## Chapter 2 Problems for Chapter 2

**Problem 2-1**. For many semiconductor materials used in contemporary electronics, the relationship between the momentum and energy of an electron is given by the implicit formula:

$$\frac{\mathbf{p^2}}{2m} = E\left(1 + \frac{E}{E_g}\right) \tag{2.1}$$

where m is the so-called effective mass of the electron and  $1/E_g$  is the so-called nonparabolicity parameter. The formula has two solutions for unknown E: for electrons (E > 0) and another for the so-called holes (E < 0).

(a) Find both solutions for E.

(b) Derive the expression for  $\mathbf{v}$  only for electrons.

(c) Determine the electron velocity in free space and compare it with the expression derived in (b).

As an example, consider GaAs, for which  $m = 0.067 m_0$  and  $E_g = 1.42$  eV. Note: the expression for kinetic energy of an electron in a free space is

$$E = \frac{\mathbf{p}^2}{2m_0}.\tag{2.2}$$

## Solution

(a) Equation (2.1) is the quadratic equation with respect to unknown E. It can be

## https://ebookyab.ir/solution-manual-nanoelectronics-mitin-kochelap/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

rewritten as

$$\frac{E^2}{E_g} + E - \frac{\mathbf{p}^2}{2m} = 0\,.$$

The quadratic equation of the canonical form  $ax^2 + bx + c = 0$  has solutions

$$x_{1,2} == \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,.$$

For the case of consideration  $a = 1/E_g$ , b = 1,  $c = -\mathbf{p}^2/2m$ . Thus, we find *two* solutions of the energy dispersion as

$$E \equiv E_{el} = -\frac{E_g}{2} + \frac{E_g}{2} \sqrt{1 + \frac{2\mathbf{p^2}}{mE_g}}, \qquad (2.3)$$

$$E \equiv E_h = -\frac{E_g}{2} - \frac{E_g}{2} \sqrt{1 + \frac{2\mathbf{p^2}}{mE_g}}.$$
(2.4)

In Fig. 2.1 these solutions are presented by solid lines. The two solutions obtained for E can be interpreted as the energy branch for electrons (E > 0, the thick solid line in Fig. 2.1) and the energy branch for the so-called holes (E < 0, thin solid line). These energy branches are separated by the energy gap equal to  $E_g$ . The energy structure with two bands of allowed energies separated by an energy gap is typical for semiconductor materials. They are discussed in Chapter 4 in detail.

It is instructive to compare the obtained  $E(\mathbf{p})$ -dependences with the kinetic energy of the electrons in a free space (Eq. (2.2)). Consider, for example, the upper electron branch of Eq. (2.3). At small momentum ( $|\mathbf{p}| \rightarrow 0$ ) we find *parabolic dependence*,  $E_{el} \approx \mathbf{p}^2/2m$ , similar to Eq. (2.2). However, the parameter *m* differs from the mass of the free electron. At large momentum  $|\mathbf{p}| \rightarrow \infty$ , the electron energy becomes the *linear function* of  $|\mathbf{p}|$ :

$$E_{el} = |\mathbf{p}| \sqrt{\frac{E_g}{2m}} \,. \tag{2.5}$$

Note, all dependences (2.3)-(2.5) are functions of absolute value of the momentum  $|\mathbf{p}| \equiv p = \sqrt{p_x^2 + p_y^2 + p_z^2}$ . The vector character of  $E(\mathbf{p})$  becomes to be important when one calculates vector parameters such as the electron velocity,  $\mathbf{v}(\mathbf{p})$ .



Figure 2.1: Solid lines present dependences (2.3) and (2.4). The dotted line shows parabolic dependence,  $E = \mathbf{p}^2/2m$ , which is close to a solid line at small momentum. The dashed straight lines show asymptotes of Eqs. (2.3) and (2.4) at  $|\mathbf{p}| \to \infty$  where they approach solid lines.

(b) According to the definition, the electron velocity is given by derivative of the energy E with respect to the momentum **p**:

$$\mathbf{v}(\mathbf{p}) = \frac{dE}{d\mathbf{p}} \,. \tag{2.6}$$

Straightforward calculation of the derivative gives:

$$\mathbf{v}(\mathbf{p}) = \frac{d}{d\mathbf{p}} \left( -\frac{E_g}{2} + \frac{E_g}{2} \sqrt{1 + \frac{2\mathbf{p}^2}{mE_g}} \right) = \frac{\mathbf{p}}{m} \frac{1}{\sqrt{1 + \frac{2\mathbf{p}^2}{mE_g}}}.$$
 (2.7)

This dependence is illustrated in Fig. 2.2. One of the conclusions, which follows from the latter result, is that the velocity vector  $\mathbf{v}(\mathbf{p})$  is always collinear with the momentum  $\mathbf{p}$ .

