براي دسترسي به نسخه كامل حل المسائل، روى لينك زير كليك كنيد و يا به وبسايت "ايبوك ياب" مراجعه بفرماييد

https://ebookyab.ir/solution-manual-for-introduction-to-robotics-saeed-niku/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

> Introduction to Robotics Analysis, Control, Applications

> > Solution Manual

Saeed B. Niku

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

CHAPTER ONE

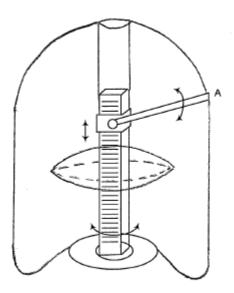
Problem 1.1

Draw the approximate workspace for the following robot. Assume the dimensions of the base and other parts of the structure of the robot are as shown.

Estimated student time to complete: 15-25 minutes **Prerequisite knowledge required:** Text Section(s) 1.14

Solution:

The workspace shown is approximate.



Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

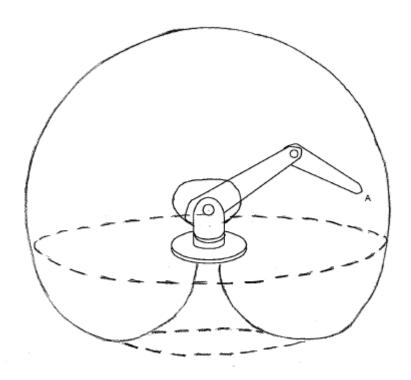
Problem 1.2

Draw the approximate workspace for the following robot. Assume the dimensions of the base and other parts of the structure of the robot are as shown.

Estimated student time to complete: 20-30 minutes **Prerequisite knowledge required:** Text Section(s) 1.14

Solution:

The workspace shown is approximate.



Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

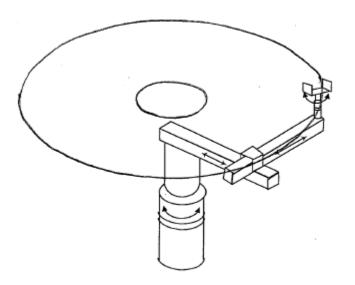
Problem 1.3

Draw the approximate workspace for the following robot. Assume the dimensions of the base and other parts of the structure of the robot are as shown.

Estimated student time to complete: 10-15 minutes **Prerequisite knowledge required:** Text Section(s) 1.14

Solution:

The workspace shown is approximate.



Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Introduction to Robotics Analysis, Control, Applications

Solution Manual

Saeed B. Niku

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

CHAPTER TWO

Problem 2.1

Write a unit vector in matrix form that describes the direction of the cross product of $\mathbf{p} = 3\mathbf{i} - 5\mathbf{j} + 4\mathbf{k}$ and $\mathbf{q} = 3\mathbf{i} + 7\mathbf{k}$.

Estimated student time to complete: 5-10 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

$$\mathbf{r} = \mathbf{p} \times \mathbf{q} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -5 & 4 \\ 3 & 0 & 7 \end{bmatrix} = \mathbf{i} (-35) - \mathbf{j} (21 - 12) + \mathbf{k} (0 + 15) = -35\mathbf{i} + 9\mathbf{j} + 15\mathbf{k}$$
$$\lambda = \sqrt{r_x^2 + r_y^2 + r_z^2} = \sqrt{1225 + 81 + 225} = 39.13$$
$$\mathbf{r} = \begin{bmatrix} \frac{-35}{39.13} \\ \frac{9}{39.13} \\ \frac{15}{39.13} \end{bmatrix} = \begin{bmatrix} -0.8945 \\ 0.23 \\ 0.383 \end{bmatrix}$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.2

A vector \mathbf{p} is 10 units long and is perpendicular to vectors \mathbf{q} and \mathbf{r} described here. Express the vector in matrix form.

$$\mathbf{q}_{unit} = \begin{bmatrix} 0.3\\q_y\\0.5\\0\end{bmatrix} \qquad \mathbf{r}_{unit} = \begin{bmatrix} r_x\\0.4\\0.5\\0\end{bmatrix}$$

Estimated student time to complete: 15-20 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

The two vectors given are unit vectors. Therefore, each missing component can be found as:

$$q_y = \sqrt{1 - 0.09 - 0.25} = 0.812$$

 $r_x = \sqrt{1 - 0.16 - 0.25} = 0.768$

Since **p** is perpendicular to the other two vectors, it is in the direction of the cross product of the two. Therefore:

$$\lambda_{p} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.3 & 0.812 & 0.5 \\ 0.768 & 0.4 & 0.5 \end{bmatrix} = \mathbf{i} (0.406 - 0.2) - \mathbf{j} (0.15 - 0.384) + \mathbf{k} (0.12 - 0.624)$$
$$= \mathbf{i} (0.206) + \mathbf{j} (0.234) - \mathbf{k} (0.504)$$

