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Chapter 1

1.1 Solution:
Taking "V -" operation on both sides of Eq. (1.1-2) and using V-(VxH) = 0, we obtain

_év.D=V.J
ot

This proves the conservation of charge after using Eq. (1.1-3).

1.2 Solution:
Using jV -DdV = cj D-dS = ‘f D -nda , where n is an outward normal unit vector. The surface of
the pillbox shown in Figure 1.1 can be divided into three parts: a top circle, a bottom circle and a
ring.
D-nda = [D-nda+ [D-nda+ [D-nda

M S, ring

=AMD,n,+D,-n,)=A4A(-D,'n, +D,-n,)=A(-D,'n+D,-n)=0
where Q is the total charge within the pillbox, A is the area of the circle, n, = -n; = n. The
integral over the ring approaches zero. The proof for B is similar.

1.3 Solution:
Using I (VxH)-dS = fj H-d/ and the rectangular path shown in Figure 1.1, we obtain

J-J-dS =Al = cj‘H-d?=(t><n)-(H2 —H,)AL, where Al is the current flowing through the

rectangular area, AL is the length of the rectangular path, t is a unit tangent vector perpendicular
to the rectangle and parallel to the interface, n is a unit normal to the interface. Since
K-t=Al/AL and (txn)-(H, -H,)=t-[nx(H, — H,)], we obtain (1.1-11). The proof for E
is similar.

1.4 Solution: Direct substitution into Maxwell's equations.

1.5 Solution:
Take divergence of the stress tensor

V-T =V-(eEE+uHH)-V(¢E* +pH?*)/2

=¢(V-E)E+wW(V-HH+¢(E-V)E+u(H-V)H
—e(E-V)E-p(H-V)H-€¢Ex(VxE)-uH x(VxH)

=pE—-eEx(VXE)-pHx(V xH)

where we assume € and p are constants.

Then take the time derivative of the momentum density

?z=us(£E)xH+u8Ex2H=—uHxV><H—8ExV><E—JxB
ot ot Ot

We note pE +J xB is the Lorentz force.
This proves the equation of motion.
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1.6 Solution:
(a) Work done = Force x distance. dW =F -dx = qE-dx =qE - vdt

(b) dW =) F,-dx, =) qE-dx,

(c) dW == dx, qE=E-) dx,q,=E-dP

1.7 Solution:
(a) The flight time is given by

t=L/v, = Ldk/do =Li(—03n) =L(£+9f’£j.
do\ c ¢ cdo
Taking the differential on both sides of Aw = 27c , we obtain Adm + wdA =0.

Thus, L(E +9@—j = L(ﬁ _&d_n] .
¢ cdo c cdh

2 2
(b) Using the result from (a), we can write D = —C—l—(ﬁ - &@) = _hd ’21 = ——1—73 d ’21
d\\c cdr c d\ ch d\

_ _ 2
v,=v )v,-Vv,)= (& _u)(& _v, o, J — (0,4, C‘)2k1)2 >0
- kl k2 - k, klkz (kz - kl)

(c)

1.8 Solution:
Develop a simple computer program to plot the dispersion curves.

1.9 Solution:
Without loss of generality, we assume

E. = A, cos(wt—35/2)

E, =4, cos(wr+8/2)

Expand the cosine functions, we obtain

E. /A, =cos(wt—3/2)=cos(wt)cos(d/2)+sin(wt)sin(5/2)
E, /A, =cos(wf+06/2)=cos(or)cos(d/2) —sin(wt) sin(5/2)
Addition and subtraction of above equations lead to

E /A +E, /A, =2cos(ot)cos(d/2)

E /A -E, /A, =2sin(of)sin(8/2)

and then
sin(@/2)[E, /A, +E,/ A]=2cos(ot)sin(3/2)cos(8/2) = cos(wt)sind

cos(8/2)[E, /A, —E,/ A,]=2sin(ot)sin(8/2)cos(8/2) = sin(wt)sind

We now add the square of the above equations and obtain
sin’(8/2)[E, / A, + E, /Ay]2 +cos’(8/2)[E,/ A, - E, /Ay]2 =sin’