(c) Typical for free electrons linear dependence of the velocity on the momentum takes place only at small momentum:  $\mathbf{v}(\mathbf{p}) = \frac{\mathbf{p}}{m}$ . At large momentum, the velocity saturates:  $|\mathbf{v}(\mathbf{p})| \approx v_s = \sqrt{\frac{E_g}{2m}}$ . That is, it is not possible to accelerate the electrons beyond a given value. For parameters characteristic for GaAs material, the saturation velocity is  $v_s = 1.36 \times 10^8$  cm/s.



Figure 2.2: Solid line presents dependence (2.7). The dashed straight line shows the velocity of electrons in a free space.

**Problem 2-2**. Some metals and semiconductor materials instead of having an isotropic parabolic energy dispersion,  $E = \mathbf{p}^2/2m$ , have anisotropic parabolic energy dispersion,

$$E = \left(\frac{1}{m^*}\right)_{ij} p_i p_j , \qquad (2.8)$$

i.e., for such cases "the electron mass" is no longer a scalar, but instead is a tensor. Let the reciprocal effective-mass tensor  $(1/m)_{ii}$  be

$$\left(\frac{1}{m^*}\right)_{ij} = \left(\begin{array}{cc} m_t^{-1} & 0\\ 0 & m_l^{-1} \end{array}\right),\tag{2.9}$$

where i, j = x, y. Here, the parameters  $m_t$  and  $m_l$  are the so-called transverse and longitudinal effective masses of the conduction electron. For this case, the dispersion relation (2.8) is simplified to

$$E = \frac{p_x^2}{2m_t} + \frac{p_y^2}{2m_l}.$$
 (2.10)

For the given momentum vector  $\mathbf{p} = \{ |\mathbf{p}| \sin \theta, |\mathbf{p}| \cos \theta \}$ 

(a) calculate velocity  $\mathbf{v} = dE/d\mathbf{p}$ , and

(b) Find the momentum vectors and the velocity vectors corresponding to momentum vectors with three values of  $\theta$ ,  $\theta = 30^{\circ}$ ,  $45^{\circ}$  and  $60^{\circ}$  and take  $|\mathbf{p}| = p_0$ . Consider the

electrons in Ge for which  $m_t = 0.082 m_0$  and  $m_l = 1.64 m_0$ .

Notice that the directions of the velocity vectors and momentum vectors do not coincide (i.e., they are not collinear).

## Solution

(a) For the energy dispersion of Eq. (2.10) according to definition (2.6) we find

$$v_x = \frac{d}{dp_x}E = \frac{p_x}{m_t} = \frac{|\mathbf{p}|\cos\theta}{m_t}, \qquad (2.11)$$

$$v_y = \frac{d}{dp_y}E = \frac{p_y}{m_l} = \frac{|\mathbf{p}|\sin\theta}{m_l}, \qquad (2.12)$$

$$\mathbf{v} = \left\{ \frac{|\mathbf{p}|\cos\theta}{m_t}, \ \frac{|\mathbf{p}|\sin\theta}{m_l} \right\} . \tag{2.13}$$

Obviously, the direction of the velocity vector and the momentum vector do not coincide (these vectors are not collinear). Equation (2.13) can be rewritten as

$$|\mathbf{v}| = |\mathbf{p}| \left( \frac{\cos^2 \theta}{m_t^2} + \frac{\sin^2 \theta}{m_l^2} \right)$$

and finally as

$$|\mathbf{v}| = \frac{|\mathbf{p}|}{m^*}$$

where  $m^*$  depends on the direction of the momentum **p**:

$$\frac{1}{m^*} = \sqrt{\frac{\cos^2\theta}{m_t^2} + \frac{\sin^2\theta}{m_l^2}}$$

(b) Using Eq. (2.13) for  $\theta = 30^{\circ}, 45^{\circ}$ , and  $60^{\circ}$  we find respectively:

$$\mathbf{p_1} = p_0 \left\{ \frac{1}{2}, \ \frac{\sqrt{3}}{2} \right\} \quad \mathbf{v_1} = \frac{p_0}{m_0} \left\{ \frac{1}{2} \frac{m_0}{m_t}, \ \frac{m_0}{m_l} \frac{\sqrt{3}}{2} \right\}$$
$$\mathbf{p_2} = p_0 \left\{ \frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}} \right\} \quad \mathbf{v_2} = \frac{p_0}{m_0} \left\{ \frac{1}{\sqrt{2}} \frac{m_0}{m_t}, \ \frac{m_0}{m_l} \frac{1}{\sqrt{2}} \right\}$$
$$\mathbf{p_3} = p_0 \left\{ \frac{\sqrt{3}}{2}, \ \frac{1}{2} \right\} \quad \mathbf{v_3} = \frac{p_0}{m_0} \left\{ \frac{\sqrt{3}}{2} \frac{m_0}{m_t}, \ \frac{m_0}{m_l} \frac{1}{2} \right\}.$$

In the case of Ge we obtain

$$\mathbf{v_1} = 26.32 \times \frac{p_0}{m_0} \{ 0.999, 0.034 \}$$