Chapter 1 Solutions

Section 1.2

- 1. (a) Since (-a) + a = 0, uniqueness of the additive inverse of (-a) implies that -(-a) = a.
 - (b) $[(ab)+(-a)b]=[a+(-a)]b=0 \cdot b=0$, so uniqueness of the additive inverse implies -(ab) = (-a)b. A similar argument works for the second equality.
 - (c) By (b) and (a), (-a)(-b) = -(a(-b)) = -(-(ab)) = ab.
 - (d) By (b), (-1)a = 1(-a) = -a.
 - (e) By commutativity and associativity of multiplication,

$$(a/b)(bc) = a(b^{-1}b)c = ac = c(d^{-1}d)a = (c/d)(ad),$$

hence the first equality follows from 1.2.1(h). For the second equality, by commutativity and associativity of multiplication and 1.2.1(i),

$$(a/b)(c/d) = (ab^{-1})(cd^{-1}) = (ac)(b^{-1}d^{-1}) = (ac)(bd)^{-1} = (ac)/(bd).$$

(f) Using commutativity and associativity of multiplication, the distributive law, and 1.2.1(i),

$$\begin{split} a/b + c/d &= ab^{-1}(dd^{-1}) + cd^{-1}(bb^{-1}) = ad(b^{-1}d^{-1}) + bc(b^{-1}d^{-1}) \\ &= ad(bd)^{-1} + bc(bd)^{-1}(ad + bc)/(bd). \end{split}$$

- 2. Let r = m/n and s = p/q where $m, n, p, q \in \mathbb{N}$ and $nq \neq 0$. By Exercise 1, $r \pm s = (mq \pm pn)/(nq)$ and rs = (mp)/(nq), which are rational. Since $1/s = (pq^{-1})^{-1} = p^{-1}q = q/p$, r/s is the product of rational numbers hence is rational.
- 3. If $s:=r/x\in\mathbb{Q}$, then, by Exercise 2, $x=r/s\in\mathbb{Q}$, a contradiction. Therefore, $r/x \in \mathbb{I}$. The remaining parts have similar proofs.
- 4. (a) By commutativity and associativity of multiplication and the distributive law,

$$(x-y)\sum_{j=1}^{n} x^{n-j}y^{j-1} = \sum_{j=1}^{n} x^{n-j+1}y^{j-1} - \sum_{j=1}^{n} x^{n-j}y^{j}$$
$$= \sum_{j=0}^{n-1} x^{n-j}y^{j} - \sum_{j=1}^{n} x^{n-j}y^{j}$$
$$= x^{n} - y^{n}.$$

- (b) Replace y in part (a) by -y.
- (c) Replace x and y in part (a) by x^{-1} and y^{-1} , respectively.
- 5. The left side of (a) is $\frac{n-1}{n} \frac{n-2}{n} \cdots \frac{1}{n} = \frac{n!}{n^n}$. For (b), $(2n)! = \left[2n(2n-2)(2n-4) \cdots 4 \cdot 2 \right] \left[(2n-1)(2n-3) \cdots 3 \cdot 1 \right]$ $= 2^n \left[n(n-1)(n-2) \cdots 2 \cdot 1 \right] \left[(2n-1)(2n-3) \cdots 3 \cdot 1 \right].$

6.
$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(n-k+1)!(k-1)!} + \frac{n!}{(n-k)!k!}$$
$$= \frac{kn! + (n-k+1)n!}{(n-k+1)!k!}$$
$$= \binom{n+1}{k}$$

7. Let a_n denote the difference of the two sides of the equation in (a). Combining fractions in the resulting summation leads to

$$a_n = \sum_{k=0}^{n} \frac{n-2k}{(n+2)(k+1)(n-k+1)}.$$

Making the index change j = n - k results in

$$a_n = \sum_{j=0}^n \frac{2j-n}{(n+2)(j+1)(n-j+1)} = -a_n.$$

Therefore, $a_n = 0$. Part (b) is proved similarly.