Using sin®(8/2)+cos*(8/2) =1and cos®(8/2) —sin’(8/2) = cosd lead to Eq. (1.6-12).
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1.10 Solution:

Using the coordinate rotation of Figure 1.4, we have

E,=E, cos¢—E, sin¢

E,=E. sin¢+E, cosd

Substitution of above equation into (1.6-12), we obtain, after multiplying both sides by 4’ Aj
A (E, cos¢—E, sing)’ + 42(E, sing + E,, cos¢)’

—24,4,cosd(E, cos¢— E,, sing)(E, sing+ E,, cosp) = A; 4> sin” &

or

E(A:sin’ ¢+ 4] cos® ¢ — 24,4, cos 8 cos hsin §) +

E}.(A4; cos’ ¢+ 4 sin” ¢ + 24,4, cosScos §sin ) +

EE,(-24; cos ¢sin ¢+ 24; cos¢sin ¢ + 24,4, cosdsin® ¢ — 24,4, cosdcos’ §) = A2 A sin® §
In the principal coordinate, the equation must be of the following form

E./a’ +E, /b* =1, or equivalently b°E> + a’E’, = a’b’

Thus, we obtain

24 A
tan2¢ = — "/;2 cosd

x ~ 4,
a® = 47 cos® ¢+ A; sin® ¢+ 24,4, cos 8 cos sin ¢

b® = A2 sin® ¢ + A cos® ¢ — 24,4, cos§cos hsin ¢

The equality a’h® = 42 4] sin’ § can be proven by using the above three equations.
We obtain

Eq.l &’ +b’ =4 + 4

Eq.2 a® —b* = (A} - A7) cos2¢ +24,4, cosdsin2¢

Eq.3 0=(4; - 4;)sin2¢ — 24,4, cosdcos2¢

We now calculate (Eq. 1)* - (Eq. 2)* - (Eq. 3)>. This leads to a*b* = A4} sin®§.
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1.11 Solution:
Without loss of generality, we assume

E, = A, cos(nt), E, = A, cos(ot +9)

We now examine the electric field vector at ot=n/2-8, and wt= ©/2—8 + At. We obtain
ot=n/2-3: E. =4, sing, E,=0

ot= T/2-6 + At: E, = A4, sin(d - At), E, =-A, sin(Af)

We see that the polarization revolve in a clockwise direction if sin6 >0,

1.12 Solution:
(b) We find the inclination angle of the major axis of the polarization ellipse.
_ 2cosysiny

tan2¢, = 5—C0s0 = tan 2y cos &

cos’ y —sin’ y
2sin\ycosy

tan2¢, = cos(m +d) = tan 2y cosd = tan 2¢,

—cos” y +sin’ y
So, 2¢, =2¢, + mn, where m is an integer. In other words, the major axes are either parallel or

perpendicular. To show that the major axes of the polarization ellipses of the two states are

mutually orthogonal, examine some special cases (e.g., y=0 or 8=0) and calculate the length a
for the two states.
The length of the major axes and minor axes can be calculated by using Eq. (1.6-14).

a’ = A} cos® ¢+ A} sin® ¢+ 24,4, cosdcos §sin ¢
b® = A4; sin® ¢ + 4. cos’ ¢ — 24,4, cosScos dsin ¢
a} = cos® ycos® ¢ +sin’ ysin® ¢ + 2 cos y sin y cos & cos P sin §
b} = cos® ysin® ¢ +sin® ycos® ¢ — 2 cos y sin y cos S cos ¢ sin ¢
a; = sin’ ycos’ ¢ +cos’ ysin® ¢ + 2 cos y siny cos(S + ) cos ¢ sin ¢
= sin” y cos® ¢ + cos” ysin® ¢ — 2 cos \y sin y cos & cos §sin ¢
b2 = sin® ysin® ¢ + cos” y cos® ¢ — 2 cos y sin y cos(d + ) cos psin ¢
= sin” ysin® ¢ + cos’ y cos® ¢ + 2 cos y sin y cos & cos ¢ sin ¢
We note a’ =b. and a? = b} . Thus, the major axes are indeed orthogonal.
The senses of revolution are opposite since sindsin(m +8) = —sin” § < 0.
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1.13 Solution:
From Problem 1.12, we have

any Re[x]
2
1

| 2t :
tan2¢ = tan 2y cos § = ————cos & = . This is Eq. (1.6-18).

