
Chapter 2

Ex. 2.1

(i)

The radiated electric field is

~εa ≈ re
eikRD

RD

[
n̂× (n̂× ~Ein)

]
e−iωte−i~q·~r. (1)

Replace e−i~q·~r by 〈e−i~q·~r〉 = f(~q ). The vector (n̂× ~Ein) is perpendicular to both n̂ and to ~Ein and

has length |Ein sin θ|. Hence |n̂× (n̂× ~Ein)|2 = E2
in sin2 θ. Thus

|εa|2 = E2
in

r2
e

R2
D

sin2 θ|f(~q )|2. (2)

The total radiated power passing through a sphere of radius RD is

P = cR2
D

∫
dΩ

(
ε2a
8π
× 2

)
(3)

=
c

4π
r2
eE

2
in

∫
dΩ sin2 θ|f(~q )|2. (4)

Let us normalize the incident electric field to that associated with a single photon in the normal-
ization volume L3

E2
in

4π
=

~ω
L3

=
~ck
L3

(5)

which yields

P = ~c2k
r2
e

L3

∫
dΩ sin2 θ|f(~q )|2. (6)

(ii)

Now compare this to the quantum result using the photon scattering matrix element in Eq. (2.28)

M = ref(~q ) ∧2
k ε̂~kλ · ε̂~k′λ. (7)
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Fermi’s Golden Rule for the transition rate is

Γ =
2π

~
∑
λ′

L3

(2π)3

∫
d3k′ r2

e ∧4
k [ε̂~kλ · ε̂~k′λ]2δ(~ω − ~ck′)|f(~q )|2. (8)

Noting that the two polarization vectors ε̂~k′λ′ and the vector k̂′ are all mutually perpindicular, we

find
∑
λ′ [ε̂~kλ · ε̂~k′λ]2 = 1− [ε̂~kλ · k̂′]

2 = 1− cos2 θ = sin2 θ. The radiated power is

P = ~c2k
r2
e

L3

∫
dΩ sin2 θ|f(~q )|2, (9)

in agreement with the result from the semiclassical calculation.

Ex. 2.2

S(~q) =
1

N
< |W (~q)|2 >=

1

N
<

N∑
i=1

ei~q.~ri
N∑
j=1

e−i~q.~rj > (10)

=
1

N
<

N∑
i=j

ei~q.~ri−i~q.~rj > +
1

N
<

N∑
i 6=j

∫
d3~rd3~r′ei~q.~ri−i~q.~rjδ(~r − ~ri)δ(~r′ − ~rj) > (11)

=
1

N
N +

1

N

∫
d3~rd3~r′ei~q·(~r−~r

′) <

N∑
i 6=j

δ(~r − ~ri)δ(~r′ − ~rj) > (12)

Remembering

<

N∑
i 6=j

δ(~r − ~ri)δ(~r′ − ~rj) >= n(2)(~r′i − ~rj),

then obviously

S(~q) = 1 +
1

N

∫
d3~rd3~r′ei~q·(~r−~r

′)n(2)(~r′ − ~r) = 1 + n

∫
d3~rei~q.~rg(~r)

where we used N/V = n and n(2)(~R) = n2g(~R).
P.S. ” <> ” indicates thermal average in liquid or amorphous materials. It is unnecessary only

for perfect lattices. Generally ” <> ” must be in the formula.
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Chapter 3

Ex. 3.1

• SC FCC BCC

radius a/2
√

2
4 a

√
3

4 a

volume of one sphere π
6 a

3
√

2π
24 a3

√
3π

16 a3

number of sites in unit cell 1 4 2

volume fraction π
6

√
2

6 π
√

3
8 π

Ex. 3.2

FCC 8× 1
8 + 6× 1

2 = 4
BCC 8× 1

8 + 1 = 2

Ex. 3.3

(i)

Suppose the lattice spacing is a. The three primitive vectors are

~a1 = a (0,
1

2
,

1

2
)

~a2 = a (
1

2
, 0,

1

2
)

~a3 = a (
1

2
,

1

2
, 0)

Thus, the coordinates of the four points of the tetrahedron spanned by the three vectors are

O = (0, 0, 0)

A = a(0,
1

2
,

1

2
)

B = a(
1

2
, 0,

1

2
)

C = a(
1

2
,

1

2
, 0)
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By calculating the distance of any two points, we can prove that the edges of the tetrahedron
are equal. So it is a regular tetrahedron.

