بر ای دسترسی به نسخه کامل حل المسائل، روی لینک زیر کلیک کنید و یا به وبسایت "ایبوک یاب" مراجعه بفر مایید Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa) https://ebookyab.ir/solution-manual-principles-of-foundation-engineering-braja-das/

Chapter 2

- 2.1 From Eq. (2.18), $\rho_d = \frac{G_s \rho_w}{1+e} = \frac{2450}{0.925} = \frac{2.80 \times 1000}{1+e} ; e = 0.0571$ From Eq. (2.6), Porosity, $n = \frac{e}{1+e} = \frac{0.0571}{1+0.0571} = 0.054$
- 2.2 From Eq. (2.13), the dry density

$$\rho_d = \frac{\rho}{1+w} = \frac{2060}{1+0.153} = 1786.6 \text{ kg/m}^3$$

From Eq. (2.18), $\rho_d = \frac{G_s \rho_w}{1+e}$

$$e = \frac{G_s \rho_w}{\rho_d} - 1 = \frac{2.70 \times 1000}{1786.6} - 1 = 0.511$$

Once saturated, from Eq. (2.19),

$$\rho_{\text{sat}} = \frac{(G_s + e)}{(1 + e)} \rho_w = \frac{(2.70 + 0.511)}{(1 + 0.511)} \times 1000 = 2125.1 \text{ kg/m}^3$$

2.3 Let's consider a 1-m² area in plan. The initial volume of this soil is $V = 1 \times 0.5 = 0.5 \text{ m}^3$. Volume of the solids is V_s .

$$e = 0.9 = \frac{0.5 - V_s}{V_s}$$
; $V_s = 0.2632 \text{ m}^3$

$$W_s = 0.2632 \times 2.68 \times 9.81 = 6.919 \text{ kN}$$

The new volume after compaction = $1 \times 0.455 = 0.455 \text{ m}^3$

The dry unit weight, $\gamma_d = \frac{6.919}{0.455} = 15.21 \text{ kN/m}^3$

From Eq. (2.12), $\gamma_d = \frac{G_s \gamma_w}{1+e}$

$$e = \frac{G_s \gamma_w}{\gamma_d} - 1 = \frac{2.68 \times 9.81}{15.21} - 1 = 0.729$$

From Eq. (2.13), $\gamma = (15.21)(1+0.20) = 18.25 \text{ kN/m}^3$

2.4 At the compacted road base, the weight of solids, $W_s = 120,000 \times 19.5 = 2,340,000 \text{ kN}$

At the borrow pit, the dry unit weight, $\gamma_d = \frac{\gamma}{1+w} = \frac{17.5}{1+0.085} = 16.13 \text{ kN/m}^3$

Volume of the pit, $V = \frac{2,340,000}{16.13} = 145,080 \text{ m}^3$

The moisture content has to be increased from 8.5% (at the borrow pit) to 14.0% (at the road base). The quantity of water to add,

2,340,000 × (0.14 – 0.085) = 128,700 kN Volume of water to be added = $\frac{128,700}{9.81}$ = 13,119.3 m³

- 2.5 $\gamma_d = \frac{\gamma}{1+w} = \frac{110.4}{1+0.105} = 99.9 \text{ lb/ft}^3$ $\gamma_d = \frac{G_s \gamma_w}{1+e}; \ e = \frac{2.65 \times 62.4}{99.9} - 1 = 0.655$ From Eq. (2.23), $D_r = \frac{0.870 - 0.655}{0.870 - 0.515} \times 100 = 60.6\%$
- 2.6 a. A-1-a c. A-3 b. A-1-b d. A-7-6

2.7 Soil A: % of gravel = 50, % of sand = 13, % of fines = 37 $D_{10} = 0.035 \text{ mm}, D_{30} = 0.061 \text{ mm}, D_{60} = 9.8 \text{ mm} \rightarrow C_u = 280; C_c = 0.02$ $LL = 58, PL = 34, PI = 24 \rightarrow \text{plots below the A-line; hence, silt}$ The soil can be described as **poorly (gap) graded sandy silty gravel**

with a group symbol of GM.