Since \mathbf{q} and \mathbf{r} are not perpendicular to each other, the resulting \mathbf{p} is not a unit vector. Vector \mathbf{p} can be found as:

$$\lambda_{p} = \mathbf{i}(0.206) + \mathbf{j}(0.234) - \mathbf{k}(0.504)$$
$$|\lambda_{p}| = \sqrt{(0.206)^{2} + (0.234)^{2} + (0.504)^{2}} = 0.593$$
$$w = \frac{10}{0.593} = 16.87$$
$$\mathbf{p} = w(\mathbf{i}(0.206) + \mathbf{j}(0.234) - \mathbf{k}(0.504))$$
$$\mathbf{p} = \mathbf{i}(3.48) + \mathbf{j}(3.95) - \mathbf{k}(8.5)$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.3

Vectors $\mathbf{p} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{q} = 3\mathbf{i} + 6\mathbf{k}$ are given. Find a vector \mathbf{r} that is perpendicular to both.

Estimated student time to complete: 10 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

We take the cross product of the two vectors to find **r** perpendicular to both:

$$\mathbf{r} = \mathbf{p} \times \mathbf{q} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 5 \\ 3 & 0 & 6 \end{bmatrix} = 18\mathbf{i} + 18\mathbf{j} - 9\mathbf{k}$$
$$\hat{\mathbf{r}} = \begin{bmatrix} \frac{18}{27} \\ \frac{18}{27} \\ \frac{-9}{27} \end{bmatrix} = \begin{bmatrix} 0.667 \\ 0.667 \\ 0.333 \end{bmatrix}$$
$$\mathbf{r} = r \begin{bmatrix} 0.667 \\ 0.667 \\ 0.333 \end{bmatrix}$$

Any vector in this direction is perpendicular to both.

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.4

Will the three vectors \mathbf{p} , \mathbf{q} , and \mathbf{r} in Problem 2.2 form a traditional frame? If not, find the necessary unit vector \mathbf{s} to form a frame between \mathbf{p} , \mathbf{q} , and \mathbf{s} .

Estimated student time to complete: 15-20 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

As we saw in Problem 2.2, since $\mathbf{q} \times \mathbf{r}$ is not a unit vector, it means that \mathbf{q} and \mathbf{r} and not perpendicular to each other, and therefore, they cannot form a frame. However, \mathbf{p} and \mathbf{q} are perpendicular to each other, and we can select \mathbf{s} to be perpendicular to those two. Of course, \mathbf{p} is not a unit length, therefore we use the unit vector representing it.

$$\mathbf{p} = \mathbf{i}(0.348) + \mathbf{j}(0.395) - \mathbf{k}(0.85)$$
$$\mathbf{q} = \mathbf{i}(0.3) + \mathbf{j}(.812) + \mathbf{k}(0.5)$$
$$\mathbf{s} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.348 & 0.395 & -0.85 \\ 0.3 & 0.812 & 0.5 \end{bmatrix} = \mathbf{i}(0.888) - \mathbf{j}(0.429) + \mathbf{k}(0.164)$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.5

Suppose that instead of a frame, a point $P[3,9,5]^T$ in space was translated a distance of $d = [4,7,8]^T$. Find the new location of the point relative to the reference frame.

Estimated student time to complete: 5 minutes **Prerequisite knowledge required:** Text Section 2.6

Solution:

As for a frame,

$$P_{new} = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 16 \\ 13 \\ 1 \end{bmatrix}$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.6

The following frame *B* was moved a distance of $d = [4,2,6]^T$. Find the new location of the frame relative to the reference frame.

$$B = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 5 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Estimated student time to complete: 5-10 minutes **Prerequisite knowledge required:** Text Section 2.6

Solution:

The transformation matrix representing the translation is used to find the new location as:

$$B_{new} = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 5 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 6 \\ 1 & 0 & 0 & 7 \\ 0 & 0 & -1 & 14 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.7

For frame F, find the values of the missing elements and complete the matrix representation of the frame.

$$F = \begin{bmatrix} ? & 0 & -1 & 4 \\ ? & 0 & 0 & 5 \\ ? & -1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Estimated student time to complete: 10 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

$$F = \begin{bmatrix} n_x & 0 & -1 & 4 \\ n_y & 0 & 0 & 5 \\ n_z & -1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From $\mathbf{n} \times \mathbf{o} = \mathbf{a}$
$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ n_x & n_y & n_z \\ 0 & 0 & -1 \end{bmatrix} = -\mathbf{i}$$

