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1.6 Write the number -0.625 in the following forms (in part (c) follow the IEEE-754 standard):
(a) Binary form.   (b)  Base 2 floating point representation.   (c)   32 bit single-precision string.

Solution

(a) The largest power of 2 that can be divided into 0.625 is . Next subtract: .

Now the largest power of 2 that can be divided into 0.125 is . Thus, the number -0.625 in binary form is
-0.101.

(b) Using part (a), the binary floating point representation of -0.625 is:

(c) According to the IEEE-754 standard, -0.625 in single precision form is as follows:
• Since the number is negative, the first bit is 1

• From part (b), the exponent is -1. Adding a bias of 127, the value of the exponent that must be stored
is -1+127 = 126. The number 126 in binary form is:

Thus the number 126 in binary form is 1111110. In single precision, 8 bits can be used to store the
exponent so that 126 is stored as 01111110 without the need for rounding or chopping.

• Next, the mantissa 0.25 is converted to binary form:  or, 0.01

• Since 23 bits are allocated for the mantissa, the binary number stored is 01000000000000000000000

Thus, the number -0.625 in single precision is stored as: |1|01111110|01000000000000000000000|.
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