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Chapter 1

Introduction

Section 1.1. Graphs

1. This information can be modeled (or represented) by the graph shown in
Figure 1.1, where each small circle indicates a box and a line segment between
two boxes indicates that these two boxes contain at least one wire segment of
the same color.

Bg Bl

B7 B2

B5 B4
Figure 1.1: The graph in Exercise 1

2. The graph G is shown in Figure 1.2. The degree of () is 7, the degree of each
of {1}, {2} and {3} is 4, the degree of each of {1,2}, {1,3} and {2,3} is 2 and
the degree of S is 1. The size of G is 13.

Section 1.2. The Degree of a vertex

3. Denote the degree of the remaining vertices by x. Since there are 8 vertices
of degree z, it follows that 5-4+4+6-5+7-6 4+ 8x = 2-58. Thus, x = 3 and
so the degree of each remaining vertex is 3.
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Figure 1.2: The graph G in Exercise 2

4. Proof. Assume, to the contrary, that G has at most k + 2 vertices of de-
gree k + 1, at most k vertices of degree k + 2 and at most k£ + 1 vertices of
degree k + 3. Since the order of G is n = 3k + 3, it follows that G has exactly
k + 2 vertices of degree k + 1, exactly k vertices of degree k + 2 and exactly
k + 1 vertices of degree k + 3. In each case, G has an odd number of odd
vertices, which is impossible. ]

5. Proof. Let G be a graph with r vertices of degree r, r + 1 vertices of degree
r+1 and r+2 vertices of degree r+2. Thus, the order of G is 3r+3. First, we
show that r is odd. Assume, to the contrary, that r is even. Then G contains
an odd number 7 + 1 of odd vertices, which is impossible by Corollary 1.5.
Thus, r is odd and G contains 2r 4 2 vertices of odd degree. [

6. Let G be the graph of order 2k with V(G) = {ui,us, ..., ug,v1,v2,..., 0k}
For each 7 with 1 < i < k, join each vertex u; to the ¢ vertices vy, vs,...,v;.
Then degu; =¢ and degv; =k+1—idfor 1 <i<k.

Section 1.3. Isomorphic Graphs

7. (a) G1 = Gg.

(b) Hy % Hs. For example, H; has two vertices of degree 4, while Hy has
three vertices of degree 4.

8. (a) There are 34 such graphs, each of which has size m for some m with
0 < m < 10. By using complementary graphs the number of graphs of
order 5 and size m equals the number of graphs of order 5 and size 10—m
(see Figure 1.3).

(b) The minimum size of a graph G of order 5 such that every graph of order
5 and size 5 is isomorphic to some subgraph of G is 7. First, observe
that the graph G = P, vV K; has the desired property. If the minimum
size were 6, then G must consist of a 5-cycle C' and an edge joining two
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Figure 1.3: Graphs for Exercise 8

nonconsecutive vertices of C. This graph, however, does not have the
desired property.

9. (a) Proof. Let ¢: V(G) — V(H) be an isomorphism from G to H. Then
|S| = |T| and the mapping ¢’ : S — T defined ¢'(v) = ¢(v) for allv € S
is a bijection from S to T. To show that ¢’ is an isomorphism from
G|[S] to H[T], it remains to show that ¢’ maps adjacent vertices in G[S)]
to adjacent vertices in H[T] and maps nonadjacent vertices in G[S] to
nonadjacent vertices in H[T]. Let u,v € V(G[S]) = S. Since G[S] is an
induced subgraph of G, it follows that u and v are adjacent in G[S] if and
only if 4 and v are adjacent in G. Since ¢ is an isomorphism from G to
H, it follows that v and v are adjacent in G if and only if ¢(u) = ¢'(u)
and ¢(v) = ¢'(v) are adjacent in H. Since (1) ¢'(u),¢'(v) € T and
(2) H[T)] is an induced subgraph of H, it follows that ¢'(u) and ¢'(v)
are adjacent in H if and only if ¢'(u) and ¢'(v) are adjacent in H[T].
Therefore, u and v are adjacent in G[S] if and only if ¢'(u) and ¢'(v) are
adjacent in H[T]. Therefore, ¢’ is an isomorphism from G[S] to H[T)
and so G[S] = H[T]. m

(b) Let » = 3. Then G[S] has no edges and G[T] has one edge. Thus
G[S] 2 G[T] and so G %* H.