8.
$$f(k) = k^3 - (k-1)^3 = 3k^2 - 3k + 1$$
.

Section 1.3

- 1. (a) If a > 0 and b < 0, then -(ab) = a(-b) > 0 hence ab < 0.
 - (b) If a > 0 and 1/a < 0, then 1 = a(1/a) < 0. The converse is similar.
 - (c) Follows from a/b c/d = (ad bc)/bd.
- 2. Multiply the given inequalities by x, using (d) of 1.3.2.
- 3. Part (a) follows from a double application of 1.3.2(d). Part (b) follows from (a) by noting that -y < -x and 0 < -b < -a. Part (c) follows from (a).
- 4. If 0 < x < y, then multiplying the inequality by 1/(xy) and using (d) of 1.3.2 shows that 1/y < 1/x. If x < y < 0, then 0 < -y < -x hence, by the first part, 1/(-x) < 1/(-y) so 1/x > 1/y.

5. If -1 < x < y or x < y < -1, then (y+1)(x+1) > 0 hence

$$\frac{y}{y+1} - \frac{x}{x+1} = \frac{y-x}{(y+1)(x+1)} > 0.$$

If x < -1 < y, then (y + 1)(x + 1) < 0 and the inequality is reversed.

- 6. (a) By Exercise 1.2.4, $y^n x^n = (y x) \sum_{j=1}^n y^{n-j} x^{j-1}$. Each term of the sum is positive and less than $y^{n-j}y^{j-1} = y^{n-1}$. Since there are n terms, part (a) follows.
 - (b) The inequality is equivalent to

$$n(n+1)xy + ny + nx + x + 1 < n(n+1)xy + ny + nx + y + 1,$$

which reduces to x < y.

- 7. The given inequality implies that mx > nx n and m < n. Therefore, n > (n-m)x > x.
- 8. a = ta + (1-t)a < tb + (1-t)b = b.
- 9. If the inequality holds, take x = y = 1 to get $a \ge -2$ and x = 1, y = -1to get $a \leq 2$. Conversely, suppose that $0 \leq a \leq 2$. The inequality then holds trivially if $xy \ge 0$, and if xy < 0 then $x^2 + y^2 + axy =$ $(x+y)^2 + (2-a)(-xy) \ge 0$. A similar argument works for the case -2 < a < 0.
- 10. If a > b then x := (a b)/2 > 0 and a > b + x, contradicting the hypothesis.
- 11. Note that b > 0. Suppose a > b. Then x := (1 + a/b)/2 > 1 and bx = (a+b)/2 < a, contradicting the hypothesis.
- 12. The inequality is equivalent to $a < x^2 + x$ for all x > 0. Assume a > 0. If $a \ge 1$ then x = 1/2 violates the condition. If 0 < a < 1, then x := a/4 < 1so $a > x + x > x^2 + x$, again, violating the condition. Therefore, $a \le 0$.
- 13. (a) Follows from $0 < (x y)^2 = x^2 2xy + y^2$.

(b)
$$0 < (x-y)^2 + (y-z)^2 + (z-x)^2 = 2(x^2+y^2+z^2) - 2(xy+yz+xz)$$
.

- (c) By expansion, the inequality is equivalent to $2xyzw < (yz)^2 + (xw)^2$. which follows from (a).
- (d) Follows from (a).
- 14. Expand $(x-a)^2 \ge 0$ and divide by x.
- 15. (a) Write x y = (x z) + (z y) and apply the triangle inequality.
 - (b) $|x L| < \varepsilon$ iff $-\varepsilon < x L < \varepsilon$.