(ii)

Another lattice site (on the opposite sublattice) locates at P = a
4 (1, 1, 1)

The distance of P to each corner of the tetrahedron is

PO = a|(1

4
,

1

4
,

1

4
)|

PA = a|(1

4
,
−1

4
,
−1

4
)|

PB = a|(−1

4
,

1

4
,
−1

4
)|

PC = a|(−1

4
,
−1

4
,

1

4
)|

We get PO = PA = PB = PC =
√

3a
4 . Therefore, P is at the geometrical center of this

tetrahedron.

Ex. 3.4

(i) ~R~m±~n = (m1~a1 + m2~a2 + m3~a3)±(n1~a1 + n2~a2 + n3~a3) = (m1 ± n1) ~a1 + (m2 ± n2) ~a2 +
(m3 ± n3) ~a3

Indeed have the form of (3.15) and are lattice vectors characterized by ~m± ~n.

(ii) Start in 1D. Pick the lattice site closest to the origin, whose distance from the origin is a. Claim:
all sites satisfying 1D version of (3.16) can be written as Rm = ma with m being an integer.

Proof: Assume R ′ = αa is a lattice site with α being a non-integer. [α] represents the integer part
of α, and ∆α = α− [α] is its fractional part. Thus 0 < ∆α < 1.

From (3.16), we know [α] a and thus R ′ − [α] a = ∆αa is also a lattice site, but its distance
to the origin is less than a, leading to a contradiction.

For 2D, let us look for the closest site to the origin, located at ~a1. This immediately gives us a
lattice line, m~a1, with m being an integer. Any lattice site ~R 6= m~a1, gives us a parallel lattice line,
~R + m~a1. Look for ~R = ~a2 such that ~a2 + m~a1 is the lattice line closest to the line m~a1. Then
m~a1 + m2~a2 are all lattice sites. Now assume α1 ~a1 + α2~a2 is also a lattice site, with ∆α1 > 0 and
∆α2 > 0. Then we know (m1 + ∆α1) ~a1 + [α2]~a2 forms a lattice line, which is closer to the m~a1

line than the ~a2 + m~a1 line! Contradiction again. It is now obvious how to generalize this to 3D.

Ex. 3.5

For a Bravais lattice, it has a set of primitive vectors, ~ai. The locations of all lattice points could
be expressed as
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~R~c =
∑
i

ci ~ai, ci ∈ Z(integer).

The mid-point of any two lattice sites, say ~R~m and ~R~n is

~Rmid =
1

2

(
~R~m + ~R~n

)
=
∑
i

1

2
(mi + ni) ~ai

where mi and ni are integers.
We can always shift the origin of the coordinate of the lattice to this mid-point so that all lattice

points have new coordinates as

~R′~c = ~R~c − ~Rmid =
∑
i

[
ci −

1

2
(mi + ni) ~ai

]
(13)

If ~Rmid is an inversion center, given a lattice site ~R′~c , −~R′~c must be a lattice point as well.
Namely, there exists a set of pi which are integers such that

−~R′~c = ~R′~p =
∑
i

[
pi −

1

2
(mi + ni)

]
~ai (14)

Combining Eq. (13) and Eq. (14), we get
pi = (mi + ni)− ci ∈ Z.

This tells us that ~Rmid is indeed an inversion center.

Ex. 3.6

3-fold axis

6-fold axis

Triangular Lattice
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3-fold axis

6-fold axis

Honeycomb Lattice

If the atoms on A and B sublattice are different, C6 symmetry will be broken. The original 6-fold
axis will become a 3-fold axis. And the original 3-fold axis is still 3-fold.

Ex. 3.7

Ex. 3.8

A diamond structure could be viewed as a FCC lattice with a basis containing two atoms called A
and B. A and B have a a

4 (1, 1, 1) shift where a is the lattice constant. If we take the mid-point of A
and B as an inversion center, the positions of the sublattices will exchange applying to all the lattice
sites. As a result, the lattice is unchanged if the atoms on different sublattice sites are the same;
otherwise, the lattice is not centrosymmetric. Therefore, diamond structures are centrosymmetric,
but Zincblende lattices are not.