10. (a) The three graphs with this property are shown in Figure 1.4(a).

(b) The graphs G, H, F; and F» in Figure 1.4(b) have this property.

Section 1.4. Regular Graphs

11. Proof. Denote the size of G by m. Thus, m = rn/2. The average degree of
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Figure 1.4: The graphs Exercise 10

2 2
m:2<m/>:r_
n n

Since G is not r-regular, G contains a vertex v such that degv # r. We
consider two cases.

Case 1. degv > r. Not all vertices of G have degree r or more, for otherwise,
™m
2 == 2 —_— = =
m (n) rn Z degv > rn,
veV(G)

which is impossible. Hence G contains a vertex w with degwu < r. Therefore,
A(G) > degv >r+1and §(G) <degu <r—1 and so A(G) —d(G) > 2.

Case 2. degv < r. Not all vertices of G have degree r or less, for otherwise,
2m—2( ) Z degv < rn,
veV(G)

which is impossible. Hence, G contains a vertex w with degw > r. Therefore,
A(G)>degw >r+1and 6(G) < degv <r—1and so A(G) —§(G) >2. =

12. Let £ > 2. For 0 < i < k—1, let G; = C3_; + iC3. The graphs
Gy, Gy, ...,GE_1 are pairwise non-isomorphic.

13. Let V(G) = {u,v,w,z} and E(G) = {uv,vw, wz,xu,vr}. Let e = vx. Then
G—e=Cyand G —u=Cs.

14. (a) Let G; = 2C3 and G4 = Cg.
(b) Let H1 = 303 and H2 = 09.

15. If G itself is r-regular, then there is nothing to prove. So we may assume
that G is not r-regular. Let G’ be another copy of G and join corresponding
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vertices whose degrees are less than r, calling the resulting graph G;. If G
is r-regular, then G has the desired properties. If not, then we continue this
procedure until arriving at an r-regular graph Gy, where k = r — §(G).

16. For each i with 1 <14 < j, let v; be the vertex of G with degwv; = r — 1 and let
G’ be another copy of G where the vertex v} in G’ corresponds to the vertex
v; in G. Let H be the graph of order 2n obtained from G and G’ by joining v;
to V11,V 4,0 for 1 <4 < j. Then H is an r-regular graph of order
2n containing G as an induced subgraph.

17. The Petersen graph.

18. (a) Gg1 = K and G52 is the Petersen graph.
(b) The graph G, 1 is an (”;k)—regular graph of order (7).

Section 1.5. Bipartite Graphs

19. Let = be the number of vertices of degree 8 in W. Then n =10+4+ 3+ x
and m = 6-10 = 60. Since m = 4-2+ 3 -4+ 8z = 60, it follows that z = 5
and so n = 22.

20. Proof. We have seen that the size of the complete bipartite graph K l2].[2]

2 2
is [n?/4|. For every bipartite graph with partite sets U and W with s = |U]| <
|W| =t and s+t = n, clearly K,; has the maximum size. If 0 <t —s <1,
then K ; = K|, /2],[n/2] and the size of K ; is |n2/4|. Suppose that t—s > 2.
Then ¢t = [n/2] +p and s = [n/2| — p for some p > 1. Then the size of K,
is

(/2] +p) (ln/2] = p) = [n*/4] +p (In/2] = [n/2]) = p* < [n?/4].

Hence, K| 5| ra7 is the only bipartite graph having size [n?/4]. "
| 2

n
2

21. Proof. Suppose that the partite sets of a 3-partite graph G of order n =
3k and size m are A, B and C, where |A| = a, |B] = b and |C| = ¢ and
a+b+c = 3k. We may assume that a > b > c. Then a > k and ¢ < k. Hence,
a=k+z,c=k—yandb=3k—a—c=k—x+y, where z,y > 0. Then

m < ab4 ac+be=3k* — 2® + xy —y?

