
1 Lorentz and Poincaré Invariance

1.1 Problem 1

Problem:

A muon is a more massive version of an electron and has a mass of 105.7

MeV/c2. The dominant decay mode of the muon is to an electron, an electron

antineutrino and a muon neutrino, µ− → e− + ν̄e + νµ. If we have N(t) un-

stable particles at time t then the fraction of particles decaying per unit time

is a constant, i.e., we have dN/N = −(1/τ)dt for some constant τ . This gives

dN/dt = −(1/τ)N , which has the solution N(t) = N0e
−t/τ where we have N0 un-

stable particles at t = 0. The fraction of particles decaying in the interval t to t+dt

is −dN/N0 = (−dN/dt)dt/N0 = (1/τ)e−t/τdt. So the mean lifetime (or lifetime)

is
∫∞
0
t (−dN/dt) dt/N0 = τ

∫∞
0
xe−xdx = τ , where x = t/τ . The half-life, t1/2,

is the time taken for half the particles to decay, e−t1/2/τ = 1
2
, which means that

t1/2 = τ ln 2. The decay rate, Γ, is defined as the probability per unit time that

a particle will decay, i.e., Γ = (−dN/dt)/N = 1/τ is the inverse mean lifetime. A

muon at rest has a lifetime of τ = 2.197×10−6 s. Cosmic rays are high-energy par-

ticles that have traveled enormous distances from outside our solar system. Primary

cosmic rays are particles that have been accelerated by some extreme astrophysi-

cal event and secondary cosmic rays are those resulting from collisions of primary

cosmic rays with interstellar gas or with our atmosphere. Most cosmic rays reach-

ing our atmosphere will be stable particles such as photons, neutrinos, electrons,

protons and stable atomic nuclei (mostly helium nuclei). Muon cosmic rays there-

fore are secondary cosmic rays produced when primary or secondary cosmic rays

collide with out atmosphere. A typical height in the atmosphere for the production

of cosmic ray muons is ∼ 15 km. What is the minimum velocity that this muon be

produced with in order that it have a 50% chance of reaching the surface of the

Earth before decaying?

Solution:

A stationary observer on Earth will see the time experienced by a muon traveling

at speed v to be dilated by a factor of γ = (1− v2/c2)−1/2 compared to their own.

So according to the observer, the half-life of the muon will be γ t1/2. If the muon

travels at a speed that allows it to traverse the L = 15 km of the atmosphere in

this time, it will therefore have a 50% chance of reaching the Earth’s surface. That
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2 Lorentz and Poincaré Invariance

is, the speed of the muon must satisfy

v =
L

γ t1/2
=

√
1− v2

c2 L

t1/2
(1.1)

to have a 50% chance of reaching the surface before decaying. This can be rearranged

to give

v =
L√

t21/2 +
L2

c2

. (1.2)

Now from the given information, the half-life of the muon is

t1/2 = τ ln 2 = (2.197× 10−6 s) ln 2 = 1.523× 10−6 s, (1.3)

so the necessary speed is

v =
15× 103 m√

(1.523× 10−6 s)2 + (15×103 m)2

(3×108 ms−1)2

= 299, 653, 700 ms−1

= 0.9995c. (1.4)

An inertial observer traveling with the muon will see the height of the atmosphere

contracted by a factor of γ, which at this speed gives a height of

L

γ
=

√
1− v2

c2
L

=
√
1− 0.99952 (15× 103 m)

= 456 m. (1.5)

In other words, from the muon’s point of view, it only needs to travel 456 m to

reach the Earth’s surface.

1.2 Problem 2

Problem:

The diameter of our Milky Way spiral galaxy is approximately 100,000 - 180,000

light years and our solar system is approximately 25,000 light years from the center

of our galaxy. Recalling the effects of time dilation, approximately how fast would

you have to travel to reach the center of the galaxy in your lifetime? Estimate how

much energy would it take to accelerate your body to this speed.

