Exercise solutions

Linear text classification

- 1. Let x be a bag-of-words vector such that $\sum_{j=1}^{V} x_j = 1$. Verify that the multinomial probability $p_{\text{mult}}(x; \phi)$, as defined in Equation 2.12, is identical to the probability of the same document under a categorical distribution, $p_{\text{cat}}(w; \phi)$.
- 2. Suppose you have a single feature x, with the following conditional distribution:

$$p(x \mid y) = \begin{cases} \alpha, & X = 0, Y = 0\\ 1 - \alpha, & X = 1, Y = 0\\ 1 - \beta, & X = 0, Y = 1\\ \beta, & X = 1, Y = 1. \end{cases}$$
 [B.23]

Further suppose that the prior is uniform, $\Pr(Y=0) = \Pr(Y=1) = \frac{1}{2}$, and that both $\alpha > \frac{1}{2}$ and $\beta > \frac{1}{2}$. Given a Naïve Bayes classifier with accurate parameters, what is the probability of making an error?

Answer:
$$\hat{y}(X=0) = 0 \qquad \qquad [B.24] \\ \hat{y}(X=1) = 1 \qquad \qquad [B.25] \\ \Pr(\hat{y}=0 \mid Y=1) = \Pr(X=0 \mid Y=1) = (1-\beta) \qquad \qquad [B.26] \\ \Pr(\hat{y}=1 \mid Y=0) = \Pr(X=1 \mid Y=0) = (1-\alpha) \qquad \qquad [B.27] \\ \Pr(\hat{y}\neq y) = \frac{1}{2}(1-\beta+1-\alpha) \qquad \qquad [B.28] \\ = 1-\frac{1}{2}(\alpha+\beta) \qquad \qquad [B.29]$$

3. Derive the maximum-likelihood estimate for the parameter μ in Naïve Bayes.

620 **BIBLIOGRAPHY**

Answer:

$$L(\mu) = \sum_{i=1}^{N} \log p_{\text{cat}}(y^{(i)}; \mu)$$
 [B.30]

$$= \sum_{i=1}^{N} \log \mu_{y^{(i)}}$$
 [B.31]

$$\ell(\boldsymbol{\mu}) = \sum_{i=1}^{N} \log \mu_{y^{(i)}} - \lambda \left(\sum_{y=1}^{K} \mu_{y} - 1 \right)$$
 [B.32]

$$\frac{\partial \ell(\boldsymbol{\mu})}{\partial \mu_{y}} = \sum_{i=1}^{N} \frac{\delta\left(y^{(i)} = y\right)}{\mu_{y}} - \lambda$$
 [B.33]

$$\mu_y \propto \sum_{i=1}^{N} \delta\left(y^{(i)} = y\right)$$
 [B.34]

- 4. The classification models in the text have a vector of weights for each possible label. While this is notationally convenient, it is overdetermined: for any linear classifier that can be obtained with $K \times V$ weights, an equivalent classifier can be constructed using $(K-1) \times V$ weights.
 - a) Describe how to construct this classifier. Specifically, if given a set of weights θ and a feature function f(x, y), explain how to construct alternative weights and feature function θ' and f'(x, y), such that,

$$\forall y, y' \in \mathcal{Y}, \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y) - \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y') = \boldsymbol{\theta}' \cdot \boldsymbol{f}'(\boldsymbol{x}, y) - \boldsymbol{\theta}' \cdot \boldsymbol{f}'(\boldsymbol{x}, y').$$
 [B.35]

b) Explain how your construction justifies the well-known alternative form for binary logistic regression, $\Pr(Y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}' \cdot \boldsymbol{x})} = \sigma(\boldsymbol{\theta}' \cdot \boldsymbol{x})$, where σ is the sigmoid function.

Jacob Eisenstein. Draft of January 16, 2019.

