
Answers to Exercises
Reinforcement Learning: Chapter 1

Exercise 1.1: Self-Play Suppose, instead of playing against a random opponent, the
reinforcement learning algorithm described above played against itself, with both sides
learning. What do you think would happen in this case? Would it learn a different policy
for selecting moves?

Answer: Yes, it would learn a different move-selection policy. Contrary to what one might
at first suppose, this new way of playing will not involve the same few games being played
over and over. Random exploratory moves will still cause all positions to be encountered, at
least occasionally. Just as playing a static imperfect opponent results in the reinforcement
learning agent learning to play optimally (maximum probability of winning) against that
opponent (except for exploratory moves), so playing itself will result in it learning to play
optimally against itself (except for exploratory moves).

What is less clear is exactly what optimal play against itself would mean. There is
a tendency to think that the self-play player would learn to play “better,” closer to a
universal “optimal” way of playing. But these terms don’t have any meaning except with
respect to a particular opponent. The self-play player may learn to play better against
many opponents, but I think we could easily construct an opponent against whom it would
actually fare worse than the original player.

What can we say about how the self-play player will play? Clearly all positions in which
it can force a win will be played correctly (except for exploratory moves). Because it does
make occasional exploratory moves, it will favor lines of play in which it is unlikely to not
win even if it explores. And because occasional random moves are made by the opponent,
the reinforcement learning agent will prefer positions in which many such moves are losing
moves. What about positions in which one side cannot win, but could either lose or draw?
Because that player doesn’t care about the difference between these two outcomes, it will
not try to avoid losses. The other player will prefer these positions over those in which its
opponent cannot lose.

One person answering this question pointed out to me that technically it is not possible
for the reinforcement learning agent as described to play against itself. This is because
the described reinforcement learning agent only learned to evaluate positions after second-
player moves. The player who moves first needs to learn the values of positions after
first-player moves. Because these two sets of positions are disjoint, and the reinforcement
learning agent as described learns separately about each individual position, learning about
the two kinds of positions will be totally separate. Thus the reinforcement learning agent
cannot play against itself, but only against a copy of itself adjusted to learn after first
player moves.
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Exercise 1.2: Symmetries Many tic-tac-toe positions appear different but are really the
same because of symmetries. How might we amend the learning process described above
to take advantage of this? In what ways would this change improve the learning process?
Now think again. Suppose the opponent did not take advantage of symmetries. In that
case, should we? Is it true, then, that symmetrically equivalent positions should necessarily
have the same value?

Answer: There are three axes of symmetry in Tic-Tac-Toe: up-down, right-left, and along
the diagonal. By reflecting all positions into a standard form, the set of positions whose
value needs to be learned can be reduced by a factor of about eight. For example, only
one of the following positions need be represented and learned about—the learning will
generalize automatically to the other seven:

X O

X O

XO

XO

X

O

X

O

X

O

X

O

This would improve the reinforcement learning agent by reducing its memory requirements
and reducing the amount of time (number of games) needed to learn. However, if the
opponent is imperfect and does not play symmetrically, then this may be counterproductive.
For example, if the opponent played correctly in the first position above but incorrectly
in the fourth, then our agent (“O”) should prefer playing to the fourth position. That
is, these symmetrically equivalent positions should not really have the same value. This
would not be possible if they were represented as the same because of symmetries.

What is the right solution? One good way to proceed would be to use two tables, one
smaller table that collapsed symmetric positions onto the same entry, and one larger table
which did not. The approximate value of a position would be the average of the two table
entries, one in each table, that applied to the position. Both table entries that applied to
the position would also be updated. The result would be that the system would generalize
somewhat between symmetrically equivalent positions, but if needed it would also be able
to learn distinct values for them. This approach would not provide any savings in memory
or computation time per move (in fact it requires more), but it should speed learning in
terms of number of games played, without sacrificing asymptotic performance. This is a
first step towards using generalizion and function approximation rather than table lookup.
We will consider many such possibilities later in the book. �

Exercise 1.3: Greedy Play . Suppose the reinforcement learning player was greedy, that
is, it always played the move that brought it to the position that it rated the best. Would
it learn to play better, or worse, than a non-greedy player? What problems might occur?