1-tan’y 1-|
Using the definition tan® = +b/a , we have sin20 = 2sin@cos0 = 2ab/(a® + b*).
Using a’b® = 424} sin® 8 and @’ +b” = 4] + A, from Problem 1.10, we obtain

sin20 = 2ab/(a® +b*) = 24,4, sind /(A + A*) =—2Im[y] /(1 +]|")
where the choice of " - " sign is consistent with the sense of revolution of the polarization ellipse.

1.14 Solution:
(a) Without loss of generality, we assume

cos cos
A=( i -Wﬂ \], B=( i3 -Wb )
e’ smy, e’siny,

A"-B =0 leads to cos\, cosy, +siny, siny, exp[i(5, -~ 5,)] =0 which leads to 5, -8, =+n
and cos(y, +vy,)=0.
(b) 6,8, <0 follows immediately from the condition that — 7 < < 7. If one of the phases is m,
then the other phase must be zero. This proves 8,6, <0.
(C) . . . .

+ _siny, siny, exp[i(3, —5,)] = ~ siny, siny, __,

XaXb -

cosy, cosy, Cos\y, cosy,

(d) From Eq. (1.6-18), and 6, —6, = %7 and cos(y, +y,) =0,

tan2¢, = tan 2y cosJ,

tan2¢, = tan 2y, cosd, = tan2(n/2 -y, )cos(d, — ) =tan 2y, cosd, =tan2¢,

So, the major axes are either parallel or orthogonal. To show that the major axes of the
polarization ellipses of the two states are mutually orthogonal, examine some special cases (e.g.,

y=0 or 6=0) and calculate the length a for the two states.
Follow the same approach used in Problem 1.12(b).

1.15 Solution:

In the principal coordinate, the polarization ellipse can be written

E, =acos(ot)

E, =bcos(wt £ n/2) = bsin(w?)

We note that in the principal coordinate the two orthogonal polarization components are out of
phase by m/2. Align the wave plate with a phase retardation of 7/2 so that its slow axis (or fast

axis) is parallel (or perpendicular) to the one of the principal axes of the polarization ellipse. The
output is a linear polarization state.
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1.16 Solution:
Without loss of generality, we assume

E, = A cos(of-kz), E, = A, cos(ot —kz +9)

At z=0, the temporal variation is written £, = A4, cos(w?), E, = A, cos(wt + )

At t=0, the spatial variation is written £, = A4, cos(—kz), E, =4, cos(—kz +9)

A direct comparison shows that the spatial variation is equivalent to time-reversed variation.

Thus, the E-vector of right-hand circular polarized light will appear left-handed in the space

domain, and vice versa.
(a) Let E =R +¢"L, where § is an arbitrary phase shift. The (x, y) components of the complex

field amplitudes can be written

X

=_1___ 5 . _ =__1_ 3 . 18 . _
E \/5(1+e )expli(o? —k2)], E, \/5( i +ie")expli(wt —kz)]

We now examine the ratio of the complex amplitudes,

(mi+ie®) (—i+ie®)(1+e™) —i+i+i(e®—e™) -2sind
1+€®) 1A+ +e™) 2+2co0sd 2+2cosd

This is a real number. In other words, the (X, y) components are in phase. So, the resultant is a
linearly polarized wave, regardless of the phase shift.

(b) Let a polarized wave be written

o a b
B =cE, +c,E, =¢ " +c, i

where we assume that both a and b are real.
The constants ¢; and ¢, can be easily obtained by using the orthogonal property of the basis. They
are given by

_ao—ibB c _ bo+iaP
Yo+ a4 b

For a beam of linearly polarized light, o, B are real. So, both ¢, and ¢, are complex.