- 16. (a) Let $S = \{x_1, \dots, x_n\}$, where $x_1 < \dots < x_n$. Then $\min\{S\} = x_1$ and $\max\{-S\} = -x_1$. Part (b) is proved in a similar manner.
 - (c) Let $x = \max(S \cup T)$ and assume without loss of generality that $x \in S$. Then $x = \max S$ and $t \leq x$ for all $t \in T$ hence $\max T \leq x$. Therefore, $x = \max\{\max S, \max T\}$. Part (d) is proved similarly.
- 17. (a) For the equalities, consider the cases $x \ge 0$ and $x \le 0$.
 - (b) Follows from (a).
 - (c) Add and subtract the equations x = y z and |x| = y + z.
 - (d) Use (b) and the triangle inequality.
 - (e) $(x-y)^- = \max\{y-x, 0\} < y$.
- 18. If $a \le x \le b$, then $x \le |b|$ and $-x \le -a \le |a|$, hence $|x| \le \max\{|a|, |b|\}$.
- 19. Consider cases $x \geq y$ and $x \leq y$.
- 20. Set $x := \max\{a, b\}$. By Exercises 16 and 19, $x = \frac{1}{2}(a + b + |a b|)$ and $\max\{a,b,c\} = \max\{x,c\} = \frac{1}{2}(x+c+|x-c|)$. Substituting the expression for x gives the formula for $\max\{a,b,c\}$. The corresponding formula for $\min\{a, b, c\}$ may be found similarly or may be derived from (a).
- 21. Assume without loss of generality that $S_1 = S \setminus \{a_1, \ldots, a_k\}$, so min $S_1 =$ a_{k+1} . Each of the remaining sets S_j contains at least one of a_1, \ldots, a_k hence $\min S_i \leq a_k < a_{k+1}$, verifying the assertion.

Section 1.4

- 1. $x \in -A \Rightarrow -x \in A \Rightarrow -x \leq \sup A \Rightarrow x \geq -\sup A$. Therefore, $-\sup A$ is a lower bound for -A hence $-\sup A \leq \inf(-A)$. Similarly, $a \in A \Rightarrow$ $-a \in -A \Rightarrow -a \ge \inf(-A) \Rightarrow a \le -\inf(-A)$, so $-\inf(-A)$ is an upper bound for A hence $\sup A \le -\inf(-A)$ or $-\sup A \ge \inf(-A)$
- 2. (a) $\sup = 12$, $\inf = -12$.
- (b) $\sup = 1$, $\inf = -1$.
- (c) $\sup = 3/2$, $\inf = -3/2$.
- (d) $\sup = 0$, $\inf = -2$.
- 3. (a) $\sup = 3$, $\inf = 2$,
- (c) $\sup = 10/3$, $\inf = 3$.
- (b) $\sup = 3$, $\inf = -2$. (d) $\sup = \frac{3 + \sqrt{5}}{2}$, $\inf = -\infty$.
- (e) $\sup = +\infty$, $\inf = -\infty$.
- (f) $\sup = 2$, $\inf = 3/2$.
- (g) $\sup = \frac{3+\sqrt{2}}{2}$, $\inf = \frac{3-\sqrt{2}}{2}$. (h) $\sup = 3$, $\inf = 0$.
- (i) $\sup = \frac{1}{2} + \frac{\sqrt{2}}{4}$, $\inf = \frac{1}{2} \frac{\sqrt{2}}{4}$. (j) $\sup = \frac{1}{2} + \frac{\sqrt{6}}{4}$, $\inf = -1/8$.
 - (1) $\sup = 2$, $\inf = -2$.
- (k) $\sup = 4$, $\inf = -2$.
- (m) $\sup = 4/3$, $\inf = -1$.
- (n) $\sup = 3/2$, $\inf = -5/4$.

