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PROBLEM SOLUTIONS

CHAPTER 1. PRELIMINARY CONCEPTS

1-1 A 1.4-cm diameter sphere placed in a freestream at 18 m/s at 20°C and 1 atm. Compute the
diameter Reynolds number for 3 cases:

a) Air: Table A-2 - at , p=1. m, u=1. -3 Pa-s. Then
Air: Table A-2 20°C, p=1.205 kg/ 3 uw=1.81 E-5P Th

(1.205)(18)(0.014)
1.81E-5

Rep =pVD/u = =16,800 (Ans.)

(b) Water: Table A-1 - at 20°C, p =998 kg/m3 , 0=1.002 mPa-s:
Rep = (998)(18)(0.014)/(0.001002) =251,000 (Ans.)

(c) Hydrogen: Table A-3, M=2016, then R =8313/M=4124 m?/s*-°K. Thus estimate
p=p/RT = (101350)/(4124)(293) =0.0838 kg/m3. From Table 1-2 for hydrogen,

068

no~ po (T/T,)" =(8.411E-6)(293/273)"" =8.83 E-6 Pa-s

Then Rep, =(0.0838)(18)(0.014)/(8.83 E-6) = 2,400 (Ans.)

1-2 At what wind velocity will an 8-mm-diameter wire “sing” at middle C (256 Hz)?

For air at 20°C, assume v ~1.5E-5 m?%s. From Fig. 1-8 guess a vortex-shedding Strouhal
number of 0.2 [check the Reynolds number afterward]. Then
fD/U = 0.2=(256)(0.008)/U, or U~10.24 m/s. At this speed the Reynolds number is

Rep = UD/v=(10.24)(0.008)/1.5E-5=5400. This is nicely in the range where fD/U=0.2.

Perhaps we could iterate just a little more closely to obtain

fD/U = 0.205, Re = UD/v = 5300, or U =10.0 m/s (Ans.)

1-3  If U=12 m/s in Prob. 1-2 above, what is the wire drag in N/m?
For air assume p=1.205 kg/m3 and v =1.5E-5 m%/s. The Reynolds number is

Rep = UD/v =(12)(0.008)/(15E-5) = 6400
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From Fig. 1-9 at this Reynolds number, estimate a drag coefficient of 1.1. Then

Fieg = Cb @ V2 (DL) = 1.1(0.5)(1205)(12)* (0.008)(1.0) =0.76 N'm  (Ans.)

1-4  Given, without proof, the Poiseuille-paraboloid laminar-pipe-flow formula from
Chap. 3, u=(C/w)(R*>-r?), find the wall shear stress if U =30m/s, D=1 cm, and

pn = 0.3 kg/(m-s). [The exact analysis will be given in Sect. 3-3.1.]
Examining the formula, we see that the maximum velocity occurs on the centerline:

U =u(r=0)= CR*j =30 m/s = C(0.005)*/(0.3) , or: C=3.6ESN/(m’-s?)

With C thus known for this data, we may evaluate wall shear stress by differentiation:

ou
Twall = M E

r=0

u(&J =2RC= 2(0.005)(3.6E5) =3600 Pa (Ans.)

1)

We should check the Reynolds number Rep, but we don’t know the density. But “oil” is usually
in the range p~900 kg/m>. Then Rep = puy,, D/n=(900)(30)(0.01)/(0.3) 900, which is

well within the laminar-flow range.

1-5 Glycerin at 20° _ is confined between two large parallel plates. One plate is fixed and the
other moves parallel at 17 mm/s . The distance between the plates is 3 mm . Assuming no-
slip, estimate the shear stress in the glycerin, in Pa.

Solution: Glycerin at 20° _ is confined between two large parallel plates. One plate is fixed and
the other moves parallel at /=17 mm/s . The distance / between the plates is 3 mm.

u=V
4 Moving plate
]—
4
H
Glycerin
) 4 .
y=0_1 7
Fixed plate

For glycerin at 20" _, the viscosity gz =1.5 kg/m-s.
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wv (15 kg/m-s)(17><10’3 m/s)

Assuming no-slip, the shear stress 7 =—= =85Pa. (Ans.)
8 P h (3 x107 m/s)

1-6  Given a plane unsteady viscous flow in polar coordinates:

Vo

elocity

Y

r

Compute the vorticity and sketch some profiles of vorticity and velocity.

