
2

2 Synchronous Model

Solution 2.1 : In every odd round, the output of the component OddDelay

is 0. In every even round, the output equals the value of the input from the
previous round. That is, for every j ≥ 1, if j is an odd number, then the
output oj equals 0, else it equals the input ij−1. Thus the component OddDelay
alternates between producing the fixed output value 0 and behaving like the
component Delay. For the given sequence of inputs for the first six rounds, the
component has a unique execution shown below, where a state is specified by
listing the value of x followed by the value of y:

00
0/0−→ 01

1/0−→ 10
1/0−→ 11

0/1−→ 00
1/0−→ 11

1/1−→ 10.

Solution 2.2 : The extended-state-machine corresponding to the component
OddDelay is shown below. The modes correspond to the values of the state
variable y.

10
bool x := 0

out := 0; x := in

out := x; x := in

Solution 2.3 : The extended-state-machine below implements the desired com-
ponent. The initial mode is 0. When the input x is 1, the component switches
to the mode 1, and subsequently when the input y is 1, it switches to the mode
2. Symmetrically, in the initial mode, when the input y is 1, the component
switches to the mode 3, and subsequently when the input x is 1, it switches to
the mode 2. Note that in the initial mode, if both input variables x and y equal
1, the component directly switches to the mode 2. The transitions to the mode
2 set the output z to 1, and all other transitions set the output to 0. In mode
2, when the condition (reset = 1) holds, the component returns to the initial
mode.

0 1

23

(x = 0 ∧ y = 0)→ z := 0

(x = 1)→ z := 1

z := 0

(x = 1 ∧ y = 0)→
z := 0

(x = 0)→ z := 0 (reset = 0)→ z := 0

z := 1
(y = 1)→

(x = 1 ∧ y = 1)→
z := 1

z := 0
(reset = 1)→

(y = 0)→ z := 0

(x = 0 ∧ y = 1)→

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/


3

Solution 2.4 : The component OddDelay is a finite-state component. It has 4
states, and the corresponding Mealy machine is shown below.

01
1/0

0/0
10

00 11
1/0

0/1

0/0 1/10/0 1/0

Solution 2.5 : The component ClockedMax has three input variables, namely, x
of type nat, y of type nat, and clock of type event, and a single output variable z
of type event(nat). It has no state variables. The reaction description is given
by the code

if clock ? then {
if (x ≥ y) then z ! x else z ! y

}.

The component ClockedMax is event-triggered and combinational.

Solution 2.6 : The component SecondToMinute has a single input variable
second of type event, a single output variable minute of type event, and a
single state variable x of type nat. The initialization is given by x := 0, and the
reaction description is given by the code

if second ? then {
x := x + 1;
if (x = 60) then { minute ! ; x := 0 }

}.

The component SecondToMinute is event-triggered.

Solution 2.7 : The component ClockedDelay has two input variables, x of
type bool and clock of type event, and a single output variable y of type
event(bool). It has a single state variable z of type bool. The initialization is
given by z := 0, and the reaction description is given by the code

if clock ? then { y ! z ; z := x }

The component ClockedDelay is event-triggered.

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/


4

Solution 2.8 : The component is nondeterministic. In state 0 (that is, state
where the value of x equals 0), the component outputs 0, and if the input
is 0, the state stays unchanged, while if the input is 1, the state either stays
unchanged or is updated to 1. Symmetrically, in state 1, the component outputs
1, and if the input is 1, the state stays unchanged, while if the input is 0, the
state either stays unchanged or is updated to 0. The two-state Mealy machine
corresponding to the component is shown below:

0 1

1/0 0/1

0/0 1/1

1/0

0/1

Solution 2.9 : The following code can be used as the reaction description of
the component Arbiter. The value of the local variable x is chosen nondeter-
ministically, and when both the input request events are present, its value is
used to decide whether to issue the output event grant1 or to issue the output
event grant2.

local bool x := choose(0, 1);
if req1? then

if req2? then

if (x = 0) then grant1! else grant2!
else grant1!

else if req2? then grant2!.

Solution 2.10 : The nondeterministic component CounterEnv is shown below.
Note that when the value of y is zero, the output dec is guaranteed to be 0.

nat y := 0{inc := 1; dec := 0; y := y + 1} bool inc

bool dec

(y > 0)→ {dec := 1; inc := 0; y := y− 1}

inc := 0; dec := 0

Solution 2.11 : The updated reaction description split into two tasks is shown
below. The task A1 computes the value of the output z based on the current
state and the inputs x and y. Then, the task A2 executes to update the state
based on all the inputs.

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/


5

0 1

23

(x = 0 ∧ y = 0)?

(x = 1)?

(x = 0)? (reset = 0)?

(y = 0)?

(x = 1 ∧ y = 0)?

(y = 1)?(x = 0 ∧ y = 1)?
(reset = 1)?

