Exercises

1.1 Numbers 101: The Very Basics

- (a) The claim makes sense and is true.
 - (b) The claim makes no sense; $\sqrt{8}$ isn't a subset.
 - (c) The claim makes sense and is true.
 - (d) The claim makes sense but is false; consider a = 0 and $b = \sqrt{2}$.
 - (e) The claim makes sense and is true.
 - (f) The claim makes sense but is false: consider a = 0.
- 2. (a) The claim is false; let $a = \sqrt{2}$.
 - (b) The expression \mathbb{Q}^2 doesn't make sense.
 - (c) The claim is true. Since $a^2 > 0$, some large n will work.
 - (d) The claim is true; see Theorem ??.
 - (e) If $a \in \mathbb{Q}$ and $a \neq 0$, then $a\sqrt{2} \notin \mathbb{Q}$.
- 3. The number 1/a is an integer only if $a = \pm 1$. The number 1/a is rational for all nonzero integers a. The equation 1/a = a holds only if $a = \pm 1$.
- 4. (a) $1 \in S_1$ but $-1 \notin S_1$
 - (b) $2 \in S_2 \text{ but } 1/2 \notin S_2$
 - (c) $\sqrt{2} \in S_3$ but $1/\sqrt{2} = \sqrt{2}/2 \notin S_3$
- 5. (a) $1 \in S_1$ but $-1 \notin S_1$
 - (b) $2 \in S_2 \text{ but } 1/2 \notin S_2$
 - (c) $\sqrt{2} \in S_3$ but $1/\sqrt{2} = \sqrt{2}/2 \notin S_3$
 - (d) $\pi \in S_4$ but $\pi^2 \notin S_4$
- 6. Theorem ?? is useful. Because Q is closed under addition, multiplication, and division (if denominators aren't zero), expressions like those in (a) and (b) are rational—unless, for (b), p = q = 0. Expressions involving square roots are different. If p = q = 1, for instance, then $\sqrt{p^2+q^2} = \sqrt{2}$ is irrational; the same expression is rational if p=3 and q=4. The quantity $\sqrt{p^2+2pq+q^2}$ is always rational, since $\sqrt{p^2 + 2pq + q^2} = \sqrt{(p+q)^2} = \pm (p+q)$. (Note that $\sqrt{(p+q)^2} = p+q$ may be false.)
- 7. All of xy, x+y, x-y and x/y can be either rational or irrational. Examples are easy to find.

- 9. Assume toward contradiction that $\sqrt{3} = a/b$ for integers a and b, where a/b is in reduced form. Then squaring both sides gives $3b^2 = a^2$. This implies (essentially as in the proof of Theorem ??) that 3 divides both a and b, which contradicts the assumption that a/b is in reduced form.
- 10. (a) Say $x^2 \notin \mathbb{Q}$. If $x \in \mathbb{Q}$, then (by Theorem ??) x^2 is rational, too, which contradicts our assumption.
 - (b) Another proof by contradiction. If $x = \sqrt{2} + \sqrt{3}$ is rational, then $x^2 = 5 + 2\sqrt{6}$ is rational, too. This implies, in turn, that $\sqrt{6}$ is rational, which is absurd.
 - (c) Yet another proof by contradiction. Let's write $x = \sqrt{2} + \sqrt{3} + \sqrt{5}$, then we have $x - \sqrt{5} = \sqrt{2} + \sqrt{3}$, and suppose x is rational. Squaring both sides of the last equation and simplifying gives

$$x^2 - 2x\sqrt{5} = 2\sqrt{6},$$

which is progress, since only two square roots remain. Squaring again

$$x^4 - 4x^3\sqrt{5} + 20x^2 = 24,$$

which is even better, as only *one* square root is left. The last equation implies that

$$\sqrt{5} = \frac{x^4 + 20x^2 - 24}{4x^3}.$$

Because x is rational, so is the right-hand side above, and thus so is the left. This absurdity completes the proof.

11. Parts (i) and (ii) follow from the fact that 1 < a/b < 2. For part (iii), note

$$\frac{a'^2}{b'^2} = \frac{(2b-a)^2}{(a-b)^2} = \frac{4b^2 - 4ab + a^2}{a^2 - 2ab + b^2},$$

and substituting $a^2 = 2b^2$ shows that the last fraction is 2.

This all shows that if $\sqrt{2} = a/b$ holds for any positive integers a and b, then we can find a new fraction a'/b' with $\sqrt{2} = a'/b'$ and b' < b, which is absurd.

 \oplus

- 12. (a) \mathbb{Z}_2 is not closed under addition: $1+1=2\notin\mathbb{Z}_2$.
 - (b) \mathbb{Z}_2 satisfies all the requirements in Theorem ??.

