1.1 A 2-kHz sound wave traveling in the *x*-direction in air was observed to have a differential pressure $p(x,t) = 10 \text{ N/m}^2$ at x = 0 and $t = 50 \ \mu\text{s}$. If the reference phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound in air is 330 m/s.

Solution: The general form is given by Eq. (1.17),

$$p(x,t) = A\cos\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda} + \phi_0\right),$$

where it is given that $\phi_0 = 36^\circ$. From Eq. (1.26), $T = 1/f = 1/(2 \times 10^3) = 0.5$ ms. From Eq. (1.27),

$$\lambda = \frac{u_{\rm p}}{f} = \frac{330}{2 \times 10^3} = 0.165 \,\,{\rm m}.$$

Also, since

$$p(x = 0, t = 50 \ \mu \text{s}) = 10 \ (\text{N/m}^2) = A \cos\left(\frac{2\pi \times 50 \times 10^{-6}}{5 \times 10^{-4}} + 36^{\circ} \frac{\pi \text{ rad}}{180^{\circ}}\right)$$
$$= A \cos(1.26 \ \text{rad}) = 0.31A,$$

it follows that $A = 10/0.31 = 32.36 \text{ N/m}^2$. So, with *t* in (s) and *x* in (m),

$$p(x,t) = 32.36\cos\left(2\pi \times 10^6 \frac{t}{500} - 2\pi \times 10^3 \frac{x}{165} + 36^\circ\right) \qquad (N/m^2)$$
$$= 32.36\cos\left(4\pi \times 10^3 t - 12.12\pi x + 36^\circ\right) \qquad (N/m^2).$$

1.2 For the pressure wave described in Example 1-1, plot

- (a) p(x,t) versus x at t = 0,
- (b) p(x,t) versus t at x = 0.

Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.

Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).

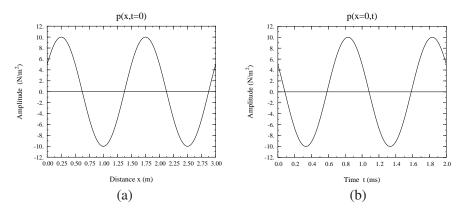


Figure P1.2 (a) Pressure wave as a function of distance at t = 0 and (b) pressure wave as a function of time at x = 0.

1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s, what is the wavelength?

Solution:

$$f = \frac{180}{60} = 3 \text{ Hz.}$$

$$u_{p} = \frac{300 \text{ cm}}{10 \text{ s}} = 0.3 \text{ m/s.}$$

$$\lambda = \frac{u_{p}}{f} = \frac{0.3}{3} = 0.1 \text{ m} = 10 \text{ cm.}$$

1.4 A wave traveling along a string is given by

 $y(x,t) = 2\sin(4\pi t + 10\pi x)$ (cm),

where x is the distance along the string in meters and y is the vertical displacement. Determine: (a) the direction of wave travel, (b) the reference phase ϕ_0 , (c) the frequency, (d) the wavelength, and (e) the phase velocity.

Solution:

(a) We start by converting the given expression into a cosine function of the form given by (1.17):

$$y(x,t) = 2\cos\left(4\pi t + 10\pi x - \frac{\pi}{2}\right)$$
 (cm).

Since the coefficients of t and x both have the same sign, the wave is traveling in the negative x-direction.

- (b) From the cosine expression, $\phi_0 = -\pi/2$.
- (c) $\omega = 2\pi f = 4\pi$,

$$f = 4\pi/2\pi = 2$$
 Hz.

(d) $2\pi/\lambda = 10\pi$,

$$\lambda = 2\pi/10\pi = 0.2$$
 m.

(e) $u_{\rm p} = f\lambda = 2 \times 0.2 = 0.4$ (m/s).

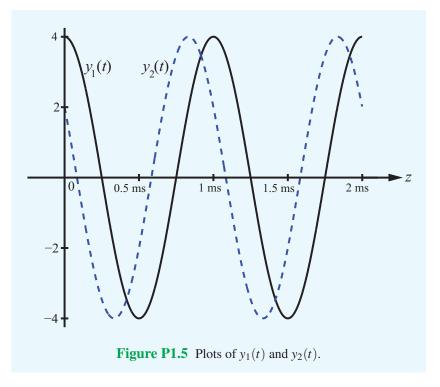
1.5 Two waves, $y_1(t)$ and $y_2(t)$, have identical amplitudes and oscillate at the same frequency, but $y_2(t)$ leads $y_1(t)$ by a phase angle of 60°. If

$$y_1(t) = 4\cos(2\pi \times 10^3 t),$$

write the expression appropriate for $y_2(t)$ and plot both functions over the time span from 0 to 2 ms.

Solution:

$$y_2(t) = 4\cos(2\pi \times 10^3 t + 60^\circ)$$



1.6 The height of an ocean wave is described by the function

$$y(x,t) = 1.5\sin(0.5t - 0.6x)$$
 (m).

Determine the phase velocity and the wavelength, and then sketch y(x,t) at t = 2 s over the range from x = 0 to $x = 2\lambda$.