Ex. 3.9

Suppose the lattice has n-fold symmetry. Then rotating by α = 2π
n about the origin (assumed to be

a lattice site) should leave the lattice invariant. Assume ~a0 is the shortest lattice vector connecting
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the origin to one of its neighbors. After a rotation of α = ± 2π
5 , it becomes ~a1 and ~a2 respectively,

which should be lattice vectors themselves (see figure). Then ~a1 +~a2 should also be a lattice vector.
But simple trigonometry finds it is shorter than ~a0 (see figure), which leads to contradiction. Thus
5-fold symmetry is not allowed in 2D. Since 3D lattices are made of parallel 2D planes, this implies
such symmetry is impossible in 3D as well.

2Π�5

: lattice site

: 5-fold axis

a1

a2

a0 a0 = a1 + a2

Ex. 3.10

The construction of 1D resiprocal lattice {~bj} with ~bj · ~am = 2πδmj :

~b · ~a = 2π ⇒ ~b =
2π

a
x̂.

The reciprocal lattice vectors are

~G = m~b = m
2π

a
x̂. (m=integer)

1st BZ: [−π/a, π/a)

2nd BZ: [−3π/a,−π/a), [π/a, 3π/a)

nth BZ: [(1− 2n)π/a, (3− 2n)π/a), [(2n− 3)π/a, (2n− 1)π/a)
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Ex. 3.11

1) FCC

~a1 =
a

2
(ŷ + ẑ) = (0, a/2, a/2)

~a2 =
a

2
(x̂+ ẑ) = (a/2, 0, a/2)

~a3 =
a

2
(x̂+ ŷ) = (a/2, a/2, 0)

w = ~a1.(~a2 × ~a3) =
a3

8
+
a3

8
=
a3

4

~b1 =
2π

w
(~a2 × ~a3) =

2π

a
(−1, 1, 1)

~b2 =
2π

w
(~a3 × ~a1) =

2π

a
(1,−1, 1)

~b1 =
2π

w
(~a1 × ~a2) =

2π

a
(1, 1,−1)

This is indicative that (~b1,~b2,~b3) forms a BCC lattice with lattice constant 4π
a .

2) BCC

~a1 =
a

2
(ŷ + ẑ − x̂) = (−a/2, a/2, a/2)

~a2 =
a

2
(x̂+ ẑ − ŷ) = (a/2,−a/2, a/2)

~a3 =
a

2
(x̂+ ŷ − ẑ) = (a/2, a/2,−a/2)

w = ~a1.(~a2 × ~a3) =
a3

2

~b1 =
2π

w
(~a2 × ~a3) =

2π

a
(0, 1, 1)

~b2 =
2π

w
(~a3 × ~a1) =

2π

a
(1, 0, 1)

~b3 =
2π

w
(~a1 × ~a2) =

2π

a
(1, 1, 0)

(~b1,~b2,~b3) constructs a FCC lattice with lattice constant 4π
a .
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Ex. 3.12

For a direct lattice ~R =
∑
i

ni~ai whose reciprocal lattice ~K =
∑
i

ki~bi, we have

ei
~R· ~K = e

∑
ni~ai.

∑
kj~bj = 1.

Let us call the reciprocal lattice of ~K ~R′, then we have ei
~K·~R′ = 1, thus ~R′ = ~R.

Ex. 3.13

(a)

Begin with a 1D array of disks of radius r0. If the centers of the disks are on the 1D lattice
{~Rj = jd(1, 0, 0); j ∈ Z} where d = 2r0, then the disks are just touching as shown in Fig. 1a.

a)

b)

d

d

d

Figure 1

Now consider adding a second line of atoms as shown in Fig. 1b with lattice positions {~Rj =
d(j + δ, y, 0); j ∈ Z}. The lowest possible allowed value of y (and hence the densest lattice) occurs

for horizontal displacement δ = 1/2. At ymin =
√

3
2 each disk in the second row touches two disks

in the first row. Extending this to an arbitrary number of rows yields the triangular lattice with

lattice vectors ~a1 = d(1, 0, 0) and ~a2 = d( 1
2 ,
√

3
2 , 0).

(b)

Now consider the triangular lattice A defined by points ~Rjk = j~a1 + k~a2 as shown in the left panel
of Fig. 2.

U D
U D

Figure 2
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