For a beam of right-hand circularly polarized light with o =1/~/2, B =—i/~/2, the expansion

coefficients are
1 1
Cl=:/‘5—(a—b), Cz=‘5(a+b)

We note that both ¢, and c, are real.


https://ebookyab.ir/solution-manual-photonics-yariv-yeh/

https://ebookyab.ir/solution-manual- hotonics-xvariv- eh/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1.17 Solution:
1

(a) Let the circularly polarized state be written E. = —\/%( .), and the unpolarized state be
—i

1
written E, = —j?( iSJ , where d is a random phase. The projection along the transmission axis of
e
a polarizer (oriented at azimuth angle y) is given by

p-E. =—j—5—(cosw—isinw), p-E, =71_2—(cosx|;+e’75 siny)

It follows that

pEcf =1/2=(]p-E,[")=1/2

where ( ) represents statistical average over the random phase 9.

Thus, a polarizer alone can not distinguish the difference between circularly polarized light and
unpolarized light.

(b) Let the elliptically polarized state be written E = \/—T_l——'—z_(z) The projection along the
a +b° \!

transmission axis of a polarizer (oriented at azimuth angle ) is given by
a’cos’ y +b°

.2
E = acosy +ibsiny| = SIM ¥ A measurement of |p-E* as a
Ip I a2 +b2 | w w' a2 +b2 Ip |
function of the azimuth angle y yields the major axis and the minor axis of the ellipse, provided
a#b. .

It is important to note, a beam of partially polarized light can yield similar result.
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1.18 Solution:

(a) Using the orthogonal relation, E; - E, = 0, we can obtain

¢, = (acosy —ibsiny)/(a* +b%), ¢, =(bcosy +iasiny)/(a’ +b*)
(b) We write a general linearly polarized light as:

E - cos =le"‘v 1 +—1—e”"“1
® Asiny) 2 \-i) 2 i

After propagating through the optically active medium, the polarization state becomes

o 1), (1Y +
EL = l eV . P _1_ eV ' e = C'OS(\V (1)
2 \-i 2 i sin(y + o)

We note that the polarization rotates an angle of a,, where
T

oa=—(@n,—n)L
?\’( r l)

We can also write a general elliptical polarization state as a sum of two orthogonal linear
polarization states:

e[

After propagation through the medium, each linearly polarized basis is rotated by an angle o

cosQ —sina
E[ ]ﬂ-z{ )
sina cosal
These two rotated bases remain the principal axes of the ellipse, as the phase shift between then

remains 7t/2.
So, the major axis is rotated by an angle of a.

1.19 Solution:
(a) Using table 1.5 with I'=nt

v, _(—icos2y —isin2y)(0) (-isin2y) (=sin2y
v, B —isin2y icos2y M\ 1 N icos2y - cos 2y
We note the polarization state is rotated by an angle of 2.

(b)
v, —icos2y —isin2y) 1 (1 1 (—sin2y —icos2y 1 (—iexp(i2y) 1 (1 2v)
= i —_— = — . = — = —= €X 4
v, —isin2y  icos2y Jv2\—i) 2| cos2y—isin 2y V2 exp(i2y) 2\ plrey
We note the output polarization state is LHC, regardless of the azimuth angle .

(c)d= 2—}—— =1254 nm, or odd integral multiples.

in, ~mn, |
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1.20 Solution:
(a) Using table 1.5

(I/x J _ ( e cod yt e gint v, —isin("/2)sinQy) ](Oj :( —isin("/2)sinQy) J =( —isin2y )
Y € v

v, —isin@/2)sinQy) e *sin’ y+e"? cos w1 2 sind y+e™? cos 1+icos2y

1+icos2y

— = x +iy. This leads to X =—cos2y/sin2y, y =1/sin2y, and then
—isin2y

(b) By definition, ¥, =

y2 —x* =1 which is exactly a hyperbola. When y varies from 0 to 7/2, y remains positive, so the locus is the

upper branch of the hyperbola.
A
(¢) d = ————=1841nm, or odd integral multiples.
4|n,—n,|