Soil B: % of gravel = 24, % of sand = 69, % of fines = 7

$$D_{10} = 0.17 \text{ mm}, D_{30} = 0.82 \text{ mm}, D_{60} = 2.6 \text{ mm} \rightarrow C_u = 15.3; C_c = 1.5$$

 $LL = 42, PL = 22, PI = 20 \rightarrow \text{plots above the A-line; hence, clay}$
The soil can be described as well graded clayey gravelly sand with a

Soil C: % of gravel = 1, % of sand = 99, % of fines = 0 $D_{10} = 0.7 \text{ mm}, D_{30} = 1.2 \text{ mm}, D_{60} = 1.6 \text{ mm} \rightarrow C_u = 2.3; C_c = 1.3$ The soil can be described as **poorly (uniformly) graded sand with a**

group symbol of SW-SM.

group symbol of SP.

Soil D: % of gravel = 0, % of sand = 12, % of fines = 88 LL = 75, PL = 31, PI = 44 → plots above the A-line; hence, clay. The soil can be described as sandy clay of high plasticity with a group symbol of CH.

2.8 The head loss from the reservoir to the ditch, $\Delta h = 38 - 28 = 10.0 \text{ m}$ The length of the sand seam in the direction of the flow, $L = 200/\cos 10 = 203.1 \text{ m}$ The hydraulic gradient, i = 10.0/203.1 = 0.0492By Darcy's law [Eq. (2.35)], $v = (2.6 \times 10^{-5} \text{ m/s})(0.0492) = 0.128 \times 10^{-5} \text{ m/s}$ The cross section of the sand seam through which the flow takes place is $1.0 \times 500.0 = 500.0 \text{ m}^2$ The flow rate = $(0.128 \times 10^{-5} \text{ m/s})(500.0 \text{ m}^2) = 64.0 \times 10^{-5} \text{ m}^3/\text{s}$ Volume of water flowing into the ditch per day: $= (64.0 \times 10^{-5} \text{ m}^3/\text{s})(24)(3600) = 55.3 \text{ m}^3$

2.9 For the flow net shown in Figure P2.9, $N_f = 3$ and $N_d = 10$ Total head loss from right to left, $h_{max} = 5.0$ m The flow rate is given by [Eq. (2.46)]

$$q = kh_{\text{max}} \frac{N_f}{N_d} = (1.5 \times 10^{-5})(5.0) \left(\frac{3}{10}\right) = 2.25 \times 10^{-5} \text{ m}^3/\text{s/m length}$$
$$= (2.25 \times 10^{-5})(50.0)(24)(3600 \text{ m}^3/\text{day}) = 97.2 \text{ m}^3/\text{day}$$

- 2.10 On top of the soft clay layer (i.e., at 10 m depth), initially: $\sigma' = 1 \times 17.0 + 9(20 - 9.81) = 108.7 \text{ kN/m}^2$ After the water table is lowered, $\sigma' = 3 \times 17.0 + 7(20 - 9.81) = 122.3 \text{ kN/m}^2$ By lowering the water table, the effective stress has increased by (122.3 - 108.7) = 13.6 kN/m²
- 2.11 The soil below the water table can be assumed to be fully saturated (i.e., S = 1). $e = wG_s = 0.25 \times 2.70 = 0.675$

The saturated unit weight can be computed as

$$\gamma_{\text{sat}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.70 + 0.675) \times 9.81}{1 + 0.675} = 19.8 \text{ kN/m}^3$$

At a depth of 5 m into the sandy clay,

 $\sigma = 4 \times 9.81 + 5 \times 19.8 = 138.3 \text{ kN/m}^2$ $u = 9 \times 9.81 = 88.3 \text{ kN/m}^2$ $\sigma' = \sigma - u = 138.3 - 88.3 = 50 \text{ kN/m}^2$

2.12 Refer to the figure.

a. The compression index C_c is given by [Eq. (2.53)],

$$C_c = \frac{e_1 - e_2}{\log \sigma_2' - \log \sigma_1'} = \frac{1.10 - 0.85}{\log 240 - \log 65} = 0.441$$