— 32— {(x—g)%rsﬂ < 3K2,

where m = 3k? if and only if # = y = 0 and so a = b = ¢ = k, in which case,
G = Kk,k,k~ |

22. Proof. Define a relation R on V(G) by u R v if uv ¢ E(G). The relation R
is clearly reflexive and symmetric. For vertices u,v and w of G, if uv ¢ E(QG)
and vw ¢ E(G), then uw ¢ E(G). Thus, R is transitive and so R is an
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equivalence relation on V(G). Hence, V(G) is partitioned into equivalence
classes Vi,Vs,..., Vi where k > 2. Thus, two vertices are related if and
only if they belong to the same equivalence class. Also, vertices belonging to
different equivalence classes are not related and are therefore adjacent. Thus,
G is a complete k-partite graph with partite sets V1, Vo, ..., Vj. ]

Section 1.6. Operations on Graphs

23. (Every bipartite graph having no partite set with three or more vertices.) If
G has a partite set with three or more vertices, then G has a triangle. Thus,
we may assume that every partite set has at most two vertices and so the
order of G is at most 4. Then G is a subgraph of K35 = (4 and is therefore
bipartite.

24. Proof. Suppose that G contains a vertices of degree less than k, b vertices of
degree greater than k and c vertices of degree k. Thus, G contains b vertices
of degree less than k, a vertices of degree greater than k and c vertices of
degree k. Since the vertices of G and G have exactly the same degrees, a = b.
Hence, the order of G is 2a + ¢. Since G has odd order, c is odd. [

25. (a) The graph G is C7 or C3 + Cy.

(b) The graph G is one of Cy, Cg + C3,Cs + Cy or 3C5. Thus, there are four
such graphs.

26. Proof. Assume, to the contrary, that there exists an r-regular self-complementary
graph G of even order n > 2. Then G is (n—1—r)-regular and sor = n—1—r-.
Hence, 2r = n — 1, which is odd. This is impossible. [

27. Proof. We proceed by induction on n. The graph Cs shows that the result
holds for n = 1. Assume that there is a regular self-complementary graph H
of order 5%, where k > 1. Let H; (i = 1,2,...,5) be five copies of H. Let G
be the graph consisting of the graphs Hy, Ho, ..., H5 together with all edges
joining the vertices of H; and the vertices of H;;1 for ¢ = 1,2,...,5, where
Hg = H;. Then G is a regular self-complementary graph of order 5%+1. [

28. Proof. Suppose that the order n of G5 is n = 2k and that there are exactly a
vertices of degree less than k in G5. Since G5 is self-complementary, there are
exactly a vertices of degree greater than k in G5. Furthermore, if degv < k,
then degzv = n — degv > n — k = k. Observe that G is obtained from G
and G by joining each vertex in G5 whose degree is greater than k to every
vertex in G (that is, joining each vertex in G5 whose degree is less than k to
every vertex in 61). Since G1 = G1 and Gy = G, the graph G is obtained
from G; and G2 by joining each vertex in Gy whose degree is less than k to
every vertex in (G1, which is isomorphic to G. [

29. The following proof essentially makes use of Exercise 28.

Proof. We use induction on n when (1) n =4k, k> 1 and (2) n = 4k + 1,
k> 0.
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(1) Suppose that n = 4k. Since Py is self-complementary, the statement is
true for K = 1. Assume that there exists a self-complementary graph G of
order 4k, where k > 1. We show that there exists a self-complementary
graph H of order 4(k + 1). Let H be the graph obtained from G and
P, = (v1,v2,v3,v4) by joining each of vy and vy to every vertex of G.
Then H is self-complementary and the order of H is 4(k + 1).