[
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1.21 Solution:
(a) Using table 1.5

Vol (€™ cos’y+e™sin®y  —isin(T/2)sin2y) )0} ( —isin(I'/2)sin(2y)
(Vy] B ( —isin(T'/2)sin(RQy)  e™'?sin® y+e"’* cos’ wJ(lJ - [e"ﬂ 2sin® y + e""* cos’ \p)
—isin(I"/2) sin(2y)
B (cos(l“ /2)+isin(I'/2)cos 2\1/)

(b), (¢), ()

By definition, y = cos(I"/ ?)_ +(;S;I;()F(2;COS 2y =x+iy. This leads to x =-cos2y/sin2y,
—isin sin 2y
y =1/[tan(T"/2)sin2y], and then y* —tan®(I'/2)x* =1 which is exactly a hyperbola. When

varies from 0 to 7/2, and I varies from O to 27, the points (X, y) cover the entire complex plane.

(e) Using Eq. (1.9-11), the matrix is written W = R(—y)W,R(y), the Hermitian coniugate can be
written |
W =R ROT = R() W, R(=y)' = R-y)W, ' R(y). Thus,

W'W = R(=y)W,"ROW)R(~W)W,R(y) = R(~y)¥,'W,R(y) = R(~y)R(y) = I

O VIV, = (V) - (FV,) = V- (W)Y, = V] -V,
Scalar product is invariant under unitary transformation.

10
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1.22 Solution:
(@

P2_1010_10_P
®* 1o ofo o) {o o) °

P? = R(-y)RR(WR(-W)FR(Y) = R(-Y)RRR(Y) = R(-y)PR(y) = P
Using Dirac notation of linear algebra, a projection operator can be written P = I p)( pl

(b) The transmitted state through a polarizer is obtained by operating the projection operator on
the input polarization state. Thus we have

|E,)=P|E;) =|p)P|E,)

(c) The amplitude of transmission is given by

(x|u)(u|y) = cosycosy, where y = 45°.

(d) The transmitted amplitude is given by

(x| Yot |1ty ) -+ g 0y Yoty |, Yty | ¥) = cos ycosycosy -+ -cosy cos y = (cos y)”
where y=m/(2N).

For large N, 7/(2N) <<1,

(n 1( =Y
cos| — [#1——| —
2N 2\2N
Using
X N
Lim|1-— | =exp(-x
N) p(-=x)

Now

we obtain

N 2V 5 N 2
Lim (__) —Lim|1- L) | cLim|1- L 7| - Limexp- Ty =1
Now |\ 2N oo | 202N Noe| NN | o= 8N

11
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1.23 Solution:
(a) Using Eq. (1.9-39), the transmission of unpolarized light through the first stage (polarizer,
wave plate, polarizer) is

T =—;-cos2 x . The transmission of polarized light through later stages is then T =cos’2"x,

m=1, 2, 3, .. N-1. This leads to the overall transmission.

(b) Using cos0 = (e* +e7)/2, the transmission can be written
(eix e (ein 4 e )2 (ei4x n e-i4x)zm(ei2”‘2x P )2 (eiz”“x + e—iz”“x)z .
Carrying out the multiplications, we obtain

T=1

—2_2'1\75 .....

T_.