Solution: The given wave may be rewritten as a cosine function:

$$y(x,t) = 1.5\cos(0.5t - 0.6x - \pi/2).$$

By comparison of this wave with Eq. (1.32),

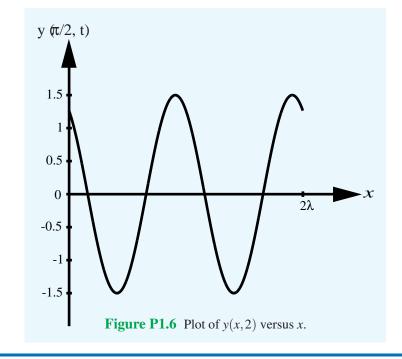
$$y(x,t) = A\cos(\omega t - \beta x + \phi_0),$$

we deduce that

$$\omega = 2\pi f = 0.5 \text{ rad/s}, \qquad \beta = \frac{2\pi}{\lambda} = 0.6 \text{ rad/m},$$

 $u_{\rm p} = \frac{\omega}{\beta} = \frac{0.5}{0.6} = 0.83 \text{ m/s}, \qquad \lambda = \frac{2\pi}{\beta} = \frac{2\pi}{0.6} = 10.47 \text{ m}$

At t = 2 s, $y(x,2) = 1.5 \sin(1 - 0.6x)$ (m), with the argument of the cosine function given in radians. Plot is shown in **Fig.**.



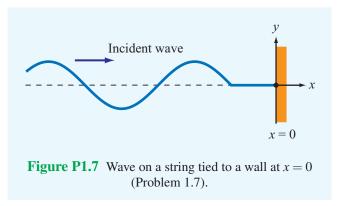
1.7 A wave traveling along a string in the +x direction is given by

$$y_1(x,t) = A\cos(\omega t - \beta x),$$

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in Fig. P1.7. When wave $y_1(x,t)$ arrives at the wall, a reflected wave $y_2(x,t)$ is generated. Hence, at any location on the string, the vertical displacement y_s is the sum of the incident and reflected waves:

$$y_{s}(x,t) = y_{1}(x,t) + y_{2}(x,t)$$

- (a) Write an expression for $y_2(x,t)$, keeping in mind its direction of travel and the fact that the end of the string cannot move.
- (b) Generate plots of $y_1(x,t)$, $y_2(x,t)$ and $y_s(x,t)$ versus x over the range $-2\lambda \le x \le 0$ at $\omega t = \pi/4$ and at $\omega t = \pi/2$.



Solution:

(a) Since wave $y_2(x,t)$ was caused by wave $y_1(x,t)$, the two waves must have the same angular frequency ω , and since $y_2(x,t)$ is traveling on the same string as $y_1(x,t)$, the two waves must have the same phase constant β . Hence, with its direction being in the negative x-direction, $y_2(x,t)$ is given by the general form

$$y_2(x,t) = B\cos(\omega t + \beta x + \phi_0), \tag{1}$$

where B and ϕ_0 are yet-to-be-determined constants. The total displacement is

$$y_{s}(x,t) = y_{1}(x,t) + y_{2}(x,t) = A\cos(\omega t - \beta x) + B\cos(\omega t + \beta x + \phi_{0}).$$

Since the string cannot move at x = 0, the point at which it is attached to the wall, $y_s(0,t) = 0$ for all *t*. Thus,

$$y_s(0,t) = A\cos\omega t + B\cos(\omega t + \phi_0) = 0.$$
⁽²⁾

(i) Easy Solution: The physics of the problem suggests that a possible solution for (2) is B = -A and $\phi_0 = 0$, in which case we have

$$y_2(x,t) = -A\cos(\omega t + \beta x).$$
(3)

(ii) Rigorous Solution: By expanding the second term in (2), we have

 $A\cos\omega t + B(\cos\omega t\cos\phi_0 - \sin\omega t\sin\phi_0) = 0,$

or

$$(A + B\cos\phi_0)\cos\omega t - (B\sin\phi_0)\sin\omega t = 0.$$
(4)

This equation has to be satisfied for all values of t. At t = 0, it gives

$$A + B\cos\phi_0 = 0,\tag{5}$$

and at $\omega t = \pi/2$, (4) gives

$$B\sin\phi_0 = 0. \tag{6}$$

Equations (5) and (6) can be satisfied simultaneously only if

$$A = B = 0 \tag{7}$$

or

$$A = -B \quad \text{and} \quad \phi_0 = 0. \tag{8}$$

Clearly (7) is not an acceptable solution because it means that $y_1(x,t) = 0$, which is contrary to the statement of the problem. The solution given by (8) leads to (3).

(b) At $\omega t = \pi/4$,

$$y_1(x,t) = A\cos(\pi/4 - \beta x) = A\cos\left(\frac{\pi}{4} - \frac{2\pi x}{\lambda}\right),$$
$$y_2(x,t) = -A\cos(\omega t + \beta x) = -A\cos\left(\frac{\pi}{4} + \frac{2\pi x}{\lambda}\right).$$

Plots of y_1 , y_2 , and y_3 are shown in Fig. P1.7(b).

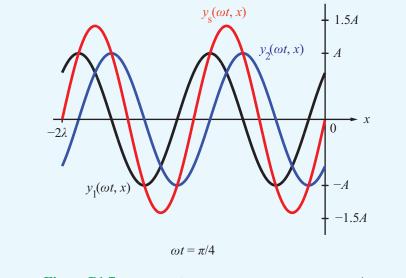


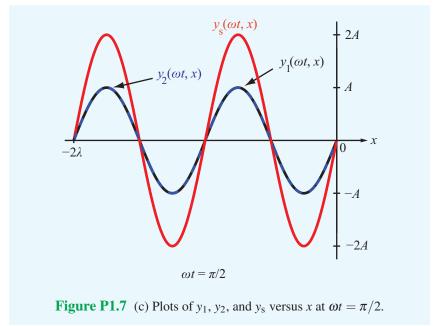
Figure P1.7 (b) Plots of y_1 , y_2 , and y_s versus *x* at $\omega t = \pi/4$.