Solution:

https://ebookyab.ir/solution-manual-introduction-to-quantum-field-theory-williams/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-introduction-to-quantum-field-theory-williams/


3 Problem 3

From the solution to Problem 1.1, the speed needed for an observer to travel a

proper distance L in a time T is

v =
L√

T 2 + L2

c2

. (1.6)

So for a human with a lifetime of, say, T = 80 years, to travel to the center of the

Milky Way L = 25,000 light years = 25,000c years away, a speed of

v =
25,000c years√

(80 years)2 + (25,000 years)2
(1.7)

= 0.999995c (1.8)

would be required. The kinetic energy possessed by a human of mass m = 70 kg at

this speed is

Ekin = (γ − 1)mc2

=

(
1√

1− 0.9999952
− 1

)
(70 kg)(3× 108 ms−1)

= 2× 1021 J. (1.9)

For reference, it would take humanity slightly more than 3 years to consume this

much energy at current rates.

1.3 Problem 3

Problem:

Consider two events that occur at the same spatial point in the frame of some

inertial observer O. Explain why the two events occur in the same temporal order

in every inertial frame connected to it by a Lorentz transformation that does not

invert time. Show that the time separation between the two events is a minimum

in the frame of O. (Hint: Consider Figs. 1.2 and 1.5.)

Solution:

Since the two events E1 and E2 occur at the same spatial point in frame O, the

displacement vector E2−E1 between them will point entirely along the time axis in

this frame, in the positive direction, say. Under any given Lorentz transformation,

displacement vectors will be moved along hyperbolae in a spacetime diagram, as

illustrated in Fig. 1.1. Further, Lorentz transformations that do not invert time will

only move displacement vectors along branches of those hyperbolae. Our vector of

interest E2 − E1 lies on a positive-time branch, so under an orthochronus Lorentz

transformation it will remain on that positive-time branch. That is, the temporal

order of the events remains the same. And the point on such a positive-time branch

that has the smallest time component is the one that lies on the time axis, as E2−E1
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4 Lorentz and Poincaré Invariance
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tFigure 1.1 A two-dimensional representation of spacetime displacement with displacements

represented by vectors. Vectors labeled by the same number (1 or 2) are related by

Lorentz transformations.

does in frame O. So under an orthochronus Lorentz transformation, E2 − E1 will

be moved to a point on the spacetime diagram with a time component at least as

large as that in frame O, showing that the time separation between the events is

minimized in this frame.

To see this algebraically, label the two events in frame O as

E1 = (ct1,x)
T , (1.10)

E2 = (ct2,x)
T , (1.11)

where t2 > t1. Then under a Lorentz transformation Λ, the events go to

E1 → E′
1 = ΛE1 = Λ(ct1,x)

T , (1.12)

E2 → E′
2 = ΛE2 = Λ(ct2,x)

T . (1.13)

The difference between these events is

E′
2 − E′

1 = Λ(c(t2 − t1),0)
T
. (1.14)

In particular, the temporal component of this difference is Λ0
0 c(t2− t1), which is at

least as great as c(t2−t1), because Lorentz transformations that do not reverse time

satisfy Λ0
0 ≥ 1. Again we conclude the time separation is minimized in frame O.
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5 Problem 4

1.4 Problem 4

Problem:

Consider any two events that occur at the same time in the frame of an inertial

observer O. Show that by considering any Lorentz transformation there is no limit

to the possible time separation of the two events and that the smallest spatial

separation of the two events occurs in the frame of O.

Solution:

Label the two events in frame O as

E1 = (ct,x1)
T , (1.15)

E2 = (ct,x2)
T . (1.16)

Assume without loss of generality that the events are separated in the x-direction

by an amount |∆x| ≠ 0, and consider a boost in the x-direction with speed v. The

difference in the boosted temporal coordinates will be given by Eq. (1.2.89),

c∆t′ = γ
(
c∆t− v

c
∆x
)
= −v

c
γ∆x, (1.17)

and so the magnitude of the time separation in the boosted coordinates will be

|∆t′| = v

c2
√

1− v2

c2

|∆x|. (1.18)

The factor |∆x| is a non-zero constant, so this expression approaches infinity as

v → c. Hence, there is no limit to the possible time separation between the two

events.

