$ $x_0 =$	1 $y_0 = 1$ $t_0 = 0$							
For streamlines		$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{b}}{\mathbf{a}\cdot\mathbf{x}}$								
So, separating	variables	$\frac{\mathbf{a}}{\mathbf{b}} \cdot \mathbf{dy} = \frac{\mathbf{dx}}{\mathbf{x}}$								
Integrating		$\frac{a}{b} \cdot (y - y_0) = \ln \left(\frac{x}{x_0}\right)$								
The solution is	then	$y = y_0 + \frac{b}{a} \cdot \ln\left(\frac{x}{x_0}\right) = 5 \cdot \ln(x) + 1$								
Hence for pathl	lines	$u_p = \frac{dx}{dt} = a \cdot x$	$v_p = \frac{dy}{dt} = b$							
Hence		$\frac{\mathrm{d}x}{\mathrm{x}} = \mathrm{a} \cdot \mathrm{d}t$	$dy = b \cdot dt$							
Integrating		$\ln\!\!\left(\frac{x}{x_0}\right) = a \cdot \left(t - t_0\right)$	$\mathbf{y} - \mathbf{y}_0 = \mathbf{b} \cdot \left(\mathbf{t} - \mathbf{t}_0 \right)$							
The pathlines a	re	$\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{e}^{\mathbf{a} \cdot \left(t - t_0\right)}$	$y = y_0 + b \cdot (t - t_0)$	or $y = y_0 + \frac{b}{a} \cdot \ln\left(\frac{x}{x_0}\right)$						

For a particle that was at $x_0 = 1$ m, $y_0 = 1$ m at $t_0 = 0$ s, at time t = 1 s we find the position is

$$x = x_0 \cdot e^{a \cdot (t-t_0)} = e^{\frac{1}{5}} m$$
 $y = y_0 + b \cdot (t-t_0) = 2 m$

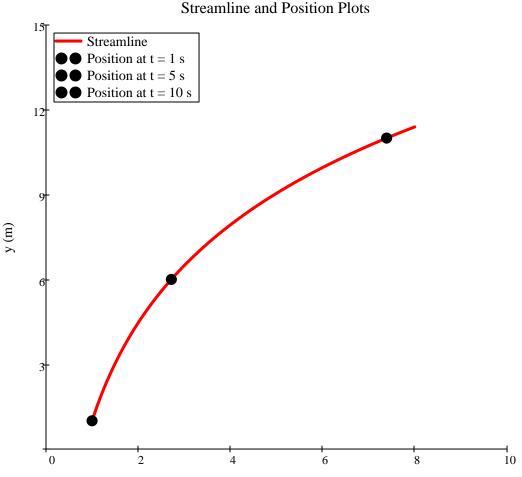
For a particle that was at $x_0 = 1$ m, $y_0 = 1$ m at $t_0 = 0$ s, at time t = 5 s we find the position is

$$x = x_0 \cdot e^{a \cdot (t-t_0)} = e m \qquad y = y_0 + b \cdot (t-t_0) = 6 m$$

For a particle that was at $x_0 = 1$ m, $y_0 = 1$ at $t_0 = 0$ s, at time t = 10 s we find the position is

$$x = x_0 \cdot e^{a \cdot (t - t_0)} = e^2 m$$
 $y = y_0 + b \cdot (t - t_0) = 11 m$

For this steady flow streamlines, streaklines and pathlines coincide



Problem 2.34

[Difficulty: 3]