At $\omega t = \pi/2$,

$$y_1(x,t) = A\cos(\pi/2 - \beta x) = A\sin\beta x = A\sin\frac{2\pi x}{\lambda},$$

$$y_2(x,t) = -A\cos(\pi/2 + \beta x) = A\sin\beta x = A\sin\frac{2\pi x}{\lambda}.$$

Plots of y_1 , y_2 , and y_3 are shown in Fig. P1.7(c).



1.8 Two waves on a string are given by the following functions:

$$y_1(x,t) = 4\cos(20t - 30x)$$
 (cm)
 $y_2(x,t) = -4\cos(20t + 30x)$ (cm)

where x is in centimeters. The waves are said to interfere constructively when their superposition $|y_s| = |y_1 + y_2|$ is a maximum, and they interfere destructively when $|y_s|$ is a minimum.

- (a) What are the directions of propagation of waves $y_1(x,t)$ and $y_2(x,t)$?
- (b) At $t = (\pi/50)$ s, at what location x do the two waves interfere constructively, and what is the corresponding value of $|y_s|$?
- (c) At $t = (\pi/50)$ s, at what location x do the two waves interfere destructively, and what is the corresponding value of $|y_s|$?

Solution:

(a) $y_1(x,t)$ is traveling in positive x-direction. $y_2(x,t)$ is traveling in negative x-direction.

(b) At $t = (\pi/50)$ s, $y_s = y_1 + y_2 = 4[\cos(0.4\pi - 30x) - \cos(0.4\pi + 3x)]$. Using the formulas from Appendix C,

$$2\sin x \sin y = \cos(x-y) - \cos(x+y),$$

we have

$$y_s = 8\sin(0.4\pi)\sin 30x = 7.61\sin 30x.$$

Hence,

$$|y_{\rm s}|_{\rm max} = 7.61$$

and it occurs when $|\sin 30x| = 1$, or $30x = \frac{\pi}{2} + n\pi$, or $x = \left(\frac{\pi}{60} + \frac{n\pi}{30}\right)$ cm, where $n = 0, 1, 2, \dots$

(c)
$$|y_s|_{\min} = 0$$
 and it occurs when $30x = n\pi$, or $x = \frac{n\pi}{30}$ cm.

1.9 Give expressions for y(x,t) for a sinusoidal wave traveling along a string in the negative x-direction, given that $y_{\text{max}} = 40 \text{ cm}$, $\lambda = 30 \text{ cm}$, f = 10 Hz, and

- (a) y(x,0) = 0 at x = 0,
- **(b)** y(x,0) = 0 at x = 3.75 cm.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with $\omega = 2\pi f = 20\pi$ (rad/s), $\beta = 2\pi/\lambda = 2\pi/0.3 = 20\pi/3$ (rad/s), A = 40 cm, and x assigned a positive sign:

$$y(x,t) = 40\cos\left(20\pi t + \frac{20\pi}{3}x + \phi_0\right)$$
 (cm),

with *x* in meters.

(a) $y(0,0) = 0 = 40 \cos \phi_0$. Hence, $\phi_0 = \pm \pi/2$, and

$$y(x,t) = 40\cos\left(20\pi t + \frac{20\pi}{3}x \pm \frac{\pi}{2}\right)$$

=
$$\begin{cases} -40\sin\left(20\pi t + \frac{20\pi}{3}x\right) \text{ (cm), if } \phi_0 = \pi/2, \\ 40\sin\left(20\pi t + \frac{20\pi}{3}x\right) \text{ (cm), if } \phi_0 = -\pi/2. \end{cases}$$

(b) At x = 3.75 cm = 3.75×10^{-2} m, $y = 0 = 40 \cos(\pi/4 + \phi_0)$. Hence, $\phi_0 = \pi/4$ or $5\pi/4$, and

$$y(x,t) = \begin{cases} 40\cos\left(20\pi t + \frac{20\pi}{3}x + \frac{\pi}{4}\right) \text{ (cm), if } \phi_0 = \pi/4, \\ 40\cos\left(20\pi t + \frac{20\pi}{3}x + \frac{5\pi}{4}\right) \text{ (cm), if } \phi_0 = 5\pi/4. \end{cases}$$

1.10 An oscillator that generates a sinusoidal wave on a string completes 20 vibrations in 50 s. The wave peak is observed to travel a distance of 2.8 m along the string in 5 s. What is the wavelength?

Solution:

$$T = \frac{50}{20} = 2.5 \text{ s}, \qquad u_{p} = \frac{2.8}{5} = 0.56 \text{ m/s},$$

 $\lambda = u_{p}T = 0.56 \times 2.5 = 1.4 \text{ m}.$

1.11 The vertical displacement of a string is given by the harmonic function

 $y(x,t) = 2\cos(16\pi t - 20\pi x)$ (m),

where x is the horizontal distance along the string in meters. Suppose a tiny particle were attached to the string at x = 5 cm. Obtain an expression for the vertical velocity of the particle as a function of time.