- 13. Matrix addition in $M_{2\times 2}$ is commutative, but multiplication is not; examples are easy to find. Every matrix A in $M_{2\times 2}$ has an additive inverse -A, but multiplicative inverses exist only for some nonzero matrices (those with nonzero determinant); again, examples are easy to find. Distributivity does indeed hold in $M_{2\times 2}$.
- 14. If a and b are rational, then

$$\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 + 2b^2}.$$

This shows that elements of F have multiplicative inverses in F. The rest is easier.

- 15. Since $\ln \ln \ln n$ tends to infinity, it must exceed two for large n. The wellordering property guarantees that a smallest such n_0 exists. (Using a calculator we can see that n_0 has about 703 decimal digits.)
- (a) The answer is no. For instance, the set $\{1, 1/2, 1/3, ...\}$ is a subset of \mathbb{Q} , but has no least element.
 - (b) The set $R = \{1, 10, 100, 1000, \dots\}$ does have the well-ordering property; every nonempty subset includes a smallest power of 10.
 - (c) The set $T = \{-3, -2, -1, \dots, 41, 42\}$ (like all finite sets of real numbers) does have the well-ordering property, since every nonempty subset of T is also finite, and hence has a least element.
 - (d) If we trade "least" for "greatest" in the well-ordering property, the result no longer holds for \mathbb{N} , since \mathbb{N} itself has no greatest element. The property *does* hold for the finite set T, and also for $\mathbb{Z} \setminus \mathbb{N} =$ $\{\ldots, -3, -2, -1, 0\}.$

1.2 Sets 101: Getting Started

- 1. (a) $D \subset I$; $D \in C$.
 - (b) $B = \{ m \in A \mid m \text{ has 31 days} \}.$
 - (c) $A \times D$ is the set of ordered pairs (January, 2), (February, 2), ..., (December, 2), (January, 3), (February, 3), \dots , (December, 3). There are 24 such pairs.
 - (d) $A \setminus B = \{\text{February, April, June, September, November}\}; B \setminus A = \emptyset;$ $A \cap C = \{\text{November}\}; B \cap A = B; D \cap I = D; D \cup I = I.$
- (a) $S = \{0, -1\}$; T is the interval of numbers between $(-1 \sqrt{21})/2 \approx$ -2.791 and $(-1+\sqrt{21})/2\approx 1.791$.

- (b) Decide whether each of the following statements is true or false, and explain: $S \subset \mathbb{N}$ is false because $-1 \notin \mathbb{N}$; $S \subset T$ is true; $T \cap \mathbb{Q} \neq \emptyset$ is true, since $0 \in T \cap \mathbb{Q}$; $-2.8 \in \mathbb{Q} \setminus T$ is true.
- (c) The quadratic formula shows that $U = \{x \in \mathbb{R} \mid x^2 + x < 0\} =$ (-1,0).
- 3. (a) $\mathbb{R} \setminus A = (-\infty, 1) \cup (3, \infty)$
 - (c) $\mathbb{R} \setminus A = (-\infty, 1]) \cup [2, 3] \cup [4, \infty)$
 - (e) $\mathbb{R} \setminus A = \{0\}$
- 4. (a) $\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)$
 - (b) $I = (-\infty, \infty)$ has empty complement; $I = (-\infty, 17)$ has closed complement $[17, \infty)$; I = (0, 17) has complement $(-\infty, 0] \cup [17, \infty)$.
 - (c) $\mathbb{R} \setminus \mathbb{Z} = (0,1) \cup (-1,0) \cup (1,2) \cup (-2,-1) \cup \dots$
- 5. To say that a is in $\mathbb{R} \setminus (\mathbb{R} \setminus A)$ means that a is not in $\mathbb{R} \setminus A$; this means, in turn that $a \in A$.
- (a) Claim (i) is false. As one example, take $A = \mathbb{R}$ and $B = \emptyset$. Then $R \setminus (A \cup B) = \emptyset$ but $(R \setminus A) \cup (R \setminus B) = \mathbb{R}$.
 - (b) If A = B, then $A \cup B = A \cap B = A$, and both claims are clearly
 - (c) To prove that (ii) holds, suppose $x \in \mathbb{R} \setminus (A \cup B)$. Thus $x \notin A \cup B$, so $x \notin A$ and $x \notin B$; in other words, $x \in \mathbb{R} \setminus A$ and $x \in \mathbb{R} \setminus B$. This is just another way of saying that $x \in (\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B)$. The "vice versa" implication is similar.
- 7. We know $\mathbb{R} \setminus A_1 = (-\infty, 1] \cup [3, \infty)$ and $\mathbb{R} \setminus A_2 = (-\infty, 2] \cup [5, \infty)$. Also, $\mathbb{R}\setminus (A_1\cap A_2)=(-\infty,2]\cup [3,\infty) \text{ and } \mathbb{R}\setminus (A_1\cup A_2)=(-\infty,1]\cup [5,\infty).$ It's easy to see that, as claimed, $\mathbb{R} \setminus (A_1 \cap A_2) = (-\infty, 2] \cup [3, \infty) =$ $(-\infty,1]\cup[3,\infty)\cup(-\infty,2]\cup[5,\infty)=(\mathbb{R}\setminus A_1)\cup(\mathbb{R}\setminus A_2)$. Similarly, $\mathbb{R}\setminus$ $(A_1 \cup A_2) = (-\infty, 1] \cup [5, \infty) = ((-\infty, 1] \cup [3, \infty)) \cap ((-\infty, 2] \cup [5, \infty)) = (\mathbb{R} \setminus A_1) \cup (\mathbb{R} \setminus A_2)$
- 8. Here we have $A_1 \cup A_2 = (0,1) \cup (2,\infty)$ and $A_1 \cap A_2 = \emptyset$. Thus $\mathbb{R} \setminus A_1 = \emptyset$ $(-\infty,0]\cup[1,\infty)$ and $\mathbb{R}\setminus A_2=(-\infty,2].$ This implies that $(\mathbb{R}\setminus A_1)\cup$ $(R \setminus A_2) = (-\infty, \infty)$ and $(\mathbb{R} \setminus A_1) \cap (R \setminus A_2) = (-\infty, 0) \cup [1, 2]$. Consistent with De Morgan, $\mathbb{R}\setminus (A_1\cap A_2)=(-\infty,infty); \mathbb{R}\setminus (A_1\cup A_2)=$ $(-\infty, 0] \cup [1, 2].$
- 9. If $x \in T'$ then $x \notin T$. Since $T \supset S$, we have $x \notin S$, which means $x \in S'$, as desired.