- 4. If B is bounded above then any upper bound of B is an upper bound of A hence sup $A \leq \sup B$. The inequality still holds if B is unbounded above. A similar argument establishes the other inequality.
- 5. Let $x, y \in A$. Then $\pm (x-y) \leq \sup A \inf A$ hence $|x-y| \leq \sup A \inf A$. Since $|x|-|y| \le |x-y|$, $|x|-|y| \le \sup A - \inf A$ so $|x| \le \sup A - \inf A + |y|$. Since x was arbitrary, we have $\sup |A| \leq \sup A - \inf A + |y|$ hence $\sup |A| - \sup A + \inf A < |y|$. Since y was arbitrary it follows that $\sup |A| - \sup A + \inf A \le \inf |A|.$
- 6. (a) $a \in A$ and $b \in B \Rightarrow a + b \leq \sup A + \sup B \Rightarrow \sup (A + B) \leq A + \sup (A + B)$ $\sup A + \sup B$. The infimum case is similar.
 - (b) Since x > 0, $xa \le x \sup A$ for all $a \in A$, hence $\sup (xA) \le x \sup A$. Replacing x by 1/x proves the inequality in the other direction.
 - (c) For any $a \in A$ and $b \in B$, $ab \ge \inf A \inf B$, so $\inf AB \ge \inf A \inf B$. If $\inf A = 0$, choose a sequence a_n in A with $a_n \to 0$. Fix any $b \in B$. Then $\inf AB \leq a_n b \to 0$ so $\inf AB \leq \inf A \inf B$ in this case. Now suppose $\inf A \neq 0$. Then $ab \geq \inf AB \Rightarrow a \leq b^{-1} \inf AB \Rightarrow \inf A \geq a$ $b^{-1}\inf AB \Rightarrow b\inf A \geq \inf AB \Rightarrow b \geq [\inf A]^{-1}\inf AB \Rightarrow \inf B \leq$ $[\inf A]^{-1}\inf AB \Rightarrow \inf A\inf B \geq \inf AB.$
 - (d) $a \in A \Rightarrow a^r \le (\sup A)^r \Rightarrow \sup A^r \le (\sup A)^r$. Also, $a = (a^r)^{1/r} \le (\sup A)^r$ $(\sup A^r)^{1/r}$ hence $\sup A \leq (\sup A^r)^{1/r}$.
 - (e) $a \in A \Rightarrow \inf A \leq a \Rightarrow 1/\inf A \geq 1/a \Rightarrow 1/\inf A \geq \sup A^{-1}$. Also, $1/a \leq \sup A^{-1} \Rightarrow a \geq 1/(\sup A^{-1}) \Rightarrow \inf A \geq 1/(\sup A^{-1})$, or $1/(\inf A) \le \sup A^{-1}$
- 7. Let r denote the infimum. By the approximation property for suprema, there exists $x \in A$ such that $\sup A - r < x \le \sup A$. Suppose $x < \sup A$. Choose $y \in A$ such that $x < y \le \sup A$. Then y - x < r, a contradiction. Therefore, $\sup A = x \in A$.
- 8. For all $x, y \in A$, x < y + r hence $\sup A \leq y + r$ or $\sup A r \leq y$. Therefore, $\sup A - r \le \inf A$ or $\sup A - \inf A \le r$.
- 9. Let a < b and let $r \in (a \sqrt{2}, b \sqrt{2})$ be rational. Then $r + \sqrt{2} \in (a, b)$ is irrational.
- 10. If $r_1 < \cdots < r_n$ are rationals in (a, b) then there exists a rational in (r_n, b) . Therefore, the number of rationals in (a, b) must be infinite. A similar argument applies to irrationals.
- 11. Choose $n \in \mathbb{N}$ such that n(b-a) > 1 and let $m = \lfloor 2^n a \rfloor + 1$. Then $2^n a < m \le 2^n a + 1 < 2^n b$, the last inequality because $2^n > n$. Therefore, $a < m/2^n < b$.