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

BIBLIOGRAPHY 621

Answer:

a) Let $\theta_{K,j}$ indicate the weight for base feature j in class K. Then $\theta'_{k,j} = \theta_{k,j} - \theta_{K,j}$, and $f'(\boldsymbol{x},y) = f(\boldsymbol{x},y)$ for all y < K. This means that $\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x},K) = 0$.

b) In binary classification, $\theta' = \theta_0 - \theta_1$.

$$\Pr(Y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, 0))}{\exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, 0)) + \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, 1))}$$
 [B.36]

$$= \frac{1}{1 + \exp\left(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, 1) - \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, 0)\right)}$$
 [B.37]

$$= \frac{1}{1 + \exp\left(-\boldsymbol{\theta}' \cdot \boldsymbol{x}\right)}.$$
 [B.38]

- 5. Suppose you have two labeled datasets D_1 and D_2 , with the same features and labels.
 - Let $\theta^{(1)}$ be the unregularized logistic regression (LR) coefficients from training on dataset D_1 .
 - Let $\theta^{(2)}$ be the unregularized LR coefficients (same model) from training on dataset D_2 .
 - Let θ^* be the unregularized LR coefficients from training on the combined dataset $D_1 \cup D_2$.

Under these conditions, prove that for any feature j,

$$\begin{aligned} & \theta_j^* \geq \min(\theta_j^{(1)}, \theta_j^{(2)}) \\ & \theta_j^* \leq \max(\theta_j^{(1)}, \theta_j^{(2)}). \end{aligned}$$

6. Let $\hat{\theta}$ be the solution to an unregularized logistic regression problem, and let θ^* be the solution to the same problem, with L_2 regularization. Prove that $||\theta^*||_2^2 \le ||\hat{\theta}||_2^2$.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

622 BIBLIOGRAPHY

Answer:

Proof. Let the unregularized negative log-likelihood be $\mathcal{L}(\theta)$. Let the regularized log-likelihood be $L(\theta)$. By assumption, $\theta^* = \operatorname{argmin}_{\theta} L(\theta)$, so $L(\theta^*) \leq L(\hat{\theta})$.

$$L(\boldsymbol{\theta}^*) \le L(\hat{\boldsymbol{\theta}}) \tag{B.39}$$

$$\mathcal{L}(\boldsymbol{\theta}^*) + \lambda ||\boldsymbol{\theta}^*||_2^2 \le \mathcal{L}(\hat{\boldsymbol{\theta}}) + \lambda ||\hat{\boldsymbol{\theta}}||_2^2$$
 [B.40]

[B.41]

By assumption, $\hat{\theta} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta)$, so $\mathcal{L}(\hat{\theta}) \leq \mathcal{L}(\theta^*)$, which implies,

$$\mathcal{L}(\boldsymbol{\theta}^*) + \lambda ||\boldsymbol{\theta}^*||_2^2 \le \mathcal{L}(\boldsymbol{\theta}^*) + \lambda ||\hat{\boldsymbol{\theta}}||_2^2$$
 [B.42]

$$||\boldsymbol{\theta}^*||_2^2 \le ||\hat{\boldsymbol{\theta}}||_2^2.$$
 [B.43]

- 7. As noted in the discussion of averaged perceptron in § 2.3.2, the computation of the running sum $m \leftarrow m + \theta$ is unnecessarily expensive, requiring $K \times V$ operations. Give an alternative way to compute the averaged weights $\overline{\theta}$, with complexity that is independent of V and linear in the sum of feature sizes $\sum_{i=1}^{N} |f(x^{(i)}, y^{(i)})|$.
- 8. Consider a dataset that is comprised of two identical instances $x^{(1)} = x^{(2)}$ with distinct labels $y^{(1)} \neq y^{(2)}$. Assume all features are binary, $x_j \in \{0,1\}$ for all j.

Now suppose that the averaged perceptron always trains on the instance $(x^{i(t)}, y^{i(t)})$, where $i(t) = 2 - (t \mod 2)$, which is 1 when the training iteration t is odd, and 2 when t is even. Further suppose that learning terminates under the following condition:

$$\epsilon \ge \max_{j} \left| \frac{1}{t} \sum_{t} \theta_{j}^{(t)} - \frac{1}{t-1} \sum_{t} \theta_{j}^{(t-1)} \right|.$$
 [B.44]

In words, the algorithm stops when the largest change in the averaged weights is less than or equal to ϵ . Compute the number of iterations before the averaged perceptron terminates.

Jacob Eisenstein. Draft of January 16, 2019.