Solution:

$$y(x,t) = 2\cos(16\pi t - 20\pi x)$$
 (m)

$$u(0.05,t) = \frac{dy(x,t)}{dt} \Big|_{x=0.05}$$

= $-32\pi \sin(16\pi t - 20\pi x)|_{x=0.05}$
= $-32\pi \sin(16\pi t - \pi)$
= $32\pi \sin(16\pi t)$ (m/s).

1.12 Given two waves characterized by

$$y_1(t) = 3\cos\omega t$$

$$y_2(t) = 3\sin(\omega t + 60^\circ),$$

does $y_2(t)$ lead or lag $y_1(t)$ and by what phase angle?

Solution: We need to express $y_2(t)$ in terms of a cosine function:

$$y_2(t) = 3\sin(\omega t + 60^\circ) = 3\cos\left(\frac{\pi}{2} - \omega t - 60^\circ\right) = 3\cos(30^\circ - \omega t) = 3\cos(\omega t - 30^\circ).$$

Hence, $y_2(t)$ lags $y_1(t)$ by 30°.

1.13 The voltage of an electromagnetic wave traveling on a transmission line is given by $v(z,t) = 5e^{-\alpha z} \sin(4\pi \times 10^9 t - 20\pi z)$ (V), where z is the distance in meters from the generator.

- (a) Find the frequency, wavelength, and phase velocity of the wave.
- (b) At z = 2 m, the amplitude of the wave was measured to be 2 V. Find α .

Solution:

(a) This equation is similar to that of Eq. (1.28) with $\omega = 4\pi \times 10^9$ rad/s and $\beta = 20\pi$ rad/m. From Eq. (1.29a), $f = \omega/2\pi = 2 \times 10^9$ Hz = 2 GHz; from Eq. (1.29b), $\lambda = 2\pi/\beta = 0.1$ m. From Eq. (1.30),

$$u_{\rm p} = \omega / \beta = 2 \times 10^8$$
 m/s.

(b) Using just the amplitude of the wave,

$$2 = 5 \exp{-\alpha 2}, \qquad \alpha = \frac{-1}{2 \text{ m}} \ln{\left(\frac{2}{5}\right)} = 0.46 \text{ Np/m}.$$

1.14 A certain electromagnetic wave traveling in seawater was observed to have an amplitude of 98.02 (V/m) at a depth of 10 m, and an amplitude of 81.87 (V/m) at a depth of 100 m. What is the attenuation constant of seawater?

Solution: The amplitude has the form $Ae^{\alpha z}$. At z = 10 m,

$$Ae^{-10\alpha} = 98.02$$

and at z = 100 m,

 $Ae^{-100\alpha} = 81.87$

The ratio gives

$$\frac{e^{-10\alpha}}{e^{-100\alpha}} = \frac{98.02}{81.87} = 1.20$$

 $e^{-10\alpha} = 1.2e^{-100\alpha}$.

or

Taking the natural log of both sides gives

$$\ln(e^{-10\alpha}) = \ln(1.2e^{-100\alpha}),$$

-10\alpha = \ln(1.2) - 100\alpha,
90\alpha = \ln(1.2) = 0.18.

Hence,

$$\alpha = \frac{0.18}{90} = 2 \times 10^{-3}$$
 (Np/m).

1.15 A laser beam traveling through fog was observed to have an intensity of 1 $(\mu W/m^2)$ at a distance of 2 m from the laser gun and an intensity of 0.2 $(\mu W/m^2)$ at a distance of 3 m. Given that the intensity of an electromagnetic wave is proportional to the square of its electric-field amplitude, find the attenuation constant α of fog.

Solution: If the electric field is of the form

$$E(x,t) = E_0 e^{-\alpha x} \cos(\omega t - \beta x),$$

then the intensity must have a form

$$I(x,t) \approx [E_0 e^{-\alpha x} \cos(\omega t - \beta x)]^2$$
$$\approx E_0^2 e^{-2\alpha x} \cos^2(\omega t - \beta x)$$

or

$$I(x,t) = I_0 e^{-2\alpha x} \cos^2(\omega t - \beta x)$$

where we define $I_0 \approx E_0^2$. We observe that the magnitude of the intensity varies as $I_0 e^{-2\alpha x}$. Hence,

at
$$x = 2$$
 m, $I_0 e^{-4\alpha} = 1 \times 10^{-6}$ (W/m²),
at $x = 3$ m, $I_0 e^{-6\alpha} = 0.2 \times 10^{-6}$ (W/m²).

$$\frac{I_0 e^{-4\alpha}}{I_0 e^{-6\alpha}} = \frac{10^{-6}}{0.2 \times 10^{-6}} = 5$$
$$e^{-4\alpha} \cdot e^{6\alpha} = e^{2\alpha} = 5$$
$$\alpha = 0.8 \quad \text{(NP/m)}.$$

1.16 Evaluate each of the following complex numbers and express the result in rectangular form:

- (a) $z_1 = 8e^{j\pi/3}$
- **(b)** $z_2 = \sqrt{3} e^{j3\pi/4}$
- (c) $z_3 = 2e^{-j\pi/2}$
- (d) $z_4 = j^3$
- (e) $z_5 = j^{-4}$
- (f) $z_6 = (1-j)^3$
- (g) $z_7 = (1-j)^{1/2}$