- 12. (a) If n := |x| = |-x|, then $x 1 < n \le x$ and $-x 1 < n \le -x$. Adding these inequalities gives $-2 < 2n \le 0$ so n = 0. The converse is trivial.
 - (b) If n := |x| = -|-x|, then $x 1 < n \le x$ and $x \le n < x + 1$. This is possible only if x = n. The converse is trivial.
 - (c) By definition $-x-1 < |-x| \le -x$.
 - (d) Adding $m x 1 < \lfloor m x \rfloor \le m x$ to $x 1 < \lfloor x \rfloor \le x$ gives $m-2 < |x| + |m-x| \le m$.
- 13. (a) Let $s = \sum_{j=0}^n x_j$ and $t = \sum_{j=0}^n \lfloor x_j \rfloor$. Then $s-1 < \lfloor s \rfloor \leq s$ and $s - (n+1) < t \le s$. Adding the first inequality to $-s \le -t < n+1-s$ gives -1 < |s| - t < n + 1, hence $0 \le |s| - t \le n$.
 - (b) By (a), $\lfloor s \rfloor t = k$ for some $k = 0, 1, \dots n$. By definition of $\lfloor s \rfloor$, $s - 1 < k + t \le s.$
- 14. Let $x := (b^m)^{1/n}$ and $y := (b^{1/n})^m$. By definition, x is the unique positive solution of $x^n = b^m$. Since $y^n = \left[\left(b^{1/n} \right)^m \right]^n = \left[\left(b^{1/n} \right)^n \right]^m = b^m, \ x = y$.
- 15. Use Exercise 1.2.4 with $x = a^{1/n}$ and $y = b^{1/n}$.
- 16. Use Exercise 15.
- 17. Let $\ell \leq x \leq u$ for all $x \in A$. By the Archimedean principle, there exist positive integers m and n such that $-m < \ell \le u < n$. Set N = $\max\{m,n\}.$
- 18. This follows from 1.4.11.
- 19. Let $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$, a, b, c, $d \in \mathbb{Q}$. Then, for example,

$$xy = (ac + 2bd) + (bc + ad)\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$
 and $1/y = (c - d\sqrt{2})(c^2 + 2d^2) \in \mathbb{Q}(\sqrt{2}).$

The set $\{x \in \mathbb{Q}(\sqrt{2}) : x^2 < \sqrt{3}\}\$ is bounded above but has no least upper bound in $\mathbb{Q}(\sqrt{2})$ hence $\mathbb{Q}(\sqrt{2})$ is not complete.

20. For any $a \in \mathbb{N}$, if $r := \sqrt{n+a} + \sqrt{n} \in \mathbb{Q}$, then squaring both sides of $\sqrt{n+a}=r-\sqrt{n}$ shows that $\sqrt{n}\in\mathbb{Q}$ and hence that $n=j^2$ for some $j \in \mathbb{N}$ (1.4.11). Then $\sqrt{n+a} \in \mathbb{Q}$ hence $n+a=k^2$ for some $k \in \mathbb{N}$. Therefore, $a = k^2 - j^2 = (k - j)(k + j)$. If a = 11, then k - j = 1 and j + k = 11 so n = 25. If a = 21, then either k - j = 1 and j + k = 21 or k-j=3 and j+k=7. The first choice leads to j=10 and n=100, and the second to j = 2 and n = 4.

21. Let $r = (\sqrt{n+1})(\sqrt{n+p+1})^{-1}$. If $n = (p-1)^2/4$, then $n+p = (p+1)^2/4$, hence $r \in \mathbb{Q}$. Conversely, let $r \in \mathbb{Q}$. Since

$$r^{2}(n+p) = 2(r-1)\sqrt{n} + n + (1-r)^{2},$$

 \sqrt{n} is rational and hence n is a perfect square, say $n=m^2, m\in\mathbb{N}$ (1.4.11). Since

$$\sqrt{n+p} = r^{-1}(\sqrt{n}+1) - 1 = r^{-1}(m+1) - 1,$$

 $\sqrt{n+p}$ is rational hence $n+p=k^2$ for some $k\in\mathbb{N}$. Therefore p= $k^{2} - m^{2} = (k - m)(k + m)$. Since p is prime, k - m = 1 and k + m = p. Thus m = (p-1)/2, hence $n = (p-1)^2/4$.