From Appendix B, the vorticity is

) :——(rve)ziexp _
“oror 2vt 4vt

The instantaneous velocity and vorticity profiles are plotted at top. At t =0, the flow is a “line”

vortex, irrotational everywhere except at the origin (o) = oo).

1-7  Given the two-dimensional unsteady flow u=x/(1+t), v=y/(1+2t), find the equation

for the streamlines which pass through the point (x,,y,) at time (t = 0). From the geometric

requirement for two-dimensional streamlines at any instant,
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dy

dy _V_ y(l+t)
dx

Cu x(1+2t)

streamline

Holding time t constant, we may separate the variables and integrate to obtain y=C x", where

=(1+t)/(1+2t). To satisfy the initial condition, we must have C =y /(x,)". The final result

for the (unsteady) streamlines is

n
Y| X), po (Ans.)
1+2t

1-8  For the inviscid streamline approaching the forward stagnation point of the cylinder in
Fig. 1-5, evaluate the strain rates and the time to go from (2R, ) to (R, 7)

From Egs. (1-2), v, =U,, (1 ~R2)? ) c0s0, vy =-U,, (1 + R )sine

Then, from Appendix B, evaluate the normal and shear-strain rates along the line 0 =

v, 2U,R%cos®,  2U,R?

81‘1‘ - or - r3 |9:TE__ 1'3

1ovg v, 2U_R?cosH 2U, R?
B =~ T T3l t 3

roo r r r

1ov, vy vg 4U_R%sin6
gp=——t 400 TR P T =0 Ans. a

0 r ae ar r 1‘3 |9—ﬂ: ( )

The particle moving toward the stagnation point gets shorter in the “r” direction and fatter by the
same amount in the “0  direction, thus maintaining constant volume for this incompressible flow.
The shear strain rate is zero because we are on a line of symmetry.

For part (b), by definition, the radial velocity along the stagnation line (9 = n) is

dr
vV, =—

=g = U, (1-R%/’)

We may separate the variables and integrate to find the time of travel between (ZR) and (R) :

R
-U t—j +51n(r_Rj = —o0 (Ans. b)
2 R2 2 r+R IR
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It takes infinite time to actually reach the stagnation point, where V=0.

1-9  Use the approximate equation of state for water,

p/pe ~(A+1)(p/p,)" —A  with A~3000,n=7
to compute the following quantities for water, p, =1 atm, p, =998 kg/m3 :
(a) the pressure required to double the density of water:

p/py =(3000+1)(2.0)” =3000=381128, or: p= 381,000 atm (Ans. a)

(b) the bulk modulus K of water at 1 atm. By definition,

dp npn—l
K =p—I|r=pp, (A+1)———=np, (A+1)=21007 p, at I atm.
dp ph
Thus the bulk modulus is K= 21,007 atm = 2.13 E9 Pa (Ans. b)

(c) the speed of sound at 1 atm:

1/2 2.13 E9Pa
a|1 atm = (K/po) = (—

1/2
=1 998 ko7 3j =1460 m/s (Ans. ¢)
g/m

These are accurate estimates of the measured compressibility and sound speed of water.

1-10 As shown, a plate slides down an incline on a film of oil of viscosity p = 5E-4 slug/ft-s

3’ x 3" area 0.005" oil

(a) Estimate the terminal sliding velocity V*:
Acceleration is zero, so

W sin =1A = uﬂA

Ay
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where A is the plate area touching the oil film.

Assuming a linear velocity profile, AV = V" and Ay = the film thickness, hence

AV \'A
W sind = 40sin (30°) = n 2 A = (0.0005)| ——— |(9
sind = 40sin (30°) =p Ay ( {0.005/12}”

in English units. Hence solve for V*(terminal) =1.85ft/s (Ans. a)

(b) Estimate the time for the plate to accelerate from rest to 99% terminal velocity: If x is down
the incline, then a dynamic force balance gives

ZFX:WsinG—plA:Ed—V,
Ay g dt
or: d—V+ guA V =g sinb
dt | WAy

The solution to this first-order linear ordinary differential equation is
. A
V= V¥ 1-exp| - ¥ (|| = 0.99v# ifpr = ZOOWAY
WAy gHA