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)

(a) $z_1 = 8e^{j\pi/3} = 8(\cos \pi/3 + j\sin \pi/3) = 4.0 + j6.93.$ (b)

$$z_{2} = \sqrt{3} e^{j3\pi/4} = \sqrt{3} \left[\cos\left(\frac{3\pi}{4}\right) + j\sin\left(\frac{3\pi}{4}\right) \right] = -1.22 + j1.22 = 1.22(-1+j).$$
(c) $z_{3} = 2e^{-j\pi/2} = 2[\cos(-\pi/2) + j\sin(-\pi/2)] = -j2.$
(d) $z_{4} = j^{3} = j \cdot j^{2} = -j, \text{ or}$

$$z_{4} = j^{3} = (e^{j\pi/2})^{3} = e^{j3\pi/2} = \cos(3\pi/2) + j\sin(3\pi/2) = -j.$$
(e) $z_{5} = j^{-4} = (e^{j\pi/2})^{-4} = e^{-j2\pi} = 1.$
(f) $z_{6} = (1-j)^{3} = (\sqrt{2}e^{-j\pi/4})^{3} = (\sqrt{2})^{3}e^{-j3\pi/4}$

$$= (\sqrt{2})^{3} [\cos(3\pi/4) - j\sin(3\pi/4)]$$
$$= -2 - j2 = -2(1+j).$$

(g)

$$z_7 = (1-j)^{1/2} = (\sqrt{2}e^{-j\pi/4})^{1/2} = \pm 2^{1/4}e^{-j\pi/8} = \pm 1.19(0.92 - j0.38)$$
$$= \pm (1.10 - j0.45).$$

1.17 Complex numbers z_1 and z_2 are given by

$$z_1 = 3 - j2$$
$$z_2 = -4 + j3$$

- (a) Express z_1 and z_2 in polar form.
- (b) Find $|z_1|$ by first applying Eq. (1.41) and then by applying Eq. (1.43).
- (c) Determine the product z_1z_2 in polar form.
- (d) Determine the ratio z_1/z_2 in polar form.
- (e) Determine z_1^3 in polar form.

Solution:

(a) Using Eq. (1.41),

$$z_1 = 3 - j2 = 3.6 \exp - j33.7^\circ,$$

 $z_2 = -4 + j3 = 5 \exp j143.1^\circ.$

(b) By Eq. (1.41) and Eq. (1.43), respectively,

$$|z_1| = |3 - j2| = \sqrt{3^2 + (-2)^2} = \sqrt{13} = 3.60,$$

 $|z_1| = \sqrt{(3 - j2)(3 + j2)} = \sqrt{13} = 3.60.$

(c) By applying Eq. (1.47b) to the results of part (a),

$$z_1 z_2 = 3.6 \exp - j33.7^\circ \times 5 \exp j143.1^\circ = 18 \exp j109.4^\circ.$$

(d) By applying Eq. (1.48b) to the results of part (a),

$$\frac{z_1}{z_2} = \frac{3.6 \exp{-j33.7^\circ}}{5 \exp{j143.1^\circ}} = 0.72 \exp{-j176.8^\circ}.$$

(e) By applying Eq. (1.49) to the results of part (a),

$$z_1^3 = (3.6 \exp - j33.7^\circ)^3 = (3.6)^3 \exp - j3 \times 33.7^\circ = 46.66 \exp - j101.1^\circ.$$

1.18 Complex numbers z_1 and z_2 are given by

$$z_1 = -3 + j2$$
$$z_2 = 1 - j2$$

Determine (a) z_1z_2 , (b) z_1/z_2^* , (c) z_1^2 , and (d) $z_1z_1^*$, all in polar form.

Solution:

(a) We first convert z_1 and z_2 to polar form:

$$z_{1} = -(3 - j2) = -\left(\sqrt{3^{2} + 2^{2}} e^{-j\tan^{-1}2/3}\right)$$
$$= -\sqrt{13} e^{-j33.7^{\circ}}$$
$$= \sqrt{13} e^{j(180^{\circ} - 33.7^{\circ})}$$
$$= \sqrt{13} e^{j146.3^{\circ}}.$$

$$z_2 = 1 - j2 = \sqrt{1+4} e^{-j\tan^{-1}2}$$
$$= \sqrt{5} e^{-j63.4^\circ}.$$

$$z_1 z_2 = \sqrt{13} e^{j146.3^{\circ}} \times \sqrt{5} e^{-j63.4^{\circ}}$$
$$= \sqrt{65} e^{j82.9^{\circ}}.$$

(b)

$$\frac{z_1}{z_2^*} = \frac{\sqrt{13} e^{j146.3^\circ}}{\sqrt{5} e^{j63.4^\circ}} = \sqrt{\frac{13}{5}} e^{j82.9^\circ}.$$

(c)

$$z_1^2 = (\sqrt{13})^2 (e^{j146.3^\circ})^2 = 13e^{j292.6^\circ}$$
$$= 13e^{-j360^\circ} e^{j292.6^\circ}$$
$$= 13e^{-j67.4^\circ}.$$

(c)

$$z_1 z_1^* = \sqrt{13} e^{j146.3^\circ} \times \sqrt{13} e^{-j146.3^\circ}$$

= 13.

