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Problems to Ch. 1 (solutions)

1.1 The charging energy required to charge a capacitor with capacitance C by the charge of a single electron
is EC = e2/(2C). Let us assume a simple parallel-plate model for a capacitor, C = εA/d, where ε = εrε0,
typical εr = 10 and ε0 = 8.85 pF/m, A is the area of the plates and d their separation. We can also
set d = 2 nm, a typical thickness of the oxide layer (‘tunnel contact’) formed between two metals.
Assuming a square plate, A = w2, estimate a width w of the junction which would correspond to the
charging energy EC being equal to 1 K. Estimate also the corresponding capacitances. How should these
scales change so that charging effects would be observable at room temperature, i.e., EC/kB ≈ 300 K?
Remember that e = 1.6× 10−19 C and kB = 1.38× 10−23 J/K.

• Solution:

Charging energy: EC = e2/(2C). Assumptions: C = ε0εrA/d and A = w2. Then:

EC =
de2

2ε0εrw2
= 0.010 K× kB

[
1µm

w

]2

, (1)

C = 89 fF×
[
w

1µm

]2

. (2)

Hence, EC = 1 K corresponds to w ≈ 0.1µm and C = 0.89 fF. Also, EC = 300 K equals w =
0.1µm/

√
300 ≈ 5.8 nm, C = 0.89 fF/300 ≈ 3.0× 10−18 F.

1.2 At the end of Example 1.1 the density of states and the transmission probability through the tunnel
barrier are assumed to be energy independent. To mimic the finite width ∆ of the conduction band,
assume that the density of states has a sharp cutoff at |E − µL| = ∆/2, i.e., it is constant for energies
|E − µL| < ∆/2 and vanishes for |E − µL| > ∆/2. Show that the correction to the linear tunnel barrier
conductance is proportional to exp[−∆/(2kBT )] when ∆� kBT , i.e., in this limit the corrections to the
linearity are exponentially small. In other words, show that

1/RT −
dI

dV
|V=0

∆�kBT∝ exp[−∆/(2kBT )]

for the current defined in eqn (1.12) and RT defined below eqn (1.15).

The solution for this exercise has not been keyed in yet.

1.3 Show that the heat current through a tunnel barrier in the linear response regime obeys a Wiedemann–
Franz law, i.e., Q̇/∆T ∝ T/RT . Find also the prefactor of this expression. Hint: Assume a vanishing
voltage and that the temperatures TL/R of the left/right reservoirs are TL/R = T ±∆T/2. Finally, take
the linear order in ∆T .

• Solution:

The heat current through a tunnel barrier is (for V = 0)

Q̇ = cAtNL(0)NR(0)︸ ︷︷ ︸
[e2RT ]−1

∫ ∞
−∞

dEE[fL(E)− fR(E)] .

Here, expand in ∆T (let kB ≡ 1 to simplify notation. . . )

fL/R(E) = [eE/(T±
1
2 ∆T ) + 1]−1

= [eE/T + 1]−1︸ ︷︷ ︸
f0(E)

+∆T
df0(E)

d(E/T )

d

d(∆T )

E

T ± 1
2∆T

∣∣∣∣
∆T=0

+O((∆T )2)

= f0(E)∓ ∆T

2T

df0(E)

dE
E +O((∆T )2) ,
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so that

Q̇ ≈ −∆T

e2RTT

∫ ∞
−∞

dEE2 df0(E)

dE
=
−∆T

e2RT
T (−1)

∫ ∞
−∞

dx
x2ex

(ex + 1)2︸ ︷︷ ︸
=π2/3

=
π2

3

(
kB
e

)2
T

RT
∆T .

The linearized thermal conductance is then

Gth =
dQ̇

d(∆T )
=
π2

3

(
kB
e

)2
T

RT
= L0

T

RT
,

and is indeed proportional to T/RT . Here, L0 is the Lorenz number for an ideal electron gas.

1.4 Question on a scientific paper. In nanoelectronics measurements, the most typically measured
observable is either the current as a function of voltage or the (linear) conductance as a function of
some control parameter, such as the gate voltage or a magnetic field. Sometimes the voltage is measured
as a function of current. Consult the papers Smit et al., Nature 419, 906 (2002), Kuemmeth et al.,
Nature 452, 448 (2008) and Heersche et al., Nature 446, 56 (2007), and determine what the measured
observables and the control parameters were in the reported experiments. Note that the size of the
typically measured nanoelectronic structures ranges from a few nanometres to some micrometres. On
the other hand, the measurement equipment is on our everyday scale (from some tens of cm to metres).
Argue why and in which case the latter can show some information about the former.

The solution for this exercise has not been keyed in yet.
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Problems to Ch. 2 (solutions)

f
0
1

L

W,d

f
0
2

x

2.1 Show that the diffusion constant (see eqn (2.21) for the three-dimensional case) in two- and one-
dimensional cases equals D = v2τ/2 and D = v2τ , respectively.