Or: $\mathbf{i} (-n_y) - \mathbf{j} (-n_x) + \mathbf{k} (0) = -\mathbf{i}$, and therefore: $n_y = 1$, $n_x = 0$, $n_z = 0$
$$F = \begin{bmatrix} 0 & 0 & -1 & 4 \\ 1 & 0 & 0 & 5 \\ 0 & -1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.8

Find the values of the missing elements of frame B and complete the matrix representation of the frame.

$$B = \begin{bmatrix} 0.707 & ? & 0 & 2 \\ ? & 0 & 1 & 4 \\ ? & -0.707 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Estimated student time to complete: 15-20 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

$$B = \begin{bmatrix} 0.707 & o_x & 0 & 2\\ n_y & 0 & 1 & 4\\ n_z & -0.707 & 0 & 5\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From
$$\mathbf{n} \times \mathbf{o} = \mathbf{a}$$

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.707 & n_y & n_z \\ o_x & 0 & 0.707 \end{bmatrix} = \mathbf{j}$$

Therefore:
$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.707 & n_y & n_z \\ o_x & 0 & -0.707 \end{bmatrix} = \mathbf{j}$$

And $\mathbf{i} \left(-0.707 n_y \right) - \mathbf{j} \left(-0.5 - n_z o_x \right) + \mathbf{k} \left(-n_y o_x \right) = \mathbf{j} \rightarrow n_y = 0$

From length equations:
$$|\mathbf{n}| = 1$$
 or $\begin{array}{c} 0.707^2 + n_y^2 + n_z^2 = 1 \rightarrow n_z = \pm 0.707\\ o_x^2 + 0.5 = 1 \rightarrow o_x = \pm 0.707\end{array}$

Therefore, there are two possible acceptable solutions:

	0.707	0.707	0	2		0.707	-0.707	0	2
	0	0	1	4	and $B =$	0	0 -0.707	1	4
	0.707	-0.707	0	5	aliu D –	-0.707	-0.707	0	5
	0	0	0	1_		0	0	0	1

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.9

Find the values of the missing elements of frame B and complete the matrix representation of the frame.

$$B = \begin{bmatrix} 0.766 & 0.643 & 0 & 3 \\ ? & ? & 0 & 8 \\ ? & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Estimated student time to complete: 10-15 minutes **Prerequisite knowledge required:** Text Section 2.4

Solution:

$$B = \begin{bmatrix} 0.766 & 0.643 & 0 & 3 \\ n_y & o_y & 0 & 8 \\ n_z & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From $\mathbf{n} \times \mathbf{o} = \mathbf{a}$
$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.766 & n_y & n_z \\ 0.643 & o_y & 0 \end{bmatrix} = (-n_z o_y)\mathbf{i} + (0.643n_z)\mathbf{j} + (0.766o_y - 0.643n_y)\mathbf{k} = \mathbf{k}$$

Then $0.643n_z = 0 \rightarrow n_z = 0$

From length equations:

 $0.766^{2} + n_{y}^{2} + n_{z}^{2} = 1 \rightarrow n_{y}^{2} = 0.413 \rightarrow n_{y} = \pm 0.643$ $o_{x}^{2} + o_{y}^{2} + o_{z}^{2} = 0.643^{2} + o_{y}^{2} = 1 \rightarrow o_{y} = \pm 0.766$

Therefore, there are two possible acceptable solutions:

	0.766	0.643	0	3			0.766	0.643	0	3	
	0.643	-0.766	0	8		<i>B</i> =	-0.643	+0.766	0	8	
	0	0	1	6			0	0	1	6	
	0	0	0	1			0	0	0	1	

Substituting the values into the cross product will show that only the second matrix values satisfy the right hand rule.

Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

Problem 2.10

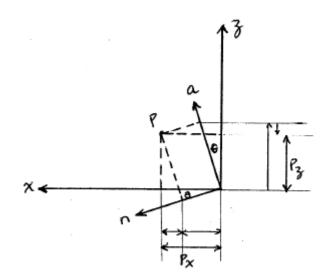
Derive the matrix that represents a pure rotation about the *y*-axis of the reference frame.

Estimated student time to complete: 10 minutes **Prerequisite knowledge required:** Text Section(s) 2.6.2.

Solution:

From the figure:

$p_x = p_n \cos \theta + p_a \sin \theta$		$\begin{bmatrix} p_x \end{bmatrix}$	$\int C$	0	S	$\begin{bmatrix} p_n \end{bmatrix}$
$p_y = p_o$	and	$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} =$	0	1	0	p_o
$p_z = -p_n \sin \theta + p_a \cos \theta$		$\lfloor p_z \rfloor$	$\lfloor -S \rfloor$	0	C	$\lfloor p_a \rfloor$



Introduction to Robotics: Analysis, Control, Applications, Third Edition. Saeed B. Niku. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.