(2) Suppose that n = 4k + 1. Since K is self-complementary, the statement
is true for k = 0. Now assume that there exists a self-complementary
graph G of order 4k + 1, where k£ > 0. We show that there exists a self-
complementary graph H of order 4(k+1)+1. Again, let H obtained from
G and Py = (v1,v9,v3,v4) by joining each of v; and vy to every vertex of
G. Then H is self-complementary and the order of H is4(k+1)+ 1. m

30. (a) and (b) see Figures 1.5(a) and (b), respectively.

v v
z w
z O————O w
Yy z Yy r
. (@) )
g z ow
T
G O/ H: Y O—%— T
L >
Yy Y (b) t u

Figure 1.5: The graphs in Exercise 30(a) and (b)

31. Proof. Since there is a self-complementary graph of order n for every integer
nwithn =0 (mod4)orn=1 (mod4) by Exercise 29, we may assume
that n =2 (mod 4) or n =3 (mod 4). We verify this for n =2 (mod 4)
by induction. That the result holds for n = 6 follows from Exercise 30(a).
Assume, for some integer k > 6 with k¥ = 2 (mod 4), that there exists a
graph G of order k and size {(’;) /QJ that is isomorphic to a graph H; C G.
Add to G; the path P = (p1,p2,ps,ps) of order 4 and join p; and py to
every vertex of G; and denote this graph by G. Then G has order k + 4,
size L(k;‘l) / ZJ and is isomorphic to a graph H of G, where H is constructed

from H; by adding (p2, ps, p1,p3) and joining ps and p3 to every vertex of Hj.
Hence, the result holds if n =2 (mod 4).
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The proof for the case when n =3 (mod 4) is similar. L]

32. The subgraph H in Figure 1.6 is isomorphic to P.

Figure 1.6: The graphs Exercise 32

33. (a) The degree of uy in Gy + G2 is degg, u1.
(b) The degree of u; in G1 V G is degg, ui + no
(c) The degree of (u1,us) in Gi O Gy is degg, u1 + degg, uz.

34. The graph P3;V 2P;3 has order 9 and size 24, the graph P3 [0 2P; has order 18
and size 24, and the graph @1 + @2 + @3 has order 14 and size 17.

Section 1.7. Degree Sequences

35. See Figure 1.7. Delete the edges uw and zy of G and add the edges ux and
wy. This produces a graph isomorphic to H.

Y z y x
Figure 1.7: The graphs G and H in Exercise 35

36. (a) The minimum number of 2-switches is 1. Label the vertices of G; as
shown in Figure 1.8(a). Deleting the edges v1v2 and vsvg and adding the
edges v1vg and vovs produces a graph G that is isomorphic to Hj.

(b) The minimum number of 2-switches is 2. Label the vertices of Gy as
shown in Figure 1.8(b). Since G2 contains three pairwise disjoint trian-
gles and Hs is bipartite, at least two 2-switches are required to transform
G9 into Hs. Consider the 2-switch in which the edges vows and uzws
are deleted from G5 and the edges uzws and vows are added giving the
graph GY.
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Figure 1.8: The graphs in Exercise 36

Next consider the 2-switch in which the edges u;w; and zws are deleted
from GY and the edges wyws and ujz are added. This produces the graph
GY. Since G = Hy, a minimum number of two 2-switches is required to
transform G to Ho.

37. gs = {Cg, C4 + 057 Cg + Cﬁ,?)Cg} and G = P4 = (303, C3 + Cﬁ, Cg, C4 + 05)
38. The three graphs G1, G2, G3 in Figure 1.9 all have the degree sequence

s:1,1,1,1,2,2,2,2,3,3,3,3

and form a triangle in G.

39. Proof. Suppose that this statement is false. Thus, for each graph H with
V(H) = {v1,vs,...,v,} where degv; = d; for 1 < i < n, there is a vertex vy
(1 < k < n) such that both (1) and (2) fail. Among all such graphs H and
all such vertices vg, let G be one with a vertex vy for which Ng(vg) has a

maximum number of vertices in common with either Wy = {v1,va,...,v4, } if
k > dy or with Wy = {v1,va,...,v4,+1} — {vg} if 1 < k < dj. We consider
two cases.