BIBLIOGRAPHY 623

Answer:

Let $\tau = \lceil \frac{t}{2} \rceil$. The weights for a feature which is active for $y^{(1)}$ proceed as: $1, 0, 1, 0, 1, \dots$ The averaged weight for such a feature proceeds as,

$$\frac{1}{2\tau - 1} \sum_{t=1}^{2\tau - 1} \theta^{(t)} = \frac{\tau}{2\tau - 1}$$
 [B.45]

$$\frac{1}{2\tau} \sum_{t=1}^{2\tau} \theta^{(t)} = \frac{1}{2}.$$
 [B.46]

The algorithm terminates at τ^* , where,

$$\frac{\tau^*}{2\tau^* - 1} - \frac{1}{2} = \epsilon$$
 [B.47]

$$\frac{2\tau^*}{2\tau^* - 1} = 2\epsilon + 1$$
 [B.48]

$$2\tau^* = 2\tau^* + 4\epsilon\tau^* - 2\epsilon - 1$$
 [B.49]

$$\tau^* = \frac{2\epsilon + 1}{4\epsilon} = \frac{1}{2} + \frac{1}{4\epsilon}$$
 [B.50]

$$t^* = 1 + \frac{1}{2\epsilon} \tag{B.51}$$

9. Prove that the margin loss is convex in θ . Use this definition of the margin loss:

$$L(\boldsymbol{\theta}) = -\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y^*) + \max_{y} \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + c(y^*, y),$$
 [B.52]

where y^* is the gold label. As a reminder, a function f is convex iff,

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2),$$
 [B.53]

for any x_1, x_2 and $\alpha \in [0, 1]$.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

624 BIBLIOGRAPHY

Answer:

Proof.

$$L(\alpha \boldsymbol{\theta}_{1} + (1 - \alpha)\boldsymbol{\theta}_{2}) = -\alpha \boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y^{*}) - (1 - \alpha)\boldsymbol{\theta}_{2}\boldsymbol{f}(\boldsymbol{x}, y^{*}) + c(y^{*}, y)$$

$$+ \max_{y} \alpha \boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + (1 - \alpha)\boldsymbol{\theta}_{2}\boldsymbol{f}(\boldsymbol{x}, y^{*}) + c(y^{*}, y)$$

$$= \max_{y} \alpha \left(-\boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y^{*}) + \boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + c(y^{*}, y)\right)$$

$$+ (1 - \alpha)\left(-\boldsymbol{\theta}_{2} \cdot \boldsymbol{f}(\boldsymbol{x}, y^{*}) + \boldsymbol{\theta}_{2} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + c(y^{*}, y)\right)$$

$$\leq \left[\alpha(-\boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y^{*}) + \max_{y} \boldsymbol{\theta}_{1} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + c(y^{*}, y)\right]$$

$$+ \left[(1 - \alpha)(-\boldsymbol{\theta}_{2} \cdot \boldsymbol{f}(\boldsymbol{x}, y^{*}) + \max_{y} \boldsymbol{\theta}_{2} \cdot \boldsymbol{f}(\boldsymbol{x}, y) + c(y^{*}, y)\right]$$

$$\leq \alpha L(\boldsymbol{\theta}_{1}) + (1 - \alpha)L(\boldsymbol{\theta}_{2}).$$
[B.57]

The inequality holds because $\max_x f(x) + g(x) \le \max_x f(x) + \max_{x'} g(x')$: maximizing each term separately yields a sum that is at least as large as finding a single y to maximize the sum jointly.

Remark Let \hat{y}_1 be the maximizer of $L(\theta_1)$, and let \hat{y}_2 be the maximizer of $L(\theta_2)$. When $\hat{y}_1 = \hat{y}_2 = y^*$, then $L(\theta_1) = L(\theta_2) = L(\alpha\theta_1 + (1-\alpha)\theta_2) = 0$. When $\hat{y}_1 = \hat{y}_2 \neq y^*$, then both θ_1 and θ_2 are on the linearly decreasing part of the loss function. When $\hat{y}_1 \neq \hat{y}_2$, the inequality is strict.

10. If a function f is m-strongly convex, then for some m > 0, the following inequality holds for all x and x' on the domain of the function:

$$f(x') \le f(x) + (\nabla_x f) \cdot (x' - x) + \frac{m}{2} ||x' - x||_2^2.$$
 [B.58]

Let $f(x) = L(\theta^{(t)})$, representing the loss of the classifier at iteration t of gradient descent; let $f(x') = L(\theta^{(t+1)})$. Assuming the loss function is m-convex, prove that $L(\theta^{(t+1)}) \leq L(\theta^{(t)})$ for an appropriate constant learning rate η , which will depend on m. Explain why this implies that gradient descent converges when applied to an m-strongly convex loss function with a unique minimum.

Jacob Eisenstein. Draft of January 16, 2019.