Answer: A greedy reinforcement learning player might actually end up playing worse. The
problem is that it might get permanently stuck playing less than optimal moves. Suppose
there is a position where one move will win 60% of the time but a better move will win
90% of the time. Initially both moves are valued at 0.5, just as all positions are. Suppose
the first time it encountered the position by chance it played the 60% move and won. The
value of that move will be bumped up, say to 0.51. As a result, that move will become the
greedy choice, and next time it will be selected again. It’s value will go to 0.6, while the
other move, the 90% winning move, will stay valued at 0.5 and never be tried. �
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Exercise 1.4: Learning from Exploration Suppose learning updates occurred after all
moves, including exploratory moves. If the step-size parameter is appropriately reduced
over time (but not the tendency to explore), then the state values would converge to a set
of probabilities. What are the two sets of probabilities computed when we do, and when we
do not, learn from exploratory moves? Assuming that we do continue to make exploratory
moves, which set of probabilities might be better to learn? Which would result in more
wins?

Answer: When we don’t learn from exploratory moves we learn the probabilities of winning
from each position if we played optimally from then on. But of course we don’t play
exactly optimally from then on—we occasionally make exploratory moves. When we learn
from exploratory moves we learn the probability of winning from each position taking into
account the fact of these explorations. The best moves given given explorations may be
different from the best ones without exploration. Because we do continue to explore, the
second approach will actually end up winning more games than the first. �

Exercise 1.5: Other Improvements Can you think of other ways to improve the reinforce-
ment learning player? Can you think of any better way to solve the tic-tac-toe problem as
posed?

Answer: Of course many other improvements are possible. Some of these are:

• Using generalizing function approximation to speed learning.

• Using search when choosing moves to look ahead farther than one step.

• Incorporating a priori expert knowledge. A natural way to do this is in the initial
value function.

• When a new position is encountered, adjustments could be made not just to the
immediately preceding position, but to earlier positions as well. This might speed
learning.

• We might learn a model of the opponent (how frequently he makes each move in each
positions) and use it off-line to improve the value function.

• We might learn to play differently against different opponents.

• Against a stationary opponent, we might reduce the frequency of exploration over
time.

�
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Answers to Exercises
Reinforcement Learning: Chapter 2

Exercise 2.1 In ε-greedy action selection, for the case of two actions and ε = 0.5, what
is the probability that the greedy action is selected?

Answer: 0.75. There is a 0.5 chance of selecting the greedy action directly, plus a 0.25
chance of selecting it as one of the two actions when a random action is selected. �

Exercise 2.2: Bandit example This exercise appeared in the first printing slightly dif-
ferently than intended. However, it is still a valid exercise, and below we give the answer
first for the excercise as intended and then as it appeared in the first printing.

Exercise 2.2: Bandit example as intended Consider a k-armed bandit problem with k = 4
actions, denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm using
ε-greedy action selection, sample-average action-value estimates, and initial estimates of
Q1(a) = 0, for all a. Suppose the initial sequence of actions and rewards is A1 = 1,
R1 = −1, A2 = 2, R2 = 1, A3 = 2, R3 = −2, A4 = 2, R4 = 2, A5 = 3, R5 = 0. On some of
these time steps the ε case may have occurred, causing an action to be selected at random.
On which time steps did this definitely occur? On which time steps could this possibly
have occurred?

Answer: The ε case definitely came up on steps 4 and 5, and could have come up on any
of the steps.