Case 1. k > dj. Thus, Ng(vi) # W1 and the vertex vy, is adjacent to a vertex
v; ¢ W; and is not adjacent to a vertex v; with 1 <4 < dj, and so d; > dj.
Consequently, there is a vertex v, such that v;v, € E(G) and vjve € E(G).
Replacing the edges viv; and v;vp by viv; and v;ve is a 2-switch in G that
produces a graph G with V(G1) = {v1,v2,...,v,} where degg, v; = d; for
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Figure 1.9: The graphs Exercise 38

1 < ¢ < nin which Ng, (vg) has a greater number of vertices in common with
Wy. This is a contradiction.

Case 2. 1 < k < dj. Thus, Ng(vr) # Wa and so the vertex vy, is adjacent
to a vertex v; ¢ Wo and is not adjacent to a vertex v; with 1 < ¢ < dj +1
and so d; > d;. Consequently, there is a vertex v, such that v,u, € E(G)
and vjv; € E(G). Replacing the edges viv; and v;ve by viv; and vjvp is a
2-switch in G that produces a graph Gy with V(G3) = {v1,vs,...,v,} where
degg, v; = d; for 1 <4 <n in which Ng, (vx) has a greater number of vertices
in common with Ws. This is a contradiction. [ ]

40. See Figure 1.10.

(a) Gy = G1 — xz + xy (see Figure 1.10).

(b) The degree sequence of Gy is 5,4,3,3,2,2,2,1 and the degree sequence
of G318 4,3,3,3,3,2,2,2. When an edge rotation of Gy takes place, one
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Figure 1.10: The graphs in Exercise 40

vertex of G1 has its degree increased by 1 and another has its degree
decreased by 1. Hence, the degree sequence of G3 cannot be obtained.

(c) Proof. Let G and H be two nonempty, noncomplete graphs of the
same order n and same size m. We may assume that V(G) = V(H) =
{v1,v2,...,v,}. Furthermore, (g) <m< (k;rl) for some integer k with

2<k<n-—1. Let S={v1,vs,...,vr} and let F be the graph of order n

and size m with V(F) = {v1,va,...,v,} such that F[S] = K}, and vgyq

is adjacent to vy, vo,...,v;, where j = m— (g) < k. We claim that G can
be transformed into F' by a sequence of edge rotations. Suppose that this

is not the case. Among all graphs into which G can be transformed by a

sequence of edge rotations, let F’ be one for which F’[S] has maximum

size. We consider two cases.

Case 1. The size of F'[S] is less than (g) Then F’ contains two
nonadjacent vertices v; and v; with 1 <4 < j < k. If either v; or v;
is adjacent to a vertex vy with £ > k, then a graph F" can be obtained
from F’ by a single edge rotation so that v;v; € E(F"), producing a
contradiction. Otherwise, F’ contains an edge v,v, where p, ¢ > k. Since
v, ¢ E(F'), a graph F” containing v;v; can be obtained from F” by a
single edge rotation so that v;v; € E(F"), again a contradiction.

Case 2. The size of F'[S] is (g) Among all graphs F’ with F'[S] & K},
into which G can be transformed by a sequence of edge rotations, let G’
be one for which v is adjacent to a maximum number of the vertices
v1,V2,...,0;, where j = m — (g) Thus vi41ve ¢ E(G') for some ¢
with 1 < ¢ < j. If vgyiv, € E(G’) where p > j, then a graph G”
containing vj41v, can be obtained from G’ by a single edge rotation, a
contradiction. Otherwise, vy is isolated in G’ and G’ contains an edge
vpUg where p,q > k+1. Thus, vy11v, ¢ E(G’) and G’ can be transformed
into a graph containing vx11v, by a single edge rotation which in turn
can be transformed into a graph containing vgyive, again producing a
contradiction.

Thus, as claimed, G can be transformed into the graph F' with the de-
sired properties by a sequence of edge rotations, as can H. Consequently,
F' can be transformed into the graph H by a sequence of edge rotations,
implying that G can be transformed into the graph H by a sequence of
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edge rotations. n
41. (b), (c) and (e) are graphical.