a = 2 m/s and Obtain the e (2, 5). At $t =$ passed throu coordinates 2 s earlier?	d $b = 1 \text{ s}^{-1}$. equation for 2 s, what are ugh point (0, of the partic What conclu	by velocity field $\vec{V} = a\hat{i} + Coordinates are measuredthe streamline passing thre the coordinates of the p, 4) at t = 0? At t = 3 s, willle that passed through pol-usions can you draw abouteakline for this flow?$	d in meters. ough point article that hat are the int (1, 4.25)						
Given:	Velocity	field							
Find:		n for streamline through point (2.5); coordinates of particle at $t = 2$ s that was at (0,4) at $t = 0$; coordinates of at $t = 3$ s that was at (1,4.25) at $t = 1$ s; compare pathline, streamline, streakline							
Solution:									
Governing eq	uations:	For streamlines	$\frac{v}{u} = \frac{dy}{dx}$	For pathlines	$u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$			
Assumption:	2D flow								
Given data		$a = 2 \frac{m}{s}$ $b = 1$	$\frac{1}{s}$ $x_0 =$	2 $y_0 = 5$	x = 1	$\mathbf{x} = \mathbf{x}$			
For streamline	25	$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{b}\cdot\mathbf{x}}{\mathbf{a}}$							
So, separating	variables	$\frac{a}{b} \cdot dy = x \cdot dx$							
Integrating		$\frac{\mathbf{a}}{\mathbf{b}} \cdot \left(\mathbf{y} - \mathbf{y}_0 \right) = \frac{1}{2} \cdot \left(\mathbf{x}^2 \right)$	$-x_0^2$						
The solution is	s then	$y = y_0 + \frac{b}{2 \cdot a} \cdot \left(x^2 - \frac{b}{2 \cdot a}\right)$	$x_0^2 = \frac{x^2}{4} +$	4					
Hence for path	nlines	$u_p = \frac{dx}{dt} = a$		$v_p = \frac{dy}{dt} = b \cdot x$					
Hence		$d\mathbf{x} = \mathbf{a} \cdot d\mathbf{t}$		$dy = b \cdot x \cdot dt$					
Integrating		$x - x_0 = a \cdot \left(t - t_0\right)$		$dy = b \cdot \left[x_0 + a \right]$	$\cdot (t - t_0)] \cdot dt$				
				$y - y_0 = b \cdot \left[x_0 \right]$	$y(t-t_0)+\frac{a}{2}$	$\cdot \cdot \left(\left(t^2 - t_0^2 \right) \right) - $	$a \cdot t_0 \cdot (t - t_0)$		
The pathlines	are	$\mathbf{x} = \mathbf{x}_0 + \mathbf{a} \cdot \left(\mathbf{t} - \mathbf{t}_0 \right)$		$y = y_0 + b \cdot \left[x_0 \right]$	$y(t-t_0) + \frac{a}{2}$	$\cdot \cdot \left(\left(t^2 - t_0^2 \right) \right) -$	$a \cdot t_0 \cdot (t - t_0)$		

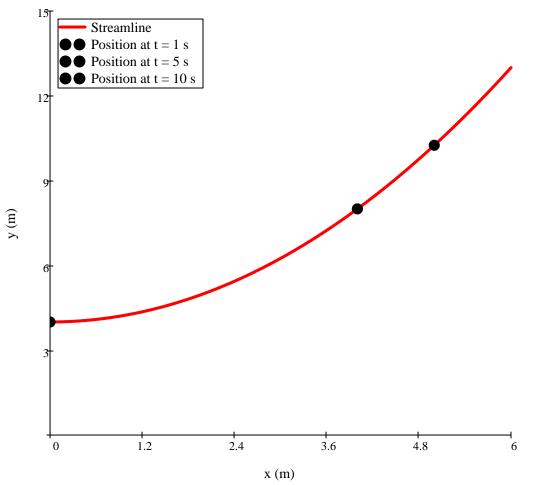
For a particle that was at $x_0 = 0$ m, $y_0 = 4$ m at $t_0 = 0$ s, at time t = 2 s we find the position is

$$x = x_0 + a \cdot (t - t_0) = 4m \qquad y = y_0 + b \cdot \left[x_0 \cdot (t - t_0) + \frac{a}{2} \cdot \left(\left(t^2 - t_0^2 \right) \right) - a \cdot t_0 \cdot (t - t_0) \right] = m$$

For a particle that was at $x_0 = 1 \text{ m}$, $y_0 = 4.25 \text{ m}$ at $t_0 = 1 \text{ s}$, at time t = 3 s we find the position is

$$x = x_0 + a \cdot (t - t_0) = 5m \qquad y = y_0 + b \cdot \left[x_0 \cdot (t - t_0) + \frac{a}{2} \cdot \left(\left(t^2 - t_0^2 \right) \right) - a \cdot t_0 \cdot (t - t_0) \right] = 10.m$$

For this steady flow streamlines, streaklines and pathlines coincide; the particles refered to are the same particle!



Streamline and Position Plots

Problem 2.35

[Difficulty: 4]