© 2019 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

b. Let the void ratio at 460 kN/m² pressure be e_3 .

$$e_1 - e_3 = C_c (\log 460 - \log 65) = 0.441 \times \log \left(\frac{460}{65}\right) = 0.375$$

 $e_3 = 1.10 - 0.375 = 0.725$

2.13 a. The clay is below the water table and, hence, is saturated. The initial void ratio e_o can be determined as

$$e_o = wG_s = 0.225 \times 2.72 = 0.612$$

The saturated unit weight is determined as

$$\gamma_{\text{sat}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.72 + 0.612)(9.81)}{1 + 0.612} = 20.3 \text{ kN/m}^3$$

The effective overburden stress at the middle of the clay is

$$\sigma'_{o} = 2 \times 17.0 + 3(20.2 - 9.81) + 1.5(20.3 - 9.81) = 80.3 \text{ kN/m}^{2} < 110.0 \text{ kN/m}^{2}$$

Since the preconsolidation pressure is greater than the current overburden pressure, the **clay is overconsolidated**. The overconsolidation ratio

$$OCR = 110.0/80.3 = 1.37$$

b. The 2-m-high compacted fill imposes a surcharge of $2 \times 20 = 40 \text{ kN/m}^2$ (i.e., $\Delta \sigma' = 40.0 \text{ kN/m}^2$, $\sigma'_o = 80.3 \text{ kN/m}^2$, and $\sigma'_c = 110.0 \text{ kN/m}^2$)

Since $\sigma'_o + \Delta \sigma' > \sigma'_c$, the consolidation settlement can be computed from Eq. (2.69) as

$$S_{p} = \frac{C_{s}H}{1+e_{o}}\log\left(\frac{\sigma_{c}'}{\sigma_{o}'}\right) + \frac{C_{c}H}{1+e_{o}}\log\left(\frac{\sigma_{o}'+\Delta\sigma'}{\sigma_{c}'}\right)$$
$$= \frac{0.06 \times 3000}{1+0.612}\log\left(\frac{110.0}{80.3}\right) + \frac{0.52 \times 3000}{1+0.612}\log\left(\frac{80.3+40.0}{110}\right)$$
$$= 52.9 \text{ mm}$$

2.14 For U = 75%, $T_v = 0.477$ (Table 2.12)

$$T_{v} = \frac{c_{v}t}{H_{\rm dr}^2}$$

From two-way (doubly drained) to one-way (singly drained), H_{dr} is doubled. For the same U and, hence, the same T_{ν} , this would increase the time fourfold. Therefore, it will take **4t years**.

5

2.15 a. The clay layer with one-way drainage has H_c of 6.0 m. After one year,

$$T_v = \frac{c_v t}{H^2} = \frac{0.0014 \times 365 \times 24 \times 3600}{600^2} = 0.123$$
; settlement, $S_{c(t)} = 160$ mm

From Table 2.12, U = 39.6%

$$U = \frac{S_{c(t)}}{S_{c(max)}}$$
; $S_{c(max)} = 160/0.396 = 404 \text{ mm}$

When t = 2 years, $T_v = 0.246$.

From Table 2.12, U = 55.8%.

Consolidation settlement during the first two years is $0.558 \times 404 = 225.4$ mm

b. The initial effective overburden stress at the middle of the clay is $\sigma'_{o} = 1.5 \times 17.0 + 0.5(18.5 - 9.81) + 3.0(19.0 - 9.81) = 57.4 \text{ kN/m}^{2}$ $\Delta \sigma' = 3 \times 19 = 57 \text{ kN/m}^{2}$ $S_{c} = \frac{C_{c}H}{1 + e_{o}} \log \left(\frac{\sigma'_{o} + \Delta \sigma'}{\sigma'_{o}}\right)$ $404 = \frac{C_{c} \times 6000}{1 + 0.810} \log \left(\frac{57.4 + 57.0}{57.4}\right); \quad C_{c} = 0.41$

2.16 a. For the clay layer, assuming S = 100% below the water table, $e_o = 0.45 \times 2.70 = 1.215$

$$\gamma_{\text{sat}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.70 + 1.215) \times 9.81}{1 + 1.215} = 17.3 \text{ kN/m}^3$$