42. For a vertex v of a graph G of order n, we have deggv + deggzv = n — 1.
Thus, dy,dz, -, dy is a degree sequence of a graph G of order n if and only
if(n—1)—dy,(n—1)—da, -+, (n—1) —d, is a degree sequence of G.

43. If there exists a graph G with degree sequence z,1,2,3,5,5, then the order
of G is 6. Since there are at least two vertices of degree 5, it follows that
0(G) > 2 and so no vertex of G has degree 1.

44. Since every graph has an even number of odd vertices, x must be even. So
x = 0,2,4,6 are the only possibilities. We cannot have x = 0 since not all
the degrees can be different. We now consider z = 2,4,6, and apply the
Havel-Hakimi theorem (Theorem 1.10).

=2
§:7,6,5,4,3,2,2,1
s1:5,4,3,2,1,1,0

52:3,2,1,0,0,0

s3 : 1,0,—1,0,0. Since s3 is not graphical, s is not graphical and so
T # 2.

r=141

§:7,6,5,4,4,3,2,1

s1:5,4,3,3,2,1,0

$2:3,2,2,1,0,0

s3:1,1,0,0,0. Note that s3 is a degree sequence of G = K + 3K; and
so s3 is graphical. Therefore, s is graphical and x = 4 is possible.

z=06

5:7,6,6,5,4,3,2,1

s1:5,5,4,3,2,1,0

$2:4,3,2,1,0,0.

Ignoring isolated vertices, not all degrees can be different and so sy is
not graphical. Therefore, s is not graphical and x # 6.

Therefore, the sequence is graphical for x = 4 only.

45. Since Y22 d; = 17 and 3(3 — 1) + Y._, min{3,d;} = 16, it follows from
Theorem 1.13 that the sequence s : 6,6, 5,4, 3, 2,2 is not graphical.

46. First, there is no such graphical sequence where one term occurs 3 times since
no graph contains an odd number of odd vertices. Thus, the only possible
graphical sequences are those in which two terms occur twice each. Again,
since no graph contains an odd number of odd vertices, the sequence 4,4, 3,2, 2
is not graphical. On the other hand, both sequences 4,4, 3,3,2 and 4, 3, 3,2, 2
are graphical.
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47. Let S = {a1,a2,---,a,} be a set of positive integers and let k£ = lem {a; +
1,a2+1,---,a,+1}. (Note that we could also let k = (a3 +1)(ag+1) - (an+
1).) Let G be the union of the graphs #Kai-u for 1 <4 <n. Then G has
the desired property.

Let S = {2,6,7}. If k = 1,3, then the graph with degree set S has an odd
number of odd vertices, which is impossible. If k = 2, then a degree sequence
of the graph G is 7,7,6,6, 2, 2. This implies that G has order 6 but maximum
degree 7, which is impossible. The sequence

5§:7,7,7,7,6,6,6,6,2,2,2,2
is graphical by Theorem 1.12.

48. The graph F), constructed in Theorem 1.15 contains exactly two vertices of de-
n

gree | Z|. Since the degrees of the vertices of F,, are 1,2,..., [ %], | 2], |%]| +
1,...,n—1, the degrees of the vertices of F,, are n—2,n—3,. .., [ﬂ -1, [ﬂ —

2 2
1,...,1,0.

49. Proof. Assume first that s} and s} are bigraphical sequences. Then there
exists a bipartite graph G’ with partite sets V{ and Vj such that V] =

{ug, us,...,ur} and V§ = {wy,wa,...,w:}, where degq u; = a; for 2 < i <r
and
degG/’UJJ_{bj ifa1+1§j§t.

A new bipartite graph G can be constructed from G’ by adding a new vertex
u1 and joining u; to w; for 1 < 4 < ay. Thus the sequences s; and so are
bigraphical sequences.