Next, the spatial separations between the events along each direction in the

boosted frame,

∆x′ = γ (∆x− v∆t) = γ∆x, (1.19)

∆y′ = ∆y, (1.20)

∆z′ = ∆z, (1.21)

imply a total spatial separation of

|∆x′| =
√
(γ∆x)2 + (∆y)2 + (∆z)2 (1.22)

≥
√
(∆x)2 + (∆y)2 + (∆z)2 = |∆x|. (1.23)

Hence, the smallest spatial separation between the two events occurs in frame O.

1.5 Problem 5

Problem:
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6 Lorentz and Poincaré Invariance

x

y
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γ2

θ/2

θ/2

tFigure 1.2 Coordinate system being used for Problem 1.5, where γ1 and γ2 label the two beams

of light.

Two narrow light beams intersect at angle θ, where θ is the angle between the

outgoing beams. The beams intersect head on when θ = 180◦. Using the addition

of velocities formula in Eq. (1.2.126) show that for any angle θ there is always an

inertial frame in which the beams intersect head on.

Solution:

Set up the coordinate system such that the beams of light lie in the x− y plane,

with the origin at their intersection and the x axis bisecting the angle θ made by

the beams, as in Fig. 1.2. Then the velocity vectors of the beams will be

u1 =

(
c cos

(
θ

2

)
, c sin

(
θ

2

)
, 0

)T

, (1.24)

u2 =

(
c cos

(
θ

2

)
, −c sin

(
θ

2

)
, 0

)T

. (1.25)

We will boost with speed v in the +x-direction, hoping to find a speed such that the

beams are directed entirely in the y′-direction and moving oppositely. The velocities

in the x′-direction, given by Eq. (1.2.126) in the text, must therefore vanish:

u′x =
ux − v

1− uxv
c2

= 0 (1.26)

=⇒ v = ux = c cos

(
θ

2

)
. (1.27)

If cos(θ/2) = 1 then the beams intersect head on in the original frame, and it is not

necessary to perform a boost. If not, then Eq. 1.27 shows that v < c and therefore

our proposed boost is valid. The velocities in the y′-direction are

u′y =
1

γ

uy
1− uxv

c2
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7 Problem 6
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θ′tFigure 1.3 Diagram showing the length contraction of the ruler in a boosted frame.

=
uy√
1− v2

c2

=
±c sin

(
θ
2

)√
1− cos2

(
θ
2

)
= ±c (1.28)

where the ± refers to the first and the second beam, respectively. We see that the

beams are oppositely directed in the y′-direction and therefore intersect head on in

this frame.

1.6 Problem 6

Problem:

A ruler of rest length ℓ is at rest in the frame of inertial observer O and is at an

angle θ with respect to the +x-direction. Now consider an inertial observer O′ in
an identical inertial frame except that it has been boosted by speed v in the +x-

direction. What is the length ℓ′ of the ruler and what is the angle θ′ with respect

to the +x′-direction that will be measured by O′?

Solution:

As a result of Eq. (1.2.89), the lengths measured by observer O′ will be contracted
compared to the lengths in frame O by a factor of γ in the x′-direction, and remain

the same in the perpendicular directions, as illustrated in Fig. 1.3. If the ruler lies

in the x− y plane, O′ will therefore measure the lengths in the x′ and y′ directions
to be

ℓ′x =
ℓx
γ

=

√
1− v2

c2
ℓ cos θ, (1.29)

ℓ′y = ℓy = ℓ sin θ, (1.30)

https://ebookyab.ir/solution-manual-introduction-to-quantum-field-theory-williams/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-introduction-to-quantum-field-theory-williams/


8 Lorentz and Poincaré Invariance

and therefore the total length to be

ℓ′ =
√
(ℓ′x)2 + (ℓ′y)2 = ℓ

√
1− v2

c2
cos2 θ. (1.31)

The angle θ′ in the boosted frame will satisfy

tan θ′ ≡ ℓ′y
ℓ′x

= γ
ℓy
ℓx

≡ γ tan θ =⇒ θ′ = tan−1

 tan θ√
1− v2

c2

 . (1.32)

1.7 Problem 7

Problem:

If a spaceship approaches earth at 1.5×108 ms−1 and emits a microwave frequency

of 10 GHz, what frequency will an observer on Earth detect?