1.19 If z = -2 + j4, determine the following quantities in polar form:

- (a) 1/z,
- (b) z^3 , (c) $|z|^2$,
- (d) $\Im \mathfrak{m}\{z\},$
- (e) $\Im \mathfrak{m}\{z^*\}.$

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)

$$\frac{1}{z} = \frac{1}{-2+j4} = (-2+j4)^{-1} = (4.47 e^{j116.6^{\circ}})^{-1} = (4.47)^{-1} e^{-j116.6^{\circ}} = 0.22 e^{-j116.6^{\circ}}.$$
(b) $z^3 = (-2+j4)^3 = (4.47 e^{j116.6^{\circ}})^3 = (4.47)^3 e^{j350.0^{\circ}} = 89.44 e^{-j10^{\circ}}.$
(c) $|z|^2 = z \cdot z^* = (-2+j4)(-2-j4) = 4+16 = 20.$
(d) $\Im m\{z\} = \Im m\{-2+j4\} = 4.$
(e) $\Im m\{z^*\} = \Im m\{-2-j4\} = -4 = 4e^{j\pi}.$

1.20 Find complex numbers $t = z_1 + z_2$ and $s = z_1 - z_2$, both in polar form, for each of the following pairs:

(a)
$$z_1 = 2 + j3$$
 and $z_2 = 1 - j2$,

- **(b)** $z_1 = 3$ and $z_2 = -j3$,
- (c) $z_1 = 3 \angle 30^\circ$ and $z_2 = 3 \angle -30^\circ$,
- (d) $z_1 = 3 \angle \underline{30^\circ}$ and $z_2 = 3 \angle \underline{-150^\circ}$.

Solution:

(a)

$$t = z_1 + z_2 = (2 + j3) + (1 - j2) = 3 + j1,$$

$$s = z_1 - z_2 = (2 + j3) - (1 - j2) = 1 + j5 = 5.1 e^{j78.7^{\circ}}$$

(b)

$$t = z_1 + z_2 = 3 - j3 = 4.24 e^{-j45^{\circ}},$$

$$s = z_1 - z_2 = 3 + j3 = 4.24 e^{j45^{\circ}}.$$

(c)

$$t = z_1 + z_2 = 3 \angle 30^\circ + 3 \angle -30^\circ$$

= $3e^{j30^\circ} + 3e^{-j30^\circ} = (2.6 + j1.5) + (2.6 - j1.5) = 5.2,$
 $s = z_1 - z_2 = 3e^{j30^\circ} - 3e^{-j30^\circ} = (2.6 + j1.5) - (2.6 - j1.5) = j3 = 3e^{j90^\circ}.$

(d)

$$t = z_1 + z_2 = 3\angle 30^\circ + 3\angle -150^\circ = (2.6 + j1.5) + (-2.6 - j1.5) = 0,$$

$$s = z_1 - z_2 = (2.6 + j1.5) - (-2.6 - j1.5) = 5.2 + j3 = 6e^{j30^\circ}.$$

1.21 Complex numbers z_1 and z_2 are given by

$$z_1 = 5 \angle \underline{-60^\circ}$$
$$z_2 = 4 \angle \underline{45^\circ}.$$

- (a) Determine the product $z_1 z_2$ in polar form.
- (b) Determine the product $z_1 z_2^*$ in polar form.
- (c) Determine the ratio z_1/z_2 in polar form.
- (d) Determine the ratio z_1^*/z_2^* in polar form.
- (e) Determine $\sqrt{z_1}$ in polar form.

Solution:

- (a) $z_1 z_2 = 5e^{-j60^\circ} \times 4e^{j45^\circ} = 20e^{-j15^\circ}.$ (b) $z_1 z_2^* = 5e^{-j60^\circ} \times 4e^{-j45^\circ} = 20e^{-j105^\circ}.$ (c) $z_1 \quad 5e^{-j60^\circ}$

(c)
$$\frac{z_1}{z_2} = \frac{5e^{-j00}}{4e^{j45^\circ}} = 1.25e^{-j105^\circ}.$$

(d)
$$\frac{z_1}{z_2^*} = \left(\frac{z_1}{z_2}\right) = 1.25e^{j105^\circ}.$$

(e)
$$\sqrt{z_1} = \sqrt{5e^{-j60^\circ}} = \pm \sqrt{5}e^{-j30^\circ}.$$

1.22 If z = 3 - j5, find the value of $\ln(z)$. Solution:

$$|z| = +\sqrt{3^2 + 5^2} = 5.83, \quad \theta = \tan^{-1}\left(\frac{-5}{3}\right) = -59^\circ,$$

$$z = |z|e^{j\theta} = 5.83e^{-j59^\circ},$$

$$\ln(z) = \ln(5.83e^{-j59^\circ})$$

$$= \ln(5.83) + \ln(e^{-j59^\circ})$$

$$= 1.76 - j59^\circ = 1.76 - j\frac{59^\circ\pi}{180^\circ} = 1.76 - j1.03.$$

1.23 If z = 3 - j4, find the value of e^z . Solution:

$$e^{z} = e^{3-j4} = e^{3} \cdot e^{-j4} = e^{3}(\cos 4 - j\sin 4),$$

 $e^{3} = 20.09,$ and $4 \operatorname{rad} = \frac{4}{\pi} \times 180^{\circ} = 229.18^{\circ}$

Hence, $e^{z} = 20.08(\cos 229.18^{\circ} - j\sin 229.18^{\circ}) = -13.13 + j15.20.$

1.24 If $z = 3e^{j\pi/6}$, find the value of e^z . **Solution:**

$$z = 3e^{j\pi/6} = 3\cos \pi/6 + j3\sin \pi/6$$

= 2.6 + j1.5

$$e^{z} = e^{2.6+j1.5} = e^{2.6} \times e^{j1.5}$$

= $e^{2.6} (\cos 1.5 + j \sin 1.5)$
= $13.46 (0.07 + j0.98)$
= $0.95 + j13.43$.