For our data, then, the time to reach 99% of terminal velocity is

. 4.605(40)(0.005/12)
v= (32.2)(0.0005)(9.0) =0-33 sec (Ans. b)

1-11  Estimate the viscosity of nitrogen at 86 MPa and 49°C. From Appendix A-3, for N,, read

T, =226°R =126°K, p. =33.5 atm, p,=18.0 E-6 Pa-s. At this high pressure, we cannot use
“low density” formulas but rather must use Fig. 1-17. Compute ratios:

L D428 555 P o BOE0 555 Read x25+01
T, 126 pe 33.5(101350) n
Then our estimate is p=2.5 p, =2.5(18.0) =45+2 pPa-s (Ans.)

The agreement with the measured value (also 45 pPa-s) is excellent.

1-12  Estimate the thermal conductivity of helium at 420°C and 1 atm. This is truly “low-
density”, since p<p, and T >>T_. A power-law estimate would be based on 0°C:

420+273

k~k, (T/T,)" = (0.142W/rn-K)( 7

072
) ~0.278 W/m-K
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Alternately, we could use the kinetic theory formula, Eq. (1-41). From Appendix A-5 for helium,
c=2.551A, T, =10.22°K, and M =4.003. First use Eq. (1-34) to compute

420+273 j‘("“‘s N ( 420+273

Q, ~1.147
10.22 10.22

.20
+ 0.5} =0.6226  [check with Table 1-1]

Our estimate from (1-41) then is

_0.0833T _ 0.0833,/(693)

o, M (2.551)7(0.6226) \/4.003

k =0.27 W/m-K

The agreement with the experimental value of 0.28 W/m-K is good for both estimates.

1-13 According to Table C-5 and Fig. 1-15, at what pressure is the viscosity of CO2 equal to
approximately 30x10~> Pa-s when the temperature is 800°R ?

Solution: T —800°R = 444.4444 K , T = 548°R =304.4444 K | 7 - L _ 4444444 K 0

T 3044444K

-5
#=30x10" Pa-s, u =3.43x10° Pa-s, x, _HE 30x10 76Pa S 875
u. 343x107 Pa-s

Thus, p, =25 (from Fig. 1-15).

Then, pressure p=p.p, = (72.9 atm) x25=1822.5 atm. (Ans.)

1-14  Fit the given viscosity-vs-temperature data for ammonia gas to power-law and Sutherland-
law formulas.

(a) The power-law is an excellent fit to this data. Taking T, =300°K, we obtain, by least-squares
to a log(p) vs. log(T) plot,

1.051
B [lj +0.3% for T, =300°K (Ans. a)
Ho T

o
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(b) The Sutherland-law is not an especially good fit to the data, which has p rising with T at an
increasing rate. It may be fit to least squares by minimizing the functional

¢ . E)0s)]

where p* =i,T’k =Tl,S =T_
(6] (6]

for the given six data points. The minimum is found by differentiating the functional with respect
to S*,V with the result S = 1.91, or:

Spest it *573°K  (Ans. b)

The error is £2.4%, or eight rimes more than the power-law fit.

1-15 Experimental data for the viscosity of helium at low pressure are as follows:
T,°C 0 100 200 300 400 500
u, Pa-s 1.87x10° 232x10° 273x10° 3.12x10° 348x10° 3.48x107

Fit these values to a suitable formula.

Solution: Experimental data for the viscosity of helium in Kelvin scale at low pressure are as follows:

T,K 273 373 473 573 673 773

u, Pas 1.87 x107° 232x10° 273x10° 3.12x10° 3.48x10° 3.48x107

. T n
Using power law curve, A [—) .
#y \T;

0

For p, =1.87x107 Pa-s and 7, =273 K

T 373K 473 K 573K 673 K 773 K

n 0.691 0.688 0.69 0.688 0.597

5
_n
Therefore, the mean value »n = % =0.671 (4 % accuracy for 250 K<7'<1000 K). (Ans.)