Solution:

The ratio of the frequencies in the source frame and observer frame is given by

Eq. (1.2.123) in the text,

fs
fo

=

√
1 + β

1− β
. (1.33)

Since the ship is moving towards Earth at a speed of 1.5 × 108 ms−1 = c/2, we

write v = −c/2 and so β = v/c = −1/2. An observer on Earth will then detect a

frequency of

fo =

√
1− β

1 + β
fs (1.34)

=

√
1 + 1

2

1− 1
2

(10 GHz) (1.35)

= 17.3 GHz. (1.36)

Note that fo > fs, so the beam has been blueshifted as expected when the source

is moving towards the observer.

1.8 Problem 8

Problem:

An inertial observer observes two spaceship moving directly toward one another.

She measures one to be traveling at 0.7 c in her inertial frame and the other at 0.9
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9 Problem 9

x

y

γ

v

θ

tFigure 1.4 A particular ray of light emitted by the moving light source in frame O.

c in the opposite direction. What is the magnitude of the relative velocity that each

spaceship measures the other to have?

Solution:

Take the +x-direction to be the direction of motion of the spaceship moving at

0.9c in the frame of the inertial observer. Boost by v = 0.9c in this direction to go

to the rest frame of the spaceship. In this frame, the other spaceship will have a

speed

u′x =
ux − v

1− uxv
c2
, (1.37)

where ux = −0.7c is the speed of that spaceship in the original frame along the

+x-direction, by Eq. (1.2.126). Substituting in the given values, we find

u′x =
−0.7c− 0.9c

1− (−0.7c)(0.9c)
c2

= −0.9816c. (1.38)

That is, each spaceship measures the other to be moving towards them at 0.98c.

1.9 Problem 9

Problem:

A light source moves with constant velocity v in the frame of inertial observer O.

The source radiates isotropically in its rest frame. Show that in the inertial frame

of O the light is concentrated in the direction of motion of the source, where half

of the photons lie in a cone of semi-angle θ, where cos θ = v/c.

Solution:
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10 Lorentz and Poincaré Invariance

In frame O, assume without loss of generality the source of light is moving in the

+x-direction at speed v. Consider the ray of light emitted by the source in the x−y
plane making an angle θ with the x-axis, shown in Fig. 1.4. It will have velocity

vector

u = (c cos θ, c sin θ, 0)T . (1.39)

Boost by speed v in the +x-direction to move to the rest frame of the light source.

Here, the x′-component of the ray’s velocity vector will be given by Eq. (1.2.126):

u′x =
ux − v

1− uxv
c2

=
c cos θ − v

1− v
c cos θ

≡ c cos θ′, (1.40)

which implies

cos θ =
v

c
+
(
1− v

c
cos θ

)
cos θ′. (1.41)

Now the source emits photons uniformly in all directions in this boosted frame, so

half of the photons it emits will lie in the region −90◦ < θ′ < +90◦. The boundary of

this region satisfies cos θ′ = 0, which corresponds in the original frame to cos θ = v/c

by Eq. 1.41. Since the boost transformation is continuous, the interior of the original

region (satisfying cos θ′ > 0) will be mapped to the interior of the boosted region

(satisfying cos θ > v/c). That is, half of the emitted photons will lie in a cone of

semi-angle θ = cos−1(v/c) < 90◦, showing that the light is concentrated in the

direction of motion of the source.

1.10 Problem 10

Problem:

Write down the Lorentz transformation rule for an arbitrary (3, 2) tensor Aµνρ
στ .

Hence show that any double contraction of this tensor leads to a contravariant

vector, i.e., to a (1, 0) tensor.

Solution:

Under a Lorentz transformation Λ, a (3, 2) tensor Aµνρ
στ will transform as

Aµνρ
στ → A′µνρ

στ = Λµ
µ′Λ

ν
ν′Λ

ρ
ρ′A

µ′ν′ρ′

σ′τ ′(Λ
−1)σ

′

σ(Λ
−1)τ

′

τ . (1.42)

Define Tµ = Aµνρ
νρ. Then using Eq. 1.42, Tµ will transform as

Tµ → T ′µ = A′µνρ
νρ

= Λµ
µ′Λ

ν
ν′Λ

ρ
ρ′A

µ′ν′ρ′

σ′τ ′(Λ
−1)σ

′

ν(Λ
−1)τ

′

ρ
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