where $a = 0$ coordinates t = 0? At $t =passed throstreakline t$	b.2 s ⁻¹ and b s of the partic = 3 s, what ar ugh point (1 through point	ed by velocity field = 0.4 m/s^2 . At $t=2 \text{ s}$, le that passed through e the coordinates of the , 2) at $t=2 \text{ s}$? Plot the at (1, 2), and plot the at the instants $t=0, 1$,	what are the point (1, 2) at e particle that pathline and e streamlines					
Given:	Velocity	v field						
Find:		Coordinates of particle at $t = 2$ s that was at (1,2) at $t = 0$; coordinates of particle at $t = 3$ s that was at (1,2) at $t = 2$ s lot pathline and streakline through point (1,2) and compare with streamlines through same point at $t = 0$, 1 and 2 s						
Solution								
: Governing equations:		For pathlines	$u_p = \frac{dx}{dt}$	$v_p = \frac{dy}{dt}$	For stream	lines	$\frac{v}{u} = \frac{dy}{dx}$	
Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form								
			x _]	$\mathbf{y}_{0}(t) = \mathbf{x}(t, \mathbf{x}_{0}, \mathbf{y}_{0})$	$(0, t_0)$	and	$y_p(t) = y(t, x_0, y_0, t_0)$	
			x	$\mathbf{x}(\mathbf{t}_0) = \mathbf{x}(\mathbf{t}, \mathbf{x}_0)$	$(\mathbf{y}_0, \mathbf{t}_0)$	and	$y_{st}(t_0) = y(t, x_0, y_0, t_0)$	
		which gives the stre	akline at t, wh	ere x_0 , y_0 is the	point at w	hich dye is r	eleased (t_0 is varied from 0 to t)	
Assumption:	2D flow							
Given data		$a = 0.2 \frac{1}{s} b =$	$0.4 \frac{\mathrm{m}}{\mathrm{s}^2}$					
Hence for pathlines		$u_p = \frac{dx}{dt} = a \cdot y$		$v_p = \frac{dy}{dt}$	= b∙t			
Hence		$dx = a \cdot y \cdot dt$		$dy = b \cdot t \cdot c$	lt	y - y ₀ =	$\frac{b}{2} \cdot \left(t^2 - t_0^2\right)$	
For x		$d\mathbf{x} = \left[\mathbf{a} \cdot \mathbf{y}_0 + \mathbf{a} \cdot \frac{\mathbf{b}}{2} \cdot \right]$	$\left(t^2 - t_0^2\right) \right] \cdot dt$					
Integrating $x - x_0 = a \cdot y_0 \cdot (t - t_0) + a \cdot \frac{b}{2} \cdot \left[\frac{t^3}{3} - \frac{t_0^3}{3} - t_0^2 \cdot (t - t_0) \right]$								
The pathlines	are	$\mathbf{x}(t) = \mathbf{x}_0 + \mathbf{a} \cdot \mathbf{y}_0 \cdot \left(\mathbf{x}_0 + \mathbf{a} \cdot \mathbf{y}_0 \cdot \mathbf{y}_0 \right)$	$(t - t_0) + a \cdot \frac{b}{2}$	$\left[\frac{t^3}{3} - \frac{t_0^3}{3} - t_0\right]$	$^{2} \cdot (t - t_{0})$		$y(t) = y_0 + \frac{b}{2} \cdot (t^2 - t_0^2)$	
These give the	e position (x	y) at any time t of a pa	rticle that was	at (x_0, y_0) at time	ie t ₀			

Note that streaklines are obtained using the logic of the Governing equations, above

The streak lines are
$$x(t_0) = x_0 + a \cdot y_0 \cdot (t - t_0) + a \cdot \frac{b}{2} \cdot \left[\frac{t^3}{3} - \frac{t_0^3}{3} - t_0^2 \cdot (t - t_0) \right]$$
 $y(t_0) = y_0 + \frac{b}{2} \cdot \left(t^2 - t_0^2 \right)$

These gives the streakline at t, where x_0 , y_0 is the point at which dye is released (t_0 is varied from 0 to t)

For a particle that was at $x_0 = 1 \text{ m}$, $y_0 = 2 \text{ m}$ at $t_0 = 0$ s, at time t = 2 s we find the position is (from pathline equations)

$$x = x_0 + a \cdot y_0 \cdot (t - t_0) + a \cdot \frac{b}{2} \cdot \left[\frac{t^3}{3} - \frac{t_0^3}{3} - t_0^2 \cdot (t - t_0) \right] = 1.9 \text{ m} \qquad y = y_0 + \frac{b}{2} \cdot (t^2 - t_0^2) = 2.8 \text{ m}$$

For a particle that was at $x_0 = 1 \text{ m}$, $y_0 = 2 \text{ m}$ at $t_0 = 2 \text{ s}$, at time t = 3 s we find the position is

$$x = x_0 + a \cdot y_0 \cdot (t - t_0) + a \cdot \frac{b}{2} \cdot \left[\frac{t^3}{3} - \frac{t_0^3}{3} - t_0^2 \cdot (t - t_0) \right] = 1.4 \text{ m} \qquad y = y_0 + \frac{b}{2} \cdot (t^2 - t_0^2) = 3.0 \text{ m}$$

For streamlines

Integrating

$$\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{b}\cdot\mathbf{t}}{\mathbf{a}\cdot\mathbf{y}}$$

So, separating variables $y \cdot dy = \frac{b}{a} \cdot t \cdot dx$ where we treat t as a constant

$$\frac{y^2 - y_0^2}{2} = \frac{b \cdot t}{a} \cdot (x - x_0) \quad \text{and we have} \quad x_0 = 1 \quad \text{m} \quad y_0 = 2 \quad \text{m}$$

The streamlines are then
$$y = \sqrt{y_0^2 + \frac{2 \cdot b \cdot t}{a} \cdot (x - x_0)} = \sqrt{4 \cdot t \cdot (x - 1) + 4}$$