The initial effective overburden stress at the middle of the clay layer is

$$\sigma'_{o} = 1 \times 16 + 1(19.0 - 9.81) + 1.5(17.3 - 9.81) = 36.4 \text{ kN/m}^{2}$$

With OCR = 1.5, the preconsolidation pressure $\sigma'_c = 1.5 \times 36.4 = 54.6 \text{ kN/m}^2$

When the fill is placed, it imposes a surcharge of $\Delta \sigma' = 20 \times 1.5 = 30.0 \text{ kN/m}^2$ From Eq. (2.69),

$$S_{c} = \frac{C_{s}H}{1+e_{o}}\log\left(\frac{\sigma_{c}'}{\sigma_{o}'}\right) + \frac{C_{c}H}{1+e_{o}}\log\left(\frac{\sigma_{o}'+\Delta\sigma'}{\sigma_{c}'}\right)$$
$$= \frac{0.08\times3000}{1+1.215}\log\left(\frac{54.6}{36.4}\right) + \frac{0.65\times3000}{1+1.215}\log\left(\frac{66.4}{54.6}\right) = 93.9 \text{ mm}$$

© 2019 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

6

b. Including the fill load and the warehouse load, $\Delta \sigma' = 30 + 40 = 70 \text{ kN/m}^2$

$$S_{c} = \frac{C_{s}H}{1+e_{o}}\log\left(\frac{\sigma_{c}'}{\sigma_{o}'}\right) + \frac{C_{c}H}{1+e_{o}}\log\left(\frac{\sigma_{o}'+\Delta\sigma'}{\sigma_{c}'}\right)$$
$$= \frac{0.08\times3000}{1+1.215}\log\left(\frac{54.6}{36.4}\right) + \frac{0.65\times3000}{1+1.215}\log\left(\frac{106.4}{54.6}\right)$$
$$= 274.2 \text{ mm}$$

Consolidation settlement due to the warehouse alone is 274.2 - 93.9 = 180.3 mm

2.17 The direct shear test data are plotted in the figure. From the failure envelope, $c' = 6.5 \text{ kN/m}^2 \text{ and } \phi' = \tan^{-1}(0.4292) = 23.2^{\circ}$

2.18 a. $\sigma'_3 = 100 \text{ kN/m}^2 \text{ and } \Delta \sigma_f = 260 \text{ kN/m}^2$

Therefore, $\sigma'_1 = \sigma'_3 + \Delta \sigma_f = 360 \text{ kN/m}^2$

From Eq. (2.91),
$$\sigma'_1 = \sigma'_3 \tan^2 \left(45 + \frac{\phi'}{2} \right) + 2c' \tan \left(45 + \frac{\phi'}{2} \right)$$

For normally consolidated clays, c' = 0; hence,

$$360 = 100 \tan^2 \left(45 + \frac{\phi'}{2} \right); \ \phi' = 34.4^\circ$$

b. For the second specimen,
$$\sigma'_3 = 200 \text{ kN/m}^2$$

$$\sigma_1' = 200 \tan^2 \left(45 + \frac{34.4}{2} \right) = 719.5 \text{ kN/m}^2$$
$$\Delta \sigma_f = 719.5 - 200 = 519.5 \text{ kN / m}^2$$

2.19 a. In normally consolidated clay,
$$c' = 0$$

For the first specimen (consolidated drained test), using Eq. (2.91),

$$260 + 150 = 410 = 150 \tan^2 \left(45 + \frac{\phi'}{2} \right); \ \phi' = 27.7^\circ$$