For the converse, suppose that s; and s5 are bigraphical sequences. Hence,
there exist bipartite graphs with partite sets Vi = {uq, us,...,u,} and Vo =

{w1,ws,...,w;} such that degu; = a; and degw; = b; for 1 < ¢ < r and
1 < j < t. If there exists such a bipartite graph H and a vertex u of H of
degree a; in V; adjacent to vertices of degrees by, b, ..., b,,, then s} and s}

are bigraphical sequences for H — u. Hence, we may assume that no bipartite
graph with bigraphical sequences s; and s, has this property. Among all such
graphs, let G be one having a vertex u; of degree a; in V; such that the sum
of the degrees of the neighbors of u; is maximum. Hence there exist integers
i and j with 1 <14 < j <t such that b; > b; and u, is not adjacent to w; but
is adjacent to w;. Because degw; > degwj, there is a vertex up € Vi with
deguy, = ay, such that w; is adjacent to u but w; is not adjacent to uy. Let

F = (G — {wwj, upgw; }) + {ugw;, upw, }.

Thus, the bipartite graph F' also has bigraphical sequences s; and so but the
sum of the degrees of the neighbors of u; in F is greater than the sum of
degrees of the neighbors of u; in G. This is a contradiction. ]
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50. These are the two nearly irregular graphs of order 10 and each is the comple-
ment of the other.

51. (a) Let n =r + s, where s > 0 is even. Then G = rK; + (s/2)K> has the
desired properties.

(b) Since every even vertex has degree at least 0 and every odd vertex has
degree at least 1, the minimum size of such a graph is at least s/2. Since
the graph r K7 + (s/2) K> has this size, the minimum size is s/2.

(¢) Suppose first that n is even. Then n — 1 is odd. So, every odd vertex
has degree at most n — 1 and every even vertex has degree at most n — 2.
Hence the maximum size of G is at most (g) — /2. Since r and s are
both even, the graph (r/2)K> + sK; has size (%) — /2, which is the
maximum size. Suppose next that n is odd. Then n — 1 is even. Every
even vertex has degree at most n — 1 and every odd vertex has degree at
most n — 2. Hence, the maximum size of G is at most (}) — s/2. Since

(s/2)Ks 4+ rK; has size () — s/2, this is the maximum size.

52. (a) Proof. Letuv € E(G). Let Wy be the set of vertices in V(G) — {u, v}
adjacent to neither u nor v, let Wi be the set of vertices in V(G) — {u, v}
adjacent to u but not v, let Wpy; be the set of vertices in V(G) — {u,v}
adjacent to v but not w and let Wi, be the set of vertices in V(G) —{u, v}
adjacent to both u and v. For ¢,j € {0,1}, let |W;;| = a;;. Then
aoo + a0+ a1 + a1 =n—2, aro+ain > (2n+1)/3 and apr + a11 >
(2n +1)/3. Therefore,

ao1 + aio + 2a11 > n+2
and so
(ao1 +aio +an) + a1 = (n —2 — ago) + an > 4”;2.
Thus,
in+2 n+8 n4t 8

ap > (n—2) +agpp = —— +ago > .
3 3
Since n > 4, Wy contains at least four vertices. If any two vertices in
W1, are adjacent, then u and v belong to a complete subgraph of order 4.
Suppose, on the other hand, that no two vertices of W7, are adjacent.
Then for each x € Wy,
n+8 2n—38

d <n— ——=
egx <n 3 3

contradicting the assumption that degx > (2n + 1)/3 for every vertex v
of G. ]
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(b) Since every vertex in K, ., has degree 2r = 2n/3 and K,.,., contains no
complete subgraph of order 4, the result in (a) is best possible.

Section 1.8. Multigraphs

53. Only the sequence in (c) is a degree sequence of an irregular multigraph (see
Figure 1.11). There is no multigraph containing an odd number of odd ver-
tices. So, (a) and (b) are not the degree sequences of any multigraph.