- 22N+1

Notice that the left side is a geometric series. Thus, we obtain

(AN _i(oN 2 . 2
- 1 61(2 -Dx —e i(27 +)x B 1 SIn2Nx
22N+l 1__e—i2x 22N+1 Sinx

(c) For the thin plate, the transmission spectrum is cos” x. The separation between peaks is

Ax =, which corresponds Av = The FWHM of each peak is Ax,,, =7n/2 and

_°

d(n,-n,)’

Av,,, = —271(—6—) . For the thickest plate the transmission spectrum is cos® 2"~ x . The FWHM
nZ - nO

c

of each peak is Ax,,, =n/(2"), which corresponds to Av,,, = o —n) )

.. . c .
So, the overall transmission spectrum consists of peaks separated at Av = d—(————), with the
n,—n,

c
2Yd(n, - n,)
c _ c
2Yd(n,-n,) 2D(n,—n,)’

FWHM of each peak given by Av,,, = . The finesse is thus F~ 2",

(d) Using Av,,, = where D is the thickness of the thickest plate,

we obtain
2 2
= ¢ = he = A = (6563) Angstrom =24
2Av,,(n,—n,) 2AN,,(n,—n,)v  2AN,,,(n,—n,) 2(1.5506—1.5416)
cm
(e) The spectra feature of the function
f(x)= Snjl Mx , also appears in grating diffraction, is dominated by the numerator when M >>1.
sin x

The function is periodic with a period of 2, and peak values of f(0) = M . The function drops
to zero at x=n/(M). At x=n/(2M), the function is approximately f =2M /n, with

f?=0.405M . At x =0.886n/(2M), > =0.5M .

12
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1.24 Solution:

Using Table 1.7, the Jones matrix is given by (with y=0)
e cos’y+esin*y  —isin(I'/2)sin(2y)

( —isin(l'/2)sin(2y) e sin? y+e'? ]

With crossed polarizers, the transmission is given by

T=|M,| /2

cos’ y

1.25 Solution:
(a) Using Table 1.7, the Jones matrix for the wave plate followed by a rotator is given by

1y =[cosP —sinp) e cos’ y+e"?sin*y  —isin(T"/2)sin(2y) _RW = M, M,
sinp  cosp —isin(I"/2)sin(2y) e ™ sin’ y+e”'? cos® y - My, M,
Carrying out the matrix multiplication, we obtain

M, =cosp[e™™'? cos® y +e"'*sin’ y] +isinpsin(T'/2)sin(2y)
M, = —sinp[e™™?sin® y +e™'* cos® y] —icospsin(I"/2)sin(2y)
M,, =sinp[e™'? cos® y +e"'? sin® y] —icospsin(T"/2)sin(2y)
M,, = cosple™'?sin® y + " "? cos® y]—isinpsin(T'/2)sin(2y)

To show unitary property, we examine
MM =RW) (RW)=W'R'RW =W'IW =W'W =1

(b)a = Re[M,,]=cos(I'/2)cosp,

b=Im[M,,]=sinpsin(I"/2)sin2y —cospsin(I'/2)cos2y = —cos(p + 2y)sin(I"/2)
c=Re[M,,]=—cos(I'/2)sinp,

d =Im[M,]=-cospsin(I'/2)sin2y —sinpsin(I"/2) cos 2y = —sin(p + 2y) sin(I"/ 2)
Thus, we obtain

cosz£=az+c2 sin2£=b2+al2
2 2

tan(p +2y) = % tanp = ——2

13
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1.26 Solution:
(a) Using the Jones matrix method, the output state can be written

V.l (e™ 0 YcosB) (e™2cosd
[VyJ - ( 0 e*'m)(sin G) B (e“r/z sine]
We now examine the Stokes parameter of this state of polarization.
S, =cos20, §, =sin20cosI’, S, =sin20sinl’
We now keep I fixed and let © vary from 0 to 7. The points (S;, S,, S3) form a circle on the plane
defined by S, /S, =tanT’

This is a great circle formed by the intersection of the Poincare sphere(a unit circle) with the
plane §,/S, =tanT.

If we rotate the equatorial plane by an angle I" around S;-axis, we obtain the same great circle.
We now keep 0 fixed and let I" vary from 0 to 27. The points (S;, S;, S3) form a circle around S;-
axis with S; fixed at cos26.