In the second specimen (consolidated undrained test), applying the same value of ϕ' in Eq. (2.91),

$$\sigma_{3} = 150 \text{ kN/m}^{2} \text{ and } \Delta \sigma_{f} = 115 \text{ kN/m}^{2}$$

$$\sigma_{1} = \sigma_{3} + \Delta \sigma_{f} = 265 \text{ kN/m}^{2}$$

$$\sigma_{3}' = 150 - u_{f} \text{ and } \sigma_{1}' = 265 - u_{f}$$

$$\sigma_{1}' = \sigma_{3}' \tan^{2} \left(45 + \frac{\phi'}{2} \right) = \sigma_{3}' \tan^{2} \left(45 + \frac{27.7}{2} \right) = 2.737 \sigma_{3}'$$

$$265 - u_{f} = (150 - u_{f}) \times 2.737; \ u_{f} = 83.8 \text{ kN/m}^{2}$$

b. From Eq. (2.96),
$$A_f = \frac{u_f}{\Delta \sigma_f} = \frac{83.8}{115} = 0.73$$

2.20 At failure the pore water pressure is u_f , $\sigma_3 = 100 \text{ kN/m}^2$ and $\sigma_1 = 207 \text{ kN/m}^2$. $\sigma'_3 = 100 - u_f$ and $\sigma'_1 = 207 - u_f$ Substituting for σ'_3 and σ'_1 in Eq. (2.91), $\sigma'_1 = \sigma'_3 \tan^2 \left(45 + \frac{\phi'}{2} \right) + 2c' \tan \left(45 + \frac{\phi'}{2} \right)$ $\left(207 - u_f \right) = \left(100 - u_f \right) \tan^2 \left(45 + \frac{26}{2} \right) + 2 \times 10 \tan \left(45 + \frac{26}{2} \right)$ $u_f = 51.9 \text{ kN/m}^2$

© 2019 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2.21 The following table can be prepared from the given data, and the Mohr circles are plotted as shown in the figure.

Sample No.	σ_3 (kN/m ²)	$(\Delta \sigma_d)_f$ (kN/m ²)	$(\Delta u_d)_f$ (kN/m ²)	σ_1 (kN/m ²)	σ'_3 (kN/m ²)	σ'_1 (kN/m ²)
1	100	88.2	57.4	188.2	42.6	130.8
2	200	138.5	123.7	338.5	76.3	214.8
3	350	232.1	208.8	582.1	141.2	373.3

The failure envelope is drawn tangent to the Mohr circles in the figure and, from measurements, $c' = 10.0 \text{ kN/m}^2$ and $\phi' = 24.7^\circ$

2.22 The unconfined compressive strength of the clay specimen $q_u = 2c_u = 90 \text{ kN/m}^2$ Cross sectional area of the specimen $= \frac{\pi}{4} \times 75^2 = 4417.9 \text{ mm}^2$ Maximum load the specimen can carry $= 90 \times 4417.9 \times 10^{-6} = 0.398 \text{ kN} = 398 \text{ N}$ Weight of one steel plate $= 1.5 \times 9.81 \text{ N} = 7.358 \text{ N}$ Therefore, number of plates that can be stacked on the specimen = 398/7.358 = 54With $q_u = 90 \text{ kN/m}^2$ (see Table 2.14), it is a **medium clay** (consistency).

2.23 a. From Figure P2.7,
$$D_{10} = 0.7$$
 mm, $D_{15} = 0.9$ mm, $D_{30} = 1.2$ mm,

$$D_{50} = 1.4 \text{ mm}, D_{60} = 1.6 \text{ mm}, \text{ and } D_{85} = 2.05 \text{ mm}$$

$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.6}{0.7} = 2.3; \quad C_c = \frac{D_{30}^2}{D_{10} \times D_{60}} = \frac{1.2^2}{0.7 \times 1.6} = 1.3$$

From Eq. (2.87), $\phi' = 26 + (10 \times 0.8) + (0.4 \times 2.3) + 1.6\log(1.4) = 35.2^\circ$

b. From Eq. (2.89),
$$a = 2.101 + 0.097 \left(\frac{D_{85}}{D_{15}}\right) = 2.101 + 0.097 \left(\frac{2.05}{0.9}\right) = 2.322$$

From Eq. (2.90), $b = 0.845 - 0.398a = 0.845 - 0.398 \times 2.322 = -0.0792$ From Eq. (2.88),

$$\phi' = \tan^{-1}\left(\frac{1}{ae+b}\right) = \tan^{-1}\left(\frac{1}{2.322 \times 0.61 - 0.0792}\right) = 36.8^{\circ}$$