o oy A/\O/—\o
1 3 5 7 6 4 2

Figure 1.11: The graphs Exercise 53

54. The graphs of order 3 and 4 are shown in Figure 1.7 in the text. See Fig-
ure 1.12.

3
1 3 2
—> o

—eo—o—0 ———

1 4 5 2 3 4
1
2 3 e
§ v
6 6 7

5 6
3 9
—
8 —

1
11
7 9
11

Figure 1.12: Graphs and multigraphs in Exercise 54

55. Each of the sequences in (a), (c), (e), (g) and (h) is the degree sequence of a
multigraph. See Figure 1.13.


https://ebookyab.ir/solution-manual-graphs-digraphs-chartrand-lesniak/

https://ebookyab.ir/solution-manual-graphs-digraphs-chartrand-lesniak/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

16 CHAPTER 1. INTRODUCTION

(a) (©) (e) () (h)

Figure 1.13: Multigraphs in Exercise 55

Since the sum of the degrees of the vertices of a multigraph G is twice the
number of edges of G, neither s4 nor sg is the degree sequence of a multi-
graph. The sequence s, is also not the degree sequence of any multigraph G;
otherwise, G has (1 + 2+ 5)/2 = 4 edges and 5 edges incident with a vertex
of G, which is impossible.

56. Proof. First, let G be a multigraph of order n and size m having degree
sequence s : di,ds,...,d,, where dy > dy > --- > d,,. Then 2m =" d;
is even. Suppose, to the contrary, that dy > %2;1 d; = m. Then there is a
vertex of G incident with more edges than those in G. This is impossible.

We verify the converse by induction on n. Suppose that s : dy is a sequence
of one nonnegative integer such that d; is even and d; < %dl. Then dy = 0,
so s is the degree sequence of the only multigraph K; of order n = 1. For
n = 2, suppose that s : di,ds is a sequence of a nonnegative integers such
that d; > do, Z?Zl d; is even and d; < % Z?:l d;. This implies that d; = d.
The multigraph of order 2 whose two vertices are joined by d; parallel edges
has degree sequence s. Hence, the statement is true for n = 2.

Assume for an integer k& > 2 that if sy : e1,e2,..., e, is an sequence of
k nonnegative integers such that e; > es > --- > e, Zle e; 1s even and
e1 < % Zle e;, then s; is a degree sequence of a multigraph of order k. Let
s : dy,da,...,dr11 be a sequence of k + 1 nonnegative integers such that
dy > do > -+ > diq, Ei:—ll d; is even and d; < %Zf;l d;. Since di > ds
and d; < Zf;l d;, the terms da,ds, ...,dk1 can be decreased by a total of

dy resulting in a sequence dj, dj, ..., d; ., of nonnegative integers such that

S A =Y di—di > 0,dy > dy > -+ > d,, | where dy—dj < 1. Because
Zf:ll d; is even, zk:f::,l di—dy = Zf;l d; is even. Consequently, d) < Zf:; d;
and so d < %Zzi; d;. By the induction hypothesis, s’ : dy, ds, ..., d}, is
the degree sequence of a multigraph G’ of order n. We may assume that
V(G") = {va,vs,..., 0541} and degg v; = d} for 2 < i < k+ 1. Let G be
the multigraph obtained from G’ by adding a new vertex v; to G’ and joining
v1 to the vertices of G’ so that the degrees of V(G’) become da,ds, ..., dkt1.

Then deg, vi =d; and so s:dj,da,...,dk+1 is the degree sequence of G. =

57. (a) m=4-14+3-24+2-3+1-4=20.
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(b) At most two edges can be replaced by one edge each and at most two
edges can be replaced by two parallel edges. Thus, the size of H is at
least 2-1+2-2+3 = 9. This is possible (see the graph H in Figure 1.14).

At least two edges can be replaced by one edge each and at most one
edge can be replaced by four parallel edges and, if so, one edge can be
replaced by three parallel edges. Thus, the size is at most 2-1+4+3+2 =
11. The graph F' in Figure 1.14 shows that this can occur.

Figure 1.14: Graphs H and F in Exercise 57(b)

(c) Let U and W be the partite sets of G, where U = {uy,us,...,us} and
W = {wi,ws,...,w;} such that degu; > degus > .-+ > degu, and
degwy > degws > -+ > degw;. Then the minimum value of m is

s t
min{Zidegui, Zidegwl} .

i=1 i=1
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