(b) If the wave plate is oriented at an azimuth angle y and the input linear polarization state
maintains the same angle 0 relative to the c-axis (slow axis) of the wave plate, then the output
polarization ellipse can be obtained from the case of y=0 by a rotation of an angle of y. The
rotation of a polarization ellipse by an angle y can be represented by the rotator matrix described
in Problem 1.25. On the Poincare sphere, the effect of a rotator by an angle \ in the xy-plane is a

rotation around the polar axis (S;-axis) by an angle of 2y. This is proven as follows. Let the
rotated state be written

V. (cosp —sinp) a | (acosp-be®sinp
(Vy] - (sinp cosp Ibeis) B [a sinp + be® cos pj
where p is the angle of rotation. The Stokes parameters of the state before rotation is
S, =a’-b*, S,=2abcosd, S,=2absind
whereas those of the state after the rotation is given by
s=Wl =W, S'=vy vy, S8'=ivy -V,

S,'=(acosp—bsinpcosd)’ + (bsinpsind)> — (asinp + bcosp cos §)* — (bcospsin §)*

=(a’ —b*)cos2p—2abcosdsin2p = S, cos2p — S, sin2p

S,"'= (acosp —be” sinp)(asinp + be® cosp) * +(a cosp — be” sinp) * (asin p + be® cosp)
=2(acosp —bsinpcosd)(asinp + bcospcosd) —2b* sinp cospsin® &
= (a®> - b*)sin2p +2abcos S cos2p = S, sin2p + S, cos 2p

S,'=i(acosp — be” sinp)(asinp + be® cos p) * —i(a cosp — be® sinp) * (a sin p + be® cosp)
=2absind =S,

We note that (S;', Sy', S3') is obtained by a rotation of (Si, S, S3) by an angle 2p around the polar
axis (S3-axis). A great circle remains a great circle after the rotation.

(c) According to the results from Problem 1.25(b), a general birefringent network is equivalent to
a wave plate followed by a rotator. If the input linear state is parallel to the slow (or fast) axis of
the wave plate, then the output state will remain linear after transmitting through the wave plate.
The rotator mere rotates the linear state by an angle p.
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1.27 Solution:
From the basics of eigenvalue problem in linear algebra, the eigenvectors of the following

equation
a b c\x
a, b, ¢ |y|=0
a, b, c,\z

can be written (in terms of row vectors)

(c y 2)= b ¢l |¢ a| la, b , or b, ¢,| |, a,| la, b, ’ or
b, ¢, |c, a,| |a, b, b, ¢ |c; a,| |a, b,
by ¢ le; ay |a, b
by ¢l |o af |a, b
o’pe, —k; -k} kK, k .k, E,
From Eq. (1.7-9), kk, o’ue, —k; —k? kK, E, |=0
kK, k.k, o’pe, —k; -k} \ E,

Note, we are interested in the direction of the eigenvectors. So, for simplicity, we evaluate the
ratios of the components. This avoids having to deal with terms involving ©*. Thus

b ¢l | gq ¢, a,| |la, b,
x:y= : , yiz= : ,
b, c,| lc, a, c, a,| |la, b,
From Eq. (1.7-9), we have
k .k k.k,| |kk, o’ue, —k2-k’
E :E = i s Y T =k k(K - : ’ - o
Y ope, —k7 -k k| Kk, kK, Ko (k7 — e, ) kK, (- otue,)
k k kk,| kk ope —kl-k:
E:E’: Yz yx:yx y x z:kkk2-2 :k 2 2
2R T o e, k2 - k2 Kk, ik, kK, (K" = ope,) sk, (k7 — o'ys, )

where k* = k] +k, +k; . From the above two equations, we obtain
k
(Ex E, Ez)= 2 kxz 2 yz 2 kzz
(k" -—o'pe,) (k" -o'pe,) (k" -o’ue,)
If we define k = nsw/c, then

Ky N S
E E E )= X Y z
( Y Z) (n* -g,/e,) (n’-¢,/¢,) (nz—az/eo)j

(b) Using D =€E, we have

exsx 8 s 8ZSZ
(Dx Dy Dz)= 2 2 — 2
(n" —g,/g)) (n"-¢,/g) (n"—g,/€y)
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