5

- 10. Many possibilities exist for (a), (b), and (c). For (d) we could use I = $(0,\infty)$ and $J=(1,\infty)$; note that here, as in all possibilities for (d), one interval is contained in the other.
- 11. (a) I = (-42, 0) and $J = (0, \infty)$ work.
 - (b) I = (-42, 0) and $J = [0, \infty)$ work.
 - (c) The given conditions (draw a picture) mean that a < c < 0 < b < d, so $I \cup J = (a, d)$ which is indeed an open interval.
- 12. Suppose $a \in I \cup J$, $b \in I \cup J$, and a < x < b. We're done if we show that $x \in I \cup J$. This is trivial if x = c, so we assume $x \neq c$. Now if both $a \in I$ and $b \in I$, then $x \in I$ by Definition ??, and we're done. Similarly, we're done if both $a \in J$ and $b \in J$. So let's assume $a \in I$ and $b \in J$. If x < c, then we have a < x < c with a and c in I; by Definition ??, $x \in I$, too. Similarly, if x > c, then we have c < x < b and so $x \in J$. We're done.
- 13. It's easy for I and $\mathbb{R} \setminus I$ to be intervals. For instance, if $I = (-\infty, 0)$, then $\mathbb{R} \setminus I = [0, \infty)$ is another interval. I and $\mathbb{R} \setminus I$ cannot both be bounded intervals; two bounded intervals can't "add up" to the unbounded set $(-\infty, \infty)$.
- 14. No. Any finite set I of numbers contains a smallest number, say a, and a second smallest, say b. If I were an interval, it would also have to contain the average, (a + b)/2, which lies (illegally) between a and b.
- 15. No. Suppose a and b are rational numbers in I, with a < b. Consider $c = a + (b - a)/\sqrt{2}$. Note that $c \in \mathbb{R} \setminus \mathbb{Q}$ and that a < c < b. If I were an interval, we'd have $c \in I$, which is impossible.
- (a) $(1,2)\cup(3,\infty)$ is the union of two open intervals, and hence also open. The complement, $(-\infty, 2] \cup [2, 3]$, is therefore closed.
 - (b) $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, \infty)$.
 - (c) $(-\infty, a)$ is itself an open interval, and therefore open. The complement of $(-\infty, a]$ is the open interval (a, ∞) , so $(-\infty, a]$ is closed.
 - (d) If I = (0,1) were closed, then $\mathbb{R} \setminus I$ would be open. This is false, because $1 \in \mathbb{R} \setminus I$, but no open interval containing 1 is contained in $\mathbb{R} \setminus I$.
- 17. (a) The complement of $\{1, 2, 3\}$ consists of four open intervals.
 - (b) $\mathbb{R} \setminus \mathbb{Z}$ is the union of all open intervals of the form (n, n+1), where
 - (c) If \mathbb{Q} were open, we could find for each rational q an open interval I with $q \in I \subseteq$. But $I \subseteq \mathbb{Q}$ is impossible.