To see this clearly, make a table with the estimates, the set of greedy of actions, and
the data at each step:

t Q1 Q2 Q3 Q4 {A∗t } At ε-case? Rt

1 0 0 0 0 {1, 2, 3, 4} 1 maybe −1
2 −1 0 0 0 {2, 3, 4} 2 maybe 1
3 −1 1 0 0 {2} 2 maybe −2
4 −1 −0.5 0 0 {3, 4} 2 yes 2
5 −1 0.3333 0 0 {2} 3 yes 0

The estimate that changed on each step is bolded. If the action taken is not in the greedy
set, as on time steps 4 and 5, then the ε case must have come up. On steps 1–3, the greedy
action was taken, but still it is possible that the ε case come up and the greedy action was
taken by chance. Thus, the answer to the second question is all the time steps. �

Exercise 2.2: Bandit example as first printed Consider a k-armed bandit problem with
k = 4 actions, denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm
using ε-greedy action selection, sample-average action-value estimates, and initial estimates
of Q1(a) = 0, for all a. Suppose the initial sequence of actions and rewards is A1 = 1,
R1 = 1, A2 = 2, R2 = 1, A3 = 2, R3 = 2, A4 = 2, R4 = 2, A5 = 3, R5 = 0. On some of
these time steps the ε case may have occurred, causing an action to be selected at random.
On which time steps did this definitely occur? On which time steps could this possibly
have occurred?

Answer: The ε case definitely came up on steps 2 and 5, and could have come up on any
of the steps.

To see this clearly, make a table with the estimates, the set of greedy of actions, and
the data at each step:
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t Q1 Q2 Q3 Q4 {A∗t } At ε-case? Rt

1 0 0 0 0 {1, 2, 3, 4} 1 maybe 1
2 1 0 0 0 {1} 2 yes 1
3 1 1 0 0 {1, 2} 2 maybe 2
4 1 1.5 0 0 {2} 2 maybe 2
5 1 1.6666 0 0 {2} 3 yes 0

The estimate that changed on each step is bolded. If the action taken is not in the greedy
set, as on time steps 2 and 5, then the ε case must have come up. On step 4, the sole
greedy action was taken, but it is possible that the ε case come up and the greedy action
was taken by chance. Thus, the answer to the second question is all the time steps. �

Exercise 2.3 In the comparison shown in Figure 2.2, which method will perform best in
the long run in terms of cumulative reward and probability of selecting the best action?
How much better will it be? Express your answer quantitatively.

Answer: The cumulative performance measures are essentially the areas under the curves
in Figure 2.2. In the near term, the ε = 0.1 method has a larger area, as shown in the
figure. But in the long run, the ε = 0.01 method will reach and sustain a higher level. For
example, it will eventually learn to select the best action 99.1% of the time, whereas the
ε = 0.1 method will never select the best action more than 91% of the time, for a difference
of 8.1%. Thus, in the long run the area under the ε = 0.01 curve will be greater. The
greedy method will remain at essentially the same low level shown in the figure for a very
long time.

In the long run, the ε = 0.01 method will be greater than the ε = 0.1 method by 8.1%
of the difference between the value of the best action and the value of an average action.
�

Exercise 2.4 If the step-size parameters, αn, are not constant, then the estimate Qn is a
weighted average of previously received rewards with a weighting different from that given
by (2.6). What is the weighting on each prior reward for the general case, analogous to
(2.6), in terms of the sequence of step-size parameters?

Answer: As in the book, let us focus on the sequence of rewards, action values, and step-
sizes corresponding to one particular action. Let us denote these by Rn, Qn, and αn. This
greatly simplifies the notation. Then we can do a derivation similar to the one in (2.6):

Qn+1 = Qn + αn

[
Rn −Qn

]
= αnRn + (1− αn)Qn

= αnRn + (1− αn) [αn−1Rn−1 + (1− αn−1)Qn−1]
= αnRn + (1− αn)αn−1Rn−1 + (1− αn)(1− αn−1)Qn−1
= αnRn + (1− αn)αnRn−1 + (1− αn)(1− αn−1)αn−2Rn−2 +

· · ·+ (1− αn)(1− αn−1) · · · (1− α2)α1R1

+ (1− αn)(1− αn−1) · · · (1− α1)Q1

=
n∏
i=1

(1− αi)Q1 +
n∑
n=1

αnRn

n∏
i=n+1

(1− αi).

In other words, the weighting on Rn in Qn is αn
∏n
i=n+1(1− αi). �
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