Section 1.5

1. Let P(n) be the assertion that $a < x_n < x_{n+1} < b$. Since $x_1 - a < 1$, $x_1 - a < \sqrt{x_1 - a} < 1$ hence $x_1 = a + (x_1 - a) < a + \sqrt{x_1 - a} = x_2 < b$. Therefore, P(1) holds. Assume P(n) holds. Then

$$0 < \sqrt{x_n - a} < \sqrt{x_{n+1} - a} < 1$$

so $a < a + \sqrt{x_n - a} < a + \sqrt{x_{n+1} - a} < a + 1$, which is P(n+1). A similar argument proves the other inequality.

- 2. Let P(n) be the statement that a set with n members has a largest and a smallest element. Clearly P(1) and P(2) are true. Let $n \geq 2$ and assume that P(n) holds. If S is a set with n+1 members then removing a member a from S produces a set T with n members. Let m be the smallest and M the largest element of T. Then $\min\{m,a\}$ is the smallest and $\max\{M,a\}$ the largest element of S. Therefore P(n+1) holds.
- 3. Let f(n) denote the sum on the left side of the equation and g(n) the sum on the right. Then f(1) = 1/2 = g(1). Now let $n \ge 1$. Then

$$f(n+1) - f(n) = \sum_{k=1}^{2n+2} \frac{(-1)^{k+1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \frac{1}{2n+1} - \frac{1}{2n+2}$$

$$g(n+1) - g(n) = \sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}.$$

Since the right sides are equal, $f(n) = g(n) \Rightarrow f(n+1) = g(n+1)$.

4. Let S(n) denote the sum on the left side of the equation and g(n) the expression on the right. In each part, one easily checks that S(1) = g(1). Now let n > 1 and assume that S(n-1) = g(n-1). Then the last term of the sum S(n) is S(n) - S(n-1) = S(n) - g(n-1). This shows that the induction step S(n) = g(n) holds iff the last term of the sum S(n) is q(n) - q(n-1). For example,

https://ebookyab.ir/solution-manual-a-course-in-real-analysis-junghenn/Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

(a)
$$n = \frac{n(n+1)}{2} - \frac{(n-1)n}{2}$$
,

(c)
$$n^3 = \frac{n^2}{4}[(n+1)^2 - (n-1)^2],$$

(f)
$$\frac{1}{\sqrt{n} + \sqrt{n-1}} = \sqrt{n} - \sqrt{n-1}$$
.

5.
$$\frac{25}{3}n^3 - \frac{15}{2}n^2 + \frac{1}{6}n$$
.

6. (a)
$$\sum_{k=1}^{999} k + \sum_{k=1}^{999} k^2 = \frac{999 \cdot 1000}{2} + \frac{999 \cdot 1000 \cdot 1999}{6} = 333,333,000.$$

(b)
$$\sum_{k=1}^{500} (4k^2 - 1) = 4 \frac{500 \cdot 501 \cdot 1001}{6} - 500 = 167, 166, 500.$$

(c)
$$\sum_{k=1}^{251} (4k-3)(4k-1) = 16 \frac{251 \cdot 252 \cdot 503}{6} - 16 \frac{251 \cdot 252}{2} + 3 \cdot 251.$$
$$= 85,348,785$$

- 7. For $n \geq 1$, let Q(n) be the statement $P(n-1+n_0)$. Then $Q(1)=P(n_0)$ is true. Assume $Q(n) = P(n-1+n_0)$ is true. Then $Q(n+1) = P(n+n_0)$ is true. By mathematical induction, $Q(n) = P(n-1+n_0)$ is true for all $n \geq 1$, that is, P(n) is true for every $n \geq n_0$.
- 8. In each case, let f(n) be the left side of the inequality and g(n) the right side, and let P(n): f(n) < g(n). Let n_0 be the base value of n for which P(n) is true. It is straightforward to check that in each case $f(n_0) < g(n_0)$. Assume P(n) holds for some $n \ge n_0$, so that f(n)/g(n) < 1. Then