1-16 Analyze newtonian flow between parallel plates (Fig. 1-15) with a finite s/ip velocity
Su =[(du/dy) at both walls.
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The velocity profile is still linear, but with slip at both walls the slope is less, as shown in
the sketch:

du/dy = (V - 26u) /h

U

0 b
Introducing ou from the slip relation, we obtain

d_u = v or: T, = v at both walls (Ans.)
dy h+2( h+2(

1-17  Derive Eq. (1-106) from a balance of forces on the differential surface-area alement shown
in the problem.

Since the sliver of area is negligibly thin, it has no weight. The pressures act on a projected
surface area dS,dS,. The surface tension forces are slanted slightly upward, at angles

(d6,/2) and (dB,/2), respectively. The force balance is
27 T +(p—p, )dS,dS, =0

For differentially small angles, sin(dG) =d0. Clean up this equation and rearrange:

/ 1n AN \ / 1 1 \
p=p,-7 T (Ans.)
\UL)X Uk)y } KL\X l\y }

since, by definition, d0/dS =1/R, where R is the radius of curvature.

1-18 Two bubbles of radii R; and R, coalesce isothermally into a single bubble R;. Find the

radius of the new (single) bubble.
Because of surface tension, the pressure inside a bubble (which has two surfaces) is higher

than ambient, p=p,+47 Assuming that no interior-bubble air mass escapes during the

coalescence, m; + m, =m;s, or, for an ideal isothermal gas of temperature T,

po+4TIR 4n 3 p,+4TIR, 4 5 p,+4T/Ry A 5
Lo 7 PR3y Lo 7 2 B 3 Lo 7 71T B
RT 3 RT 3 RT 3
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where R is the gas constant. Canceling common terms and cleaning up, we have
PR 43R = p, (R + B3 ) +43(RY + 5 ) (4ns.)

This must be solved numerically or algebraically for the new radius R;.

1-19 In Prob. 1-1, if the temperature, sphere size, and velocity remain the same for air flow, at
what air pressure will the Reynolds number Rep, be equal to 10,000?

Solution: From Prob. 1-1, T=293 K, D=0.014 m, J' =18 m/s, and u=1.81E-5 Pa-s. Use the
specified Reynolds number to compute the required air density:

_pVD _ p(18 m/s)(0.014 m)
- Y7, ~ 1.81E-5 kg/m-s

Re;, =10,000 Solve p =0.718 kg/m’

p p
Ideal gas: p=0.718=——=—-———_ Solve for p =60400 Pa ~ 60 kPa Ans.
5P RT  (287)(293) d (dns.)

1-20 A solid cylinder of mass m, radius R, and length L falls concentrically through a vertical tube
of radius R+ AR, where AR << R. The tube is filled with gas of viscosity # and mean free path (
Neglect fluid forces on the front and back faces of the cylinder and consider only shear stress in the
annular region, assuming a linear velocity profile. Find an analytic expression for the terminal
velocity of fall, V, of the cylinder (a) for no-slip; (b) with slip, Eq. (1-91).

Solution: (a) For no-slip, the shear stress in the thin annular region between cylinders is

ou V 14
T= ﬂg—y =H e then W =mg = Fypqr = T Ay = (ﬂﬁj(zﬁﬂ)
mgAR
Solve for V,,, g, = 22RL Ans. (a)
(b) For slip, modify the shear stress (see Prob. 1.16 for another example):
ou=1_ 4 ! du__V H

w b dy AR+2 i
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. mg (AR +2(
As above in part (a), mg =74, Vy,;, = — o RL Ans. (b)
1-21 Solve P1-20 for the terminal fall velocity for no-slip if the cylinder is aluminum, with

diameter 4 cm and length 10 cm . The tube has a diameter of 4.02 cm and is filled with
argon gas at 20° _ .

. . . .. ou
Solution: For no-slip, the shear stress 7 in the thin annular regionis 7= y—=u

r
=
”
Then’ W:mg :F;hear :TAwall :[/’l_j(zﬂ-RL)'
‘ AR
P, =2710kg/m*, R=0.02m, L=0.1m, g=9.81 m/s’; then, mg = p,7R’L =3.3408 N..
AR =(R+AR)-R=0.0201 m—0.02 m=0.0001 m

w, =224x107° Pa-s

_ mgAR _ (3.3408 N)(0.0001 m)
" 27RLu,  (0.01256 m*)(2.24x10” Pa-s)

Therefore, V

n

=1187.4431 m/s (Ans.)