(x = 1 ∧ y = 1)?

A2 : mode, x, y, reset 7→ mode

if [ (mode = 0 ∧ x = 1 ∧ y = 1)

∨ (mode = 1 ∧ y = 1)

∨ (mode = 3 ∧ x = 1) ]

then z := 1

else z := 0

A1 : mode, x, y 7→ z

Solution 2.12 : Since the task A2 writes the output z, and z does not await the
input x, we can conclude that the task A2 does not read x and nor does a task
that must precede A2. Since the output y produced by the task A1 awaits x, it
must be the case that A1 reads x. It follows that there cannot be a precedence
edge from the task A1 to A2, that is, A1 6≺ A2. This means that either there
are no precedence constraints (that is, the relation ≺ is empty), or the task A2

precedes A1 (that is, A2 ≺ A1).

Solution 2.13 : The reactions of the component are listed below (the output
lists the values of y and z in that order):

0
0/00−→ 0; 0

1/00−→ 1; 0
1/01−→ 1; 1

0/10−→ 0; 1
0/11−→ 0; 1

1/11−→ 1.

The output y does not await the input x. The output z awaits the input x.

Solution 2.14 : The component ComputeAverage is shown below. It maintains
an integer state variable n that tracks the number of rounds elapsed since the
presence of the input event clock, and an integer state variable sum that main-
tains the sum of the values of the input variable x since the presence of the
input event clock. The task A1 computes the value of the output y based on
the current state, and the task A2 then updates the state variables based on the
inputs.

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/


6

if (n = 0) then y := 0 else y := sum/n

A2 : clock, x, n, sum 7→ n, sum

A1 : n, sum 7→ y

if clock ? then { sum := x; n := 1 }
else { sum := sum + x; n := n + 1 }

int n := 0; sum := 0

int x

event clock

real y

Solution 2.15 : The component ClockedDelayComparator has input variables
in1 and in2 of type nat, an input event variable clock, and an output variable
y of type event(bool). Suppose the input clock is present during rounds, say,
n1 < n2 < n3 < · · ·. Then, in round n1, the output y is 0; and in round nj+1,
for each j, the output equals 1 if the value of the input variable in1 in the round
nj is greater than or equal to the value of the input variable in2 in the round
nj , and equals 0 otherwise; and in the remaining rounds (that is, rounds during
which the input event clock is absent), output is absent.

Solution 2.16 : The component DoubleSplitDelay has input variable in, out-
put variable out, state variables x1 and x2, and local variable temp, all of type
bool. Its reaction description consists of 4 tasks as shown below.

bool outbool in

out := x2 x2 := temp

A2 : in 7→ x1A1 : x1 7→ temp

x1 := intemp := x1

B2 : temp 7→ x2B1 : x2 7→ out

local bool temp

bool x1 := 0; x2 := 0

The output variable out does not await the input variable in.

Solution 2.17 : The desired component SecondToHour is defined as

(SecondToMinute ‖ SecondToMinute[ minute 7→ hour ][ second 7→ minute ])\minute.

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/


7

Solution 2.18 : For the component SyncXor, its output out should be 1 exactly
when only one of the inputs in1 and in2 is 1. Thus, the output out corresponds
to the Boolean expression (in1 ∧ ¬ in2) ∨ (¬ in1 ∧ in2). The desired output
is computed by the following combinational circuit that uses 2 instances of
SyncAnd, 2 instances of SyncNot, and one instance of SyncOr.

out

in1

in2

Solution 2.19 : The parity circuit with n inputs is defined inductively. For
n = 2, the desired functionality coincides with that of the Xor gate. Thus,
the component Parity2 is same as the component SyncXor from exercise 2.18.
Having defined the circuit Parityn−1 that computes the parity of n − 1 input
variables, now we wish to construct the circuit Parityn with input variables
in1, . . . inn and output out. Observe that the output should be 1 exactly when
either the input inn is 1 and the parity of the first n− 1 input variables is even,
or the input inn is 0 and the parity of the first n − 1 input variables is odd.
Thus, the desired circuit is defined as:

Parityn = (Parityn−1[ out 7→ temp ] ‖ SyncXor[ in1 7→ temp ][ in2 7→ inn ])\temp.

Note that the circuit Parityn uses one more instance of SyncXor than the
component Parityn−1, and thus, n− 1 total instances of SyncXor.

Solution 2.20 : The combinational circuit 1BitAdder, shown below, uses 2
instances of SyncAnd, one instance of SyncOr, and 2 instances of SyncXor. Verify
that the output z is 1 when an odd number of the input variables equal 1, and
the output carry-out is 1 when two or more of the input variables equal 1.

z

carry-out

x

y

carry-in

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

https://ebookyab.ir/solution-manual-principles-of-cyber-physical-systems-alur/