(a)
$$\frac{f(n+1)}{g(n+1)} = \frac{2n+3}{2^{n+1}} = \frac{f(n)}{2g(n)} + \frac{1}{2^n} < 1.$$

(b)
$$\frac{f(n+1)}{g(n+1)} = \frac{n^2 + 2n + 1}{2^{n+1}} = \frac{f(n)}{2g(n)} + \frac{2n+1}{2^{n+1}} < 1$$

(c)
$$\frac{f(n+1)}{g(n+1)} = \frac{2^{n+1}}{(n+1)!} = \frac{2}{n+1} \frac{f(n)}{g(n)} < 1.$$

(d)
$$\frac{f(n+1)}{g(n+1)} = \frac{3^{n+1}}{(n+1)!} = \frac{3}{n+1} \frac{f(n)}{g(n)} < 1.$$

(e)
$$\frac{f(n+1)}{g(n+1)} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} = \frac{f(n)}{g(n)} \frac{2}{(1+1/n)^n} < 1.$$

$$\text{(f) } \frac{f(n+1)}{g(n+1)} = \frac{8^{n+1}(n+1)!}{(2n+2)!} = \frac{f(n)}{g(n)} \frac{4}{2n+1} < 1.$$

9. Check that $6 < \ln(6!)$. For the induction step, use (n+1)! = (n+1)n!.

- 10. The inequality clearly holds for n=0. Suppose $(1+x)^n \ge 1+nx$ for some $n \ge 0$. Then $(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) =$ $1 + (n+1)x + nx^2 \ge 1 + (n+1)x.$
- 11. For $n \geq 1$, let Q(n) be the statement that $P(k-1+n_0)$ is true for k = 1, ..., n. Then $Q(1) = P(n_0)$ is true. Assume Q(n) is true, so $P(k-1+n_0)$ is true for $k=1,\ldots,n$, equivalently, P(j) is true for $n_0 \le j \le n-1+n_0$. By hypothesis, $P(n+n_0)$ is true hence P(j) is true for $n_0 \leq j \leq n + n_0$. Thus $P(k-1+n_0)$ is true for $k=1,\ldots n+1$, that is, Q(n+1) is true. By mathematical induction, Q(n) is true for every $n \ge 1$ hence P(n) is true for every $n \ge n_0$.
- 12. Obvious for n=2. Let n>2 and suppose the prime factorization holds for all integers m with $2 \le m \le n$. If n+1 is prime, we're done. Otherwise n+1=mk where $2 \leq m, k < n$. By hypothesis, m and k have prime factorizations hence so does the product.
- 13. Let g_n denote the expression on the right in the assertion. One checks directly that $g_0 = g_1 = 1$. Let $n \geq 2$ and assume that $f_j = g_j$ for all $2 \leq j \leq n$. Then

$$g_{n+1} - f_{n+1} = g_{n+1} - f_n - f_{n-1} = g_{n+1} - g_n - g_{n-1}$$

$$= \frac{1}{\sqrt{5}} \left(a^{n+2} - a^{n+1} - a^n \right) + \frac{1}{\sqrt{5}} \left(b^{n+2} - b^{n+1} - b^n \right)$$

$$= \frac{a^n}{\sqrt{5}} (a^2 - a - 1) + \frac{b^n}{\sqrt{5}} (b^2 - b - 1) = 0.$$