1-22  In Fig. P1-22 a disk rotates steadily inside a disk-shaped container filled with oil of viscosity
M. Assume linear velocity profiles with no-slip and neglect stress on the outer edges of the disk.
Find a formula for the torque M required to drive the disk.

7 Clearance
A h
|/
Y 7 Z)
4
NN A —
Fig. P1-22

Solution: The disk tangential velocity varies with radius, V' =, hence the local shear stress is
7= Qr/h on the top and bottom of the disk. The torque on a circular strip dr wide is

dM = (rdA)r(Z sides) = Zr[,u%j 27r dr
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7z,uQR4

QR
or: M:4ﬁﬂ—jr3dr: Ans.
h 0

1-23  Show, from Eq. (1-86), that the coefficient of thermal expansion of a perfect gas is given by
L =1/T. Use this approximation to estimate f of ammonia gas (NH3) at 20°C and 1 atm and

compare with the accepted value from a data reference.

Solution: Introduce the ideal-gas law into the definition of £:

ﬁ:_i(a_pj :_li(ij :_l(ij:l[gjzl Ans.
p\or), poTr'\RT), p\RT*) p\T) T

It doesn’t matter what gas we are considering, ammonia or carbon dioxide or whatever, the ideal
gas approximation predicts S =1/T =1/293K = 0.00341 K Ans.

This estimate is very close to estimates for ammonia in the literature, e.g., White (1988).

1-24  The rotating-cylinder viscometer in Fig. P1-24 shears the fluid in a narrow clearance Ar, as
shown. Assuming a linear velocity distribution in the gaps, if the driving torque M is measured, find
an expression for [l by (a) neglecting, and () including the bottom friction.

Viscous
I R fluid p

L Solid
cylinder

—> <+ Ar<<R

Fig. P1-24

Solution: (a) Analyze the annular region only. The shear stress equals y(du/dy) ~ y(QR/AR).
The shear force on the cylinder side is normal to the radius, and the driving moment must be

2 3
QR QRL
M = [ RdF = [R(zdA,,) = IR(,UE)RLa@:Z;w =
0
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Solve for u = M;AI: Ans. (a)
27 QR°L
(b) On the bottom, the shear stress varies linearly with radius:
R R 4
B B Qr 2mQuye 3, 2 QuR
Mbottom—II’TdAW—.([F[,UEj%Wdr— AR .(l;}" dr—w
3 4
Thus My, = 27 Q pR°L + 27 €2 uR , Solve u= AfAR Ans. (b)
AR 4AR 27 QR (L+R/4)

1-25 Consider I m® of a fluid at 20°C and 1 atm. For an isothermal process, calculate the final
density and the energy, in joules, required to compress the fluid until the pressure is 10 atm, for
(a) air; and (b) water. Discuss the difference in results.

Solution: (a) The work done is —I pdv, where v is the volume. From the ideal-gas law,

pv=mRT. Thus
tmRT v
Wi, :—Ide:—j ah):—mRTln[—zlzplu1 ln(&]
1 v Yy D
3, (10
= (101350Pa) (1’ ) n T |=233,0005 Ans. (a)

(b) For water, we could use the compressed-liquid tables, but we can estimate the (very small)
result from the bulk modulus K = p(dp/dp),. =2.23E9 Pafor water, Eq. (1-84). The change in

volume of the water is very small when the change in pressure is only 9 atm:

1 )[ (9)(101350P,
Auz—UAp=—( " )[( ) a)]z—o.oo41m3

K 2.23E9Pa

A slightly more accurate estimate from Prob. 1-9, or from the compressed-liquid tables, gives

Av ~—0.00042 m>. Then the work required to compress water from 1 atm to 10 atm is
Wiy ==[ pdv = =g Av=—[(5.5)(101350Pa) ](~0.000421° | ~ 230 3 dns. (b)

This is 1000 times less than Ans.(a) for air above, since water is nearly incompressible.
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1-26 Equal layers of two immiscible fluids

are being sheared between a moving and a fixed v
plate, as in Fig. P1-26. Assuming linear velocity hi2 m
profiles, find an expression for the interface  y_ _ _
velocity U as a function of V, 14, and 1. \ u?
hi2 y o
| | Fixed
Fig. P1-26

Solution: The shear stress is the same in each layer:

z'1=,ulH=z'2=,u2£, solve for U=—51—
h/2 h/2 W+ 1y

V Ans.