1.25 A voltage source given by

 $v_{\rm s}(t) = 25\cos(2\pi \times 10^3 t - 30^\circ)$ (V)

is connected to a series RC load as shown in Fig. 1-20. If $R = 1 \text{ M}\Omega$ and C = 200 pF, obtain an expression for $v_c(t)$, the voltage across the capacitor.

Solution: In the phasor domain, the circuit is a voltage divider, and

$$\widetilde{V}_{\rm c} = \widetilde{V}_{\rm s} \frac{1/j\omega C}{R + 1/j\omega C} = \frac{\widetilde{V}_{\rm s}}{(1 + j\omega RC)}$$

Now $\widetilde{V}_{s} = 25 \exp{-j30^{\circ}}$ V with $\omega = 2\pi \times 10^{3}$ rad/s, so

$$\widetilde{V}_{c} = \frac{25 \exp - j30^{\circ} \text{ V}}{1 + j \left((2\pi \times 10^{3} \text{ rad/s}) \times (10^{6} \Omega) \times (200 \times 10^{-12} \text{ F}) \right)}$$
$$= \frac{25 \exp - j30^{\circ} \text{ V}}{1 + j2\pi/5} = 15.57 \exp - j81.5^{\circ} \text{ V}.$$

Converting back to an instantaneous value,

$$v_{\rm c}(t) = \Re e \widetilde{V}_{\rm c} \exp j \omega t = \Re e 15.57 \exp j (\omega t - 81.5^{\circ}) \, {\rm V} = 15.57 \cos \left(2\pi \times 10^3 t - 81.5^{\circ}\right) \, {\rm V},$$

where *t* is expressed in seconds.

1.26 Find the phasors of the following time functions: (a) $v(t) = 9\cos(\omega t - \pi/3)$ (V) (b) $v(t) = 12\sin(\omega t + \pi/4)$ (V) (c) $i(x,t) = 5e^{-3x}\sin(\omega t + \pi/6)$ (A) (d) $i(t) = -2\cos(\omega t + 3\pi/4)$ (A) (e) $i(t) = 4\sin(\omega t + \pi/3) + 3\cos(\omega t - \pi/6)$ (A) **Solution:** (a) $\tilde{V} = 9\exp{-j\pi/3}$ V. (b) $v(t) = 12\sin(\omega t + \pi/4) = 12\cos(\pi/2 - (\omega t + \pi/4)) = 12\cos(\omega t - \pi/4)$ V, $\tilde{V} = 12\exp{-j\pi/4}$ V. (c) $i(t) = 5\exp{-3x}\sin(\omega t + \pi/6)$ A = $5\exp{-3x}\cos[\pi/2 - (\omega t + \pi/6)]$ A $= 5\exp{-3x}\cos(\omega t - \pi/3)$ A, $\tilde{I} = 5\exp{-3x}\exp{-j\pi/3}$ A.

(d)

$$i(t) = -2\cos(\omega t + 3\pi/4),$$

$$\tilde{I} = -2e^{j3\pi/4} = 2e^{-j\pi}e^{j3\pi/4} = 2e^{-j\pi/4} A.$$

(e)

$$\begin{split} i(t) &= 4\sin(\omega t + \pi/3) + 3\cos(\omega t - \pi/6) \\ &= 4\cos[\pi/2 - (\omega t + \pi/3)] + 3\cos(\omega t - \pi/6) \\ &= 4\cos(-\omega t + \pi/6) + 3\cos(\omega t - \pi/6) \\ &= 4\cos(\omega t - \pi/6) + 3\cos(\omega t - \pi/6) = 7\cos(\omega t - \pi/6), \\ \tilde{I} &= 7e^{-j\pi/6} \text{ A.} \end{split}$$

1.27 Find the instantaneous time sinusoidal functions corresponding to the following phasors:

(a) $\tilde{V} = -5e^{j\pi/3}$ (V) (b) $\tilde{V} = j6e^{-j\pi/4}$ (V) (c) $\tilde{I} = (6+j8)$ (A) (d) $\tilde{I} = -3+j2$ (A) (e) $\tilde{I} = j$ (A) (f) $\tilde{I} = 2e^{j\pi/6}$ (A)

Solution:

(a)

$$\widetilde{V} = -5 \exp j\pi/3 \text{ V} = 5 \exp j(\pi/3 - \pi) \text{ V} = 5 \exp -j2\pi/3 \text{ V},$$

 $v(t) = 5 \cos(\omega t - 2\pi/3) \text{ V}.$

(b)

$$\widetilde{V} = j6 \exp - j\pi/4 \text{ V} = 6 \exp j (-\pi/4 + \pi/2) \text{ V} = 6 \exp j\pi/4 \text{ V},$$