14. Let b_n denote the right side of the equation. One checks directly that $b_n = a_n$ for n = 0, 1. Let $n \ge 2$ and assume that $b_j = a_j$ for $2 \le j \le n$. We show that $b_{n+1} = a_{n+1}$ or, equivalently, $2b_{n+1} = b_n + b_{n-1}$:

$$b_n + b_{n-1} = \left[\frac{(-1)^n}{3 \cdot 2^{n-1}} + \frac{(-1)^{n-1}}{3 \cdot 2^{n-2}} \right] (a_0 - a_1) + \frac{2}{3} (a_0 + 2a_1)$$

$$= \frac{(-1)^{n-1} (a_0 - a_1)}{3 \cdot 2^{n-2}} \left[\frac{-1}{2} + 1 \right] + \frac{2}{3} (a_0 + 2a_1)$$

$$= \frac{2(-1)^{n+1} (a_0 - a_1)}{3 \cdot 2^n} + \frac{2}{3} (a_0 + 2a_1)$$

$$= 2b_{n+1}.$$

15. The set of all nonnegative integers of the form m-qn, $q\in\mathbb{Z}$, is nonempty (Archimedean principle) hence has a smallest member r = m - qn (well ordering principle). If $r \geq n$, then $0 \leq r - n = m - (q+1)n < r$, contradicting the minimal property of r. Therefore, m = qn + r has the required form. If also m = q'n + r', $q' \in \mathbb{Z}$, $r' \in \{0, \dots, n-1\}$, then |q-q'|n=|r-r'|< n hence q'=q and r'=r.

16. Clearly, n=1 has a decimal representation. Assume all integers $q \le n$ have decimal representations. By the division algorithm, n+1=10q+d, $d \in \{0,1,\ldots,9\}$. Since $q \le n$, q has a decimal representation, say $q=d_pd_{p-1}\ldots d_0$. Then

$$n+1 = \sum_{k=0}^{p} d_k 10^{k+1} + d = d_p d_{p-1} \dots d_0 d.$$

Therefore, by induction, all positive integers have decimal representations. To see that the representation is unique, suppose that

$$n = \sum_{k=0}^{p} d_k 10^k = \sum_{k=0}^{q} e_k 10^k, \quad d_j, e_j \in \{0, 1, \dots, 9\}.$$

Then

$$e_0 - d_0 = \sum_{k=1}^{p} d_k 10^k - \sum_{k=1}^{q} e_k 10^k,$$

which is divisible by 10. Therefore $e_0 = d_0$ and $\sum_{k=1}^p d_k 10^k = \sum_{k=1}^q e_k 10^k$. Arguing similarly, we see that $e_1 = d_1$. Continuing in this manner, eventually p = q and $e_j = d_j$, $0 \le j \le p$.

Section 1.6

1.
$$x = c - \frac{d \cdot e - (b \cdot c)(b \cdot d)}{1 - (a \cdot b)(b \cdot d)} a$$
, $y = e - \frac{b \cdot c - (a \cdot b)(d \cdot e)}{1 - (a \cdot b)(b \cdot d)} d$.

2. By 1.6.3,

$$||x+y||_2^2 = ||x||_2^2 + ||y||_2^2 + 2(x \cdot y)$$
 and $||x-y||_2^2 = ||x||_2^2 + ||y||_2^2 - 2(x \cdot y)$.

Adding and subtracting gives (a) and (b).

(c) By the triangle inequality,

$$||x||_2 = ||x - y + y||_2 < ||x - y||_2 + ||y||_2$$

hence $||x||_2 - ||y||_2 \le ||x - y||_2$. Similarly, $||y||_2 - ||x||_2 \le ||x - y||_2$.

(d) Use induction.

3. By 1.6.3,
$$||\boldsymbol{x}_1 + \boldsymbol{x}_2 + \dots + \boldsymbol{x}_k||_2^2 = \sum_{i,j=1}^n \boldsymbol{x}_i \cdot \boldsymbol{x}_j = \sum_{j=1}^k \boldsymbol{x}_j \cdot \boldsymbol{x}_j$$
.

4. For the triangle inequality, we have

$$||\boldsymbol{x} + \boldsymbol{y}||_1 = \sum_{j=0}^n |x_j + y_j| \le \sum_{j=0}^k |x_j| + |y_j| = ||\boldsymbol{x}||_1 + ||\boldsymbol{y}||_1$$