1-27  Utilize the inviscid-flow solution of flow past a cylinder, Egs. (1-3), to (@) find the location
and value of the maximum fluid acceleration a,,,, along the cylinder surface. Is your result valid

for gases and liquids? (b) Apply your formula for a,, to air flow at 10 m/s past a cylinder of

diameter 1 cm and express your result as a ratio compared to the acceleration of gravity. Discuss
what your result implies about the ability of fluids to withstand acceleration.

Solution: Along the cylinder surface, = R, and Egs. (1-3) reduce to v, =0 and vy =-2U,_, sin 6.
Thus, along the surface, the absolute velocity is V=2U_, sin(s/R), where s is the arc length along

the surface, measured from the front stagnation point. There is a convective acceleration given by

a= Vd—V =| 2U,, sin - %cosi
ds R R R

(a) The acceleration is a maximum at € =135°, or s/R=7x/4. Thus a,,,, = 2U020 /R. Ans. (a)

max

This result is valid for all fluids, gases or liquids, in the inviscid approximation.

(b) For the given data, R =0.005 m, U, =10 m/s, compute, independent of fluid properties,

e = 2(10 m/s)7/(0.005 m) = 40,000 m/s” ~ 4080 g’s Ans. (b)

The lesson is that fluids have no fear of huge accelerations that would defeat a human being.
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1-28 The coefficient of thermal expansion is defined as
1o
po_Lop
poT|,

Determine S for an ideal gas with p = pRT . Show your work in detail.

1o
Solution: Given, the coefficient for thermal expansion is £ = _~r
pdT|,
Using p = pRT for ideal gas,
1 0 1 1 RT) 1
() A
pOT\RT ), p\ RT o\ RT T

2
1-29 Starting with Maxwell’s low-density approximation of the viscosity, namely, u = 3 pl

and Newton’s expression of the wall shear stress as a function of the velocity gradient,
~ N\

T, = ,u[a—uJ , express Maxwell’s slip velocity, u, =/ ,
), N

(a) as a function of the shear stress, density, and speed of sound a ;

(b) as a function of the Mach number, the mean-flow velocity U , and the skin friction coefficient,

2
C, =

Solution: Given, Maxwell’s low-density approximation of viscosity is ,uzg pl , where p=

density, { mean free path, and a =speed of sound.

. . o 0
Newton’s wall shear stress 7, as a function of velocity gradientis 7 = ,u(a—uj .
Y Jw

. . . (
Slip velocity u,, 1s u,, =ar,, and constant « =-
U
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[

Therefore, u, ~ ( ¢ 3%
N2 r =l ‘
37
(Ans.)
g . . . 2
Dividing by mean-flow velocity U and arranging gives Mo 3Y TW2 .
4 a pU
. U e o 2t
Mach number is Ma = —, and skin friction coefficient is C = Uwz .
a P
3
Therefore, u,, = ZMa-U -C,. (Ans.)
1-30 Consider a hydraulic lift with a 50 cm diameter shaft sliding inside a housing with an

inside diameter of 50.02 cm . If the shaft travels at 0.25 m/s, calculate the shaft resistance
to motion per unit length. You may use water as the working fluid.

Solution: Shaft resistance F'to motionis F =74, = ( U &j(%fﬂ) .
R=025m, L=1m, V=025 m/s

AR=(R+AR)-R=0.251 m-0.25m=0.001 m

Ly =1.02x107 Pa-s (at 20°_ and 1 atm)

(1.02x10°° Pa-s)(0.25 m/s)27(0.25 m)(1 m)

Eon = =4.0055x10" N Ans.
unit-length (0001 m) ( )

1-31 Consider a thin air gap of 1 mm that is formed between two parallel surfaces that are

maintained at 20° _ and 40" _, respectively. In the case of a quiescent medium (say still
air), calculate the heat transfer rate across the gap per unit area.

Solution: The rate of heat transfer per wunit area (in one-dimensional space) is
kT(x+Ax)—T(x)
" .

q=-
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The parallel plates are at 20" _ and 40" _ . Then, & needs to be determined for 30" _ .