• Solution: Repeating the derivation from eqn (2.17) to eqn (2.22), we notice that the diffusion constant
is the angular average of (v(p̂) · ûz)2τ . In the two-dimensional case we hence go to the polar coordinates
and write v · ûz = v cos(θ), where θ is the angle between the speed v and the reference direction ûz.
Then the angular average is

D2 = v2τ

∫ 2π

0

dθ

2π
cos2 θ = v2τ/2. (3)

In the 1d case, there is no other direction than the reference direction ûz, but we can separate left- and
right-going particles (those with v · ûz > 0 and < 0, respectively). However, as the diffusion constant
concerns only the square of v · uz, these give the same contribution. Then

D1 =
∑
L,R

1

2
v2τ = v2τ. (4)

With these changes we can write the diffusion equation also in 2d and 1d systems.

2.2 Phonons in thin films may not always be strongly coupled to the phonons in the substrate. The thermal
link between these two phonon systems is described by the Kapitza thermal resistance, which between
two bulky phonon systems (dimensions� phonon wavelength) is proportional to T−3, i.e., RK = rkT

−3

with a system-dependent coefficient rk. Assume an electron system in the mesoscopic film is heated
with a small constant power P , resulting in an electron temperature Te = Tb + ∆Te and film phonon
temperature Tf = Tb + ∆Tf , ∆Te,∆Tf � Tb slightly higher than the temperature Tb of the substrate.
Linearize eqn (2.39) and find ∆Te and ∆Tf .

• Solution: The power dissipated from the electrons (e) to the film phonons (f) is given by eqn (2.39)

Pe−f = ΣΩ
(
T 5
e − T 5

f

)
. (5)

Since Te,f = Tb + ∆Te,f , where ∆Te,f � Tb, we can linearize this equation so that

Pe−f ≈ 5ΣΩT 4
b (∆Te −∆Tf ) . (6)

The coupling between the film and substrate phonons (b for bath) is described by thermal resistance
Rth, which is defined such that to linear order in the temperature difference ∆T

Pf−b =
∆T

Rth
. (7)

Here Rth = RK = rKT
−3 so that Tf − Tb = ∆Tf = rKPf−bT

−3 ≈ rKPf−bT−3
b .

We are looking for a steady-state solution where the substrate is held at a constant temperature, e.g.,
by means of a cryostat. In this case P = Pe−f = Pf−b. This condition gives us two equations for two
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unknowns, which are easily solved. As a result we obtain

∆Tf =
rKP

T 3
b

, (8)

∆Te =
P

T 3
b

(
rK +

1

5ΣΩTb

)
. (9)

The Kapitza thermal resistance is strictly valid only for the coupling between bulky phonon systems.
For metals the typical phonon wavelength is given by λ = hvS

kBT
, where vs is the sound velocity, typically

of the order of 3 . . . 5 km/s. At 1 K we then have λ ≈ 100 nm and at 100 mK λ ≈ 1 µm. This is a lot
larger than the thickness of the film, but Kapitza resistance still explains experimental results quite well.

2.3 Assume a conductor with an unknown type of scattering described via the relaxation time τ . Starting
from eqns (2.4), (2.8) and (2.10), show that in linear response the conductance is still given by the Drude
form. Hint: Write the distribution function as f(r,p) = f0(p) + g(p), where f0(p) is the Fermi function
and to first approximation the correction g(p) is independent of position. Note that around the Fermi
level the momentum and the velocity are connected via the usual relation p ≈ m∗v. Compute g(p) from
(2.4), and insert it in eqn (2.8) to obtain a formula for the current.

• Solution: With a time and position independent distribution function, the Boltzmann equation (2.4)
reads

eE · ∂p[f0(p) + g(p)] = −1

τ
g(p). (10)

Since we assume g(p) to be small, we can also drop it from the left hand side of the equation. We can
thus write

g(p) = −eE · ∂pf0(p). (11)

Let us fix the coordinate axes so that E = E0ûz. In this case E·∂p = E0∂pz = E0[−p sin(θ)∂θ+cos(θ)∂p],
where the latter is written in spherical coordinates. For a spherical Fermi surface f0(p) = f0(Ep) is
independent of the angle, and we can disregard the first term. Inserting the full distribution function
into eqn (2.8) then yields the current density

jC = −e
∫

d3p

4π2~3
v(p)g(p) = e2E0

∫
dEN(E)τ

∫ 2π

0

dϕ

2π

∫ 1

−1

d(cos θ)

2
v(E) cos(θ)[cos(θ)∂p]f0(Ep)ûz

=
e2E0

3

∫
dEN(E)v2(E)τ∂Ef0(E)ûz.

(12)

where we have taken into account the fact that the isotropic zeroth order term f0(p) does not yield a
contribution to the average current and that the velocity components in other directions than ûz lead to
vanishing currents (the integral over the phases averages to zero). In the last equation we use the fact
that v = ∂Ep/∂p. Now the Drude result comes from assuming that the density of states, velocity and
the scattering time are energy independent in the region of energies where ∂Ef0(E) is non-zero — in
practice, a few kBT around the chemical potential. In that case, we get

jC =
e2NF v

2
F τ

3
E ≡ σDE. (13)

2.4 Using the Drude formula with a general scattering time, show how the conductance depends on tem-
perature when τe−ph(T ) given by eqn (2.40) becomes shorter than the elastic scattering time τel. Often
the relaxation rates 1/τ for different types of scattering process add up. This is called the Matthiessen’s
rule.

According to the Drude formula,

σD =
e2NF v

2
F

3
τtot, withτ−1

tot = τ−1
el + τ−1

e−ph. (14)
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