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Exercise solutions

Linear text classification

1. Let « be a bag-of-words vector such that Z;./Zl xj = 1. Verify that the multinomial
probability p, ..(x; @), as defined in Equation 2.12, is identical to the probability of
the same document under a categorical distribution, p_,,(w; ¢).

2. Suppose you have a single feature z, with the following conditional distribution:

«, X=0,Y=0
l—a, X=1,Y=0
1-8, X=0Y=1
8, X=1Y=1.

p(z|y) = [B.23]

Further suppose that the prior is uniform, Pr(Y = 0) = Pr(Y = 1) = 1, and that

both @ > % and 8 > 1. Given a Naive Bayes classifier with accurate parameters,

what is the probability of making an error?

Answer:
g(X =0) =0 [B.24]
(X =1) =1 [B.25]
Pr(g=0]Y=1)=Pr(X=0|Y=1)=(1-5) [B.26]
Pr(=1]Y=0)=Pr(X=1|Y=0)=(1—0«) [B.27]
Pr(9 # y) :%(1—5“—0&) [B.28]
1 %(a +8) [B.29]

3. Derive the maximum-likelihood estimate for the parameter 1 in Naive Bayes.
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Answer:
N .
L(p) =Y logp(y"; ) [B.30]
=1
N
=D loguyw [B.31]
=1
N K
) = log pr0 — A <Z fly — 1) [B.32]
i=1 y=1
() =3y =y)
=) —= = B.33
Aty ; Hy [B33]
N .
py <Y 0 (y(’) = y) [B.34]
=1

4. The classification models in the text have a vector of weights for each possible label.
While this is notationally convenient, it is overdetermined: for any linear classifier
that can be obtained with K x V weights, an equivalent classifier can be constructed
using (K — 1) x V weights.

a) Describe how to construct this classifier. Specifically, if given a set of weights
0 and a feature function f(x,y), explain how to construct alternative weights
and feature function 8’ and f'(x,y), such that,

Vy,y' € V,0- f(x,y)—0- f(x,y)=0" f'(x,y)— 0" f'(x,y). [B.35]

b) Explain how your construction justifies the well-known alternative form for
binary logistic regression, Pr(Y =1 | z;0) = m = 0(0" - x), where o
is the sigmoid function.
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Answer:

a) Let 0k ; indicate the weight for base feature j in class K. Then 0; ; = 0y ; — 0k ;, and
f(z,y) = f(x,y) for all y < K. This means that 8 - f(x, K) = 0.

b) In binary classification, 8’ = 6, — 6;.

exp (6 - f(,0))

P00 = @ F@.0)) e (0 F@ 1) (5:36]
1

T e (@ f@1) -0 F@,0) 15571

L [B.38]

:1+exp(—0’-:c)'

5. Suppose you have two labeled datasets D; and D3, with the same features and la-
bels.

e Let (Y be the unregularized logistic regression (LR) coefficients from training
on dataset D;.

e Let ?) be the unregularized LR coefficients (same model) from training on
dataset Ds.

e Let 8" be the unregularized LR coefficients from training on the combined
dataset D1 U Ds.

Under these conditions, prove that for any feature j,

63 >min(6}",6\")

* 1) 2
0 Smax(@é ),03(. )).

6. Let  be the solution to an unregularized logistic regression problem, and let 6* be
the solution to the same problem, with L, regularization. Prove that ||6*||3 < ||0]|3.
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Answer:

Proof. Let the unregularized negative log-likelihood be £(0). Let the regularized log-

likelihood be L(8). By assumption, 8* = argming L(6), so L(6*) < L(8).

L(6%) <L(6) [B.39]
L(67) + N|67]13 <L£(0) + \||6]3 [B.40]
[B.41]

By assumption, 6 = argming £(0), so L() < L£(8*), which implies,

L£(67) + N|67[3 <£(67) + N8I3 [B.42]
1[5 <[16115- [B.43]
O

7. As noted in the discussion of averaged perceptron in § 2.3.2, the computation of the
running sum m < m + 6 is unnecessarily expensive, requiring K x V operations.
Give an alternative way to compute the averaged weights 8, with complexity that is
independent of V and linear in the sum of feature sizes "1 | | £(x®, y®)|.

8. Consider a dataset that is comprised of two identical instances (') = x(?) with
distinct labels (M) # 3(2). Assume all features are binary, z; € {0, 1} for all j.

Now suppose that the averaged perceptron always trains on the instance (x'®, y*(*)),
where i(t) = 2 — (¢ mod 2), which is 1 when the training iteration ¢ is odd, and 2
when t is even. Further suppose that learning terminates under the following con-
dition:

1 L 1 S gD
> - v — : . .
€> mjax (2 GJ T t Hj [B.44]

In words, the algorithm stops when the largest change in the averaged weights is
less than or equal to e. Compute the number of iterations before the averaged per-
ceptron terminates.

Jacob Eisenstein. Draft of January 16, 2019.
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Answer:
LetT = (%1 The weights for a feature which is active for yM proceed as: 1,0,1,0,1,.... The
averaged weight for such a feature proceeds as,
1 27—1 ’
) — B4
2r -1 t:zl 2r -1 [B.45]
2T
Qi 6 :%. [B.46]
=
The algorithm terminates at 7*, where,
* 1
s [B.47]
2 —1 2
27*
P — =2¢+1 [B.48]
27" =27% + det* — 2e — 1 [B.49]
2¢+1 1 1
* = =+ — B.50
T T T2k [.50]
1
t" =14 — [B.51]
2e

9. Prove that the margin loss is convex in 8. Use this definition of the margin loss:

where y* is the gold label. As a reminder, a function f is convex iff,

flary + (1 —a)rz) < af(z1) + (1 - a)f(z2), [B.53]

for any z1,z2 and a € [0, 1].
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Answer:
Proof.
L(aby + (1 — )82) = — ab: - f(z,y") — (1 — )02 f (z,y")
+ mix abr - flz,y)+ (1 — ) f(x,y*) + c(y™,y) [B.54]
=maxa (=01 - f(@,y") + 01 f(z,y) + ey, y))

+ (=) (=02 f(z,y") + 02 flz,y) +c(y",y)) [B.55]

<[at-01 )+ mae0r- )+l )

+ | = ) =0n @) + maxOy - fle) el )]  B56)
<aL(6:1) + (1 — a)L(62). [B.57]

The inequality holds because max, f(z)+ g(z) < max, f(z)+ max, g(z'): maximizing each
term separately yields a sum that is at least as large as finding a single y to maximize the
sum jointly. O

Remark Let §; be the maximizer of L(6), and let §s be the maximizer of L(62). When
:I.)l = 3}2 = y*, then L(Gl) = L(GQ) = L(Oéal + (1 — 06)02) = 0. When yAl = @2 7& y*, then
both 8, and 6, are on the linearly decreasing part of the loss function. When 1 # 3o, the
inequality is strict.

10. If a function f is m-strongly convex, then for some m > 0, the following inequality
holds for all  and 2’ on the domain of the function:

£@) < F@) + (Vaf) - & = 2)+ 2l ~ il [B.58]

Let f(x) = L(6®), representing the loss of the classifier at iteration ¢ of gradient
descent; let f(z') = L(8*+1). Assuming the loss function is m-convex, prove that
L(8HY) < L(6W) for an appropriate constant learning rate 7, which will depend
on m. Explain why this implies that gradient descent converges when applied to an
m-strongly convex loss function with a unique minimum.
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