. TY 303K )™
Using power law curve, k,, =k,| — | =(0.0241 W/m-K) pyl B 0.0262 W/m-K..
0
Therefore, g ~—(0.0262 W/m- K)[Mj =524 W/m®. (Ans.)
0.001 m
1-32 In the presence of viscosity, the pressure drop associated with a fully developed laminar
motion in a horizontal tube of length L and diameter D may be evaluated analytically.
One finds:
128ulLQ
Ap=p —p,= D

D 1 .
where x4 stands for the dynamic viscosity and QO = 1 zD*V denotes the volumetric flow rate. Show
that the corresponding head loss may be written as
D —D LV?
=Bl
pg D2g

What value of f,,,, do you obtain?

am

Solution: Consider fully developed flow and apply steady-flow energy equation between section 1
and section 2.

2 2
(£+aV—+zj :(£+QV_+2J +hy—h,
pg 28 ), \pg 28 )
Use z, =z, (horizontal), ¥, =V, (constant cross-section), &, = a, (same velocity profile), ;=0

(no pump); to simplify as s, = PP & .. (D

PE PE

O O

A4
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Empirical data on viscous losses in straight sections of pipe are correlated by the dimensionless

Darcy friction factor f = Ap % ... (2
— oV
2 P
. 1 L
From equation (2), Ap=f—pV"— ... (3)
2 D
- : : LV? :
Combining equations (1) and (3) gives h, = f‘amEQ_ (where f =f,., for laminar flow).
g

(Ans.)

In the presence of viscosity, the pressure drop associated with a fully developed laminar motion in a
128uLQ

horizontal tube of length L and diameter D is Ap=p,—p, = D .. (4)
T
. o ) . | S
Dynamic viscosity is u, and volumetric flow rate is QO = Zﬂ'D Vo...(5)
For fully developed laminar flow, using equations (4) and (5) in equation (2) gives
128uL| L 2D
;o 4 2 D 64 64 (Ans)
am zD* pVP L pVD/u Re, '
1-33 A time-dependent, two-dimensional motion has three velocity components that are given
by
u= * V= —y =
1+ at 1+ bt

where a and b are pure constants. The objective of this problem is to compare and contrast the
streamlines in this flow with the pathlines of the fluid particles.

(a) Find the equations governing the streamline that passes through the point (1,1) at time ¢ .

(b) Calculate the path of a particle that starts at 7, = (xo , yo) = (1, 1) at £ = 0. Determine the location

of a particle at £ =1, denoted as 7, .

(c) Use the results of part (a) to determine the condition under which the streamlines and pathlines
coincide.
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Solution: The geometric requirement for two-dimensional streamlines is as follows:

K:Q: y(1+at)
u dx x(l+bl)

By separating the variables, @ = (

y

X

1+at)@
1+ bt

By integrating, In(y) = G*Zijm@ﬁ In(C).
+

[1+at
1+bt

The condition of the streamline passing through the point (1, 1) at time ¢ is C =1 must be satisfied.

Solving this gives y =Cx (where C is the integration constant).

I+at
Therefore, the governing equation is y = x(“b’ j ... (D) (Ans.)

X

. . . .. odx
The rate of change of x component of particle velocity with respect to time is % = " .
t +at

1
By separating the variables and integrating, x = C, (1 + at)g (where C, is the integration constant).

. .. d
The rate of change of y component of particle velocity with respect to time is g_r

dt 1+bt
1

By separating the variables and integrating, y = C, (1 + bt )Z (where C, is the integration constant).

Att=0,x=x,=1=C, and y=y,=1=C,.

1
o (1+bt)p
Therefore, the path of the particle is y = =x ... (2) (Ans.)

(1+at)a

1

1
Therefore, at t =1, x=x, =(1+a)« and y =y, =(1+b)s.

Then, 7 = (x, yl)=((l+a)clz, (1+b)2j. (Ans)

Comparing equations (1) and (2), we can say that the condition under which the streamlines coincide
with pathlines is a=b=0.
(Ans.)


https://ebookyab.ir/solution-manual-for-viscous-fluid-flow-frank-white/

https://ebookyab.ir/solution-manual-for-viscous-fluid-flow-frank-white/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1-34 A tornado may be simulated as a two-part circulating flow in cylindrical coordinates, with
v =v =0,
wr (r < R)
Vv, = 2
0 R (r > R)
r

(a) Calculate the divergence of the velocity. Is the flow compressible or incompressible?
(b) Determine the vorticity. Is the flow rotational or irrotational?

