Solutions

Solutions to Chapter 2 Excercise

- 1. Graph 2.9 contains:
 - (a) 13 vertices
 - (b) 17 edges
 - (c) 5 multiple edges
 - (d) 2 loops
 - (e) 3 vertices adjacent to vertex a
 - (f) 8 vertices connected to vertex a
- 2. The graph induced by...
 - (a) vertices $\{a, b, c, d, e\}$ should contain vertices $\{a, b, c, d, e\}$ and edges $\{(a, b), (a, c), (a, d), (c, c), (b, e)\}$.
 - (b) edges $\{x, y, z\}$ should contain vertices $\{g, j, k, l\}$ and edges $\{(g, j), (g, k), (j, l)\}.$
- 3. Graphs Y and Z are isomorphic. One possible isomorphism is given in Table 13.2. Graphs Y and Z are not automorphic.
- 4. A planar clique of size...
 - (a) 4 can exist.
 - (b) 5 cannot exist.

TABLE 13.2: One possible isomorphism of graphs Y and Z.

V(A)	V(B)
a	d
b	b
c	f
d	a
e	e
f	c

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Practical Graph Mining with R

(c) 6 cannot exist.

510

- 5. Given an undirected tree...
 - (a) it is possible to draw a directed tree with the same number of vertices and edges.
 - (b) it is not possible to draw a new undirected tree with the same number of vertices but a different number of edges.
 - (c) it is not possible to add an edge to the tree without creating a cycle.
 - (d) it is not possible to remove an edge from the tree without disconnecting at least one vertex.

Solutions to Chapter 3 Exercises

- 1. 1 > library(stats)
 - 2 > summary(m.age)
 - Min. 1st Qu. Median Mean 3rd Qu. Max.
 - 17.20 15.70 20.60 21.51 24.90 30.40
 - 5 > sd(m.age)
 - 6 [1] 4.83385
 - 7 > var(m.age)
 - 8 [1] 23.36610
- 2. Figure 13.20 displays the solution.
- 3. (a) 4+y
 - (b) y-x
 - (c) sum(y)
 - (d) x * y
 - (e) y[1:5]
- 4. (a) seq(1, 10, by = 2)
 - (b) seq(2, 10, by = 2)
 - (c) seq(10, 1, by = -1)
 - (d) $seq(1, 10, by = 2)^3$
- 5. (a) $\mathbf{A} + \mathbf{B} = \begin{pmatrix} 9 & 11 \\ 10 & 7 \end{pmatrix}$

(b)
$$\mathbf{A} + 3^* \mathbf{B} = \begin{pmatrix} 23 & 23 \\ 14 & 13 \end{pmatrix}$$

FIGURE 13.20: The output of the plot command plot(year, m.age, type="b", col="black", xlab="Year", ylab="Median Age", main="Plot of U.S. Resident Median Age by Decade from 1790-1950", font.main=2, font.lab=1, pch=19)

(c)
$$det(\mathbf{A}) = -32$$

(d) $\mathbf{A} \% * \% \mathbf{B} = \begin{pmatrix} 24 & 27 \\ 64 & 60 \end{pmatrix}$

(e)
$$t(\mathbf{B}) = \begin{pmatrix} 7 & 2 \\ 6 & 3 \end{pmatrix}$$

[7,] 25

6. $_1 > \text{cube} = \text{function}(x)\{x^3\}$

9 11 11 21 17 15 23

https://ebookyab.ir/solution-manual-practical-graph-mining-with-r-samatova-hendrix/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

 $Practical\ Graph\ Mining\ with\ R$

```
10
[8,]
9
22
21
19
5
13
16
5
1
6

11
[9,]
4
11
7
11
24
20
3
3
23
20

12
[10,]
15
9
5
16
4
13
11
16
19
14
```

Solutions to Chapter 4 Exercises

1 1a \mathbf{A} is symmetric, \mathbf{B} is not.

512

1