(c) Determine the strain rates in each segment of the flow. What is the sum of the three normal strain
rates?

Solution:
Ve (1)

~
N
—

;

el
-

v

10 10 0
Divergence of velocity is V-v=——/(rv )+——(v,)+—(v.)=0 (incompressible).
g y o )=o)+ —(v.) (incomp )
(Ans.)
1ov. ov, )\~ ~ ~
Vorticity is Q=Vxv= % T |
rof oz \oz or) \r or r oo )
L 19(rv,)
Only nonzero component of vorticity is Q_=— poant (Ans.)
r or
For segment (1), Q_ =2 (nonzero; thus rotational). (Ans.)
For segment (2), €2, =0 (irrotational). (Ans.)
. . . I(ov, v,
Only nonzero component of tangential strain rate is ¢, = 53 ) (Ans.)
roor
For segment (1), &, =0. (Ans.)
oR’
For segment (2), ¢, =~ (Ans.)

2
r
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, : ov 10 ov
The sum of normal strain rate components is &, +¢&,,+¢&,. =——+ L2 Py,
r r rol) oz

(Ans.)

1-35 In modeling the motion of an 8-meter diameter tornado rotating at an angular speed of
@ at the point of maximum swirl, it is possible to use the Maicke—Majdalani profile

(Maicke and Majdalani 2009) as a piecewise approximation for which v. =v, =0 and
the tangential velocity is given by

16a)r[1 —In (r2 )] 0<r<1 (inner, forced vortex segment)
v (r) = 160

r

r>1 (outer, free vortex segment)

(a) State whether the flow is 1D, 2D, or 3D; steady or unsteady; and specify v, (r) as v —> 0.

(b) Calculate the divergence of the velocity. Is the flow compressible or incompressible?
(c) Determine the vorticity. Is the flow rotational or irrotational?

(d) Determine the strain rates and the shear stresses in the inner and outer flow segments.
(e) What is the limit of v, (r) as » — 07 Hint: In taking the limit, it is helpful to remember that

(ln u) = — and that, in the inner segment, the tangential velocity can be rewritten as
u

Solution: Ve

I ——

v

The velocity varies with respect to the radial distance » from the centerline and is independent of
the axial distance z or of the angular position 6. This represents a typical one-
dimensional flow. (Ans.)

Since % = % = % =0, the flow is time invariant (steady). (Ans.)
4 t 4
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As r >, v,(r)—>0. (Ans.)
Divergence of velocity is V-v = lg(r'v )+ 1 i(vg ) + g(v ) =0 (incompressible). (Ans.)
ror: "7 roé o0z
1 n n A
Vorticity is Q=Vxv= (— &, —%j
rof oz \oz or) \r or r oo )
. 10(rv,)
Only nonzero component of vorticity is 2, =— poant
r or
For segment (1), Q_ = 32a)1n(i2j (rotational). (Ans.)
r
For segment (2), €2, =0 (irrotational). (Ans.)

. . . 1(0
Only nonzero component of tangential strain rate is ¢, =— (ﬁ — V_ej .

28 or r
For segment (1), &, =—16w. (Ans.)
For segment (2), ¢, =— 16260 .
r
(Ans.)
) . Ruw
Then, shear stress for segment (1) is 7,, = —32u@ and segment (2) is 7,, =——5—. (Ans.)
r

As r—>0, vg(r)—>0.

(Ans.)
1-36 The Taylor profile, which has been used to describe the bulk gaseous motion in planar,

slab rocket chambers (Maicke and Majdalani 2008), corresponds to a self-similar profile
in porous channels that bears symmetry with respect to the chamber’s midsection plane.
Using normalized Cartesian coordinates, the streamfunction may be written as

74 =xsin(% ﬂyj; 0<y<1, and 0<x</, where / represents the aspect ratio of the

chamber (i.e., the length of the porous surface normalized by the chamber half height). In
this problem, the velocity vector, normalized by the wall injection speed, may be expressed
as V(x,y)=ui+vj.
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