 $v(t) = 6 \cos (\omega t + \pi/4) \text{ V}.$

(c)

$$\widetilde{I} = (6+j8) \text{ A} = 10 \exp j53.1^{\circ} \text{ A},$$

 $i(t) = 10 \cos (\omega t + 53.1^{\circ}) \text{ A}.$

(d)

$$\tilde{I} = -3 + j2 = 3.61 e^{j146.31^{\circ}},$$

$$i(t) = \Re\{3.61 e^{j146.31^{\circ}} e^{j\omega t}\} = 3.61 \cos(\omega t + 146.31^{\circ}) \text{ A}.$$

(e)

$$\tilde{I} = j = e^{j\pi/2},$$

$$i(t) = \Re \mathfrak{e} \{ e^{j\pi/2} e^{j\omega t} \} = \cos(\omega t + \pi/2) = -\sin \omega t \text{ A}$$

(f)

$$\begin{split} \tilde{I} &= 2e^{j\pi/6},\\ i(t) &= \Re \mathfrak{e}\{2e^{j\pi/6}e^{j\omega t}\} = 2\cos(\omega t + \pi/6) \text{ A}. \end{split}$$

1.28 A series RLC circuit is connected to a generator with a voltage $v_s(t) = V_0 \cos(\omega t + \pi/3)$ (V).

- (a) Write the voltage loop equation in terms of the current i(t), R, L, C, and $v_s(t)$.
- (b) Obtain the corresponding phasor-domain equation.
- (c) Solve the equation to obtain an expression for the phasor current \tilde{I} .

Solution:

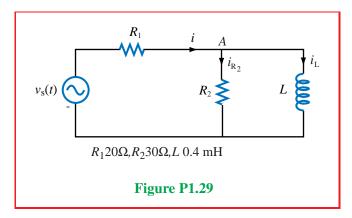
(a)
$$v_{s}(t) = Ri + L\frac{di}{dt} + \frac{1}{C}\int i dt.$$

(b) In phasor domain: $\widetilde{V}_{s} = R\widetilde{I} + j\omega L\widetilde{I} + \frac{\widetilde{I}}{j\omega C}.$
(c) $\widetilde{I} = \frac{\widetilde{V}_{s}}{R + j(\omega L - 1/\omega C)} = \frac{V_{0}e^{j\pi/3}}{R + j(\omega L - 1/\omega C)} = \frac{\omega C V_{0}e^{j\pi/3}}{\omega R C + j(\omega^{2}LC - 1)}.$

1.29 The voltage source of the circuit shown in Fig. P1.29 is given by

$$v_{\rm s}(t) = 25\cos(4 \times 10^4 t - 45^\circ)$$
 (V)

Obtain an expression for $i_{L}(t)$, the current flowing through the inductor.



Solution: Based on the given voltage expression, the phasor source voltage is

$$\widetilde{V}_{\rm s} = 25e^{-j45^\circ} \qquad (\rm V). \tag{9}$$

The voltage equation for the left-hand side loop is

$$R_1 i + R_2 i_{R_2} = v_s \tag{10}$$

For the right-hand loop,

$$R_2 i_{R_2} = L \frac{di_{\rm L}}{dt} \,, \tag{11}$$

and at node A,

$$i = i_{R_2} + i_{\rm L}.\tag{12}$$

Next, we convert Eqs. (2)–(4) into phasor form:

$$R_1 \tilde{I} + R_2 \tilde{I}_{R_2} = \tilde{V}_s \tag{13}$$

$$R_2 \tilde{I}_{R_2} = j \omega L \tilde{I}_{\rm L} \tag{14}$$

$$\tilde{I} = \tilde{I}_{R_2} + \tilde{I}_{\rm L} \tag{15}$$

Upon combining (6) and (7) to solve for \tilde{I}_{R_2} in terms of \tilde{I} , we have:

$$\tilde{I}_{R_2} = \frac{j\omega L}{R_2 + j\omega L} I \,. \tag{16}$$

Substituting (8) in (5) and then solving for \tilde{I} leads to:

$$R_{1}\tilde{I} + \frac{jR_{2}\omega L}{R_{2} + j\omega L}\tilde{I} = \tilde{V}_{s}$$

$$\tilde{I}\left(R_{1} + \frac{jR_{2}\omega L}{R_{2} + j\omega L}\right) = \tilde{V}_{s}$$

$$\tilde{I}\left(\frac{R_{1}R_{2} + jR_{1}\omega L + jR_{2}\omega L}{R_{2} + j\omega L}\right) = \tilde{V}_{s}$$

$$\tilde{I} = \left(\frac{R_{2} + j\omega L}{R_{1}R_{2} + j\omega L(R_{1} + R_{2})}\right)\tilde{V}_{s}.$$
(17)

Combining (6) and (7) to solve for \tilde{I}_{L} in terms of \tilde{I} gives

$$\tilde{I}_{\rm L} = \frac{R_2}{R_2 + j\omega L} \tilde{I}.$$
(18)

Combining (9) and (10) leads to

$$\begin{split} \tilde{I}_{\rm L} &= \left(\frac{R_2}{R_2 + j\omega L}\right) \left(\frac{R_2 + j\omega L}{R_1 R_2 + j\omega L(R_1 + R_2)}\right) \widetilde{V}_{\rm s} \\ &= \frac{R_2}{R_1 R_2 + + j\omega L(R_1 + R_2)} \widetilde{V}_{\rm s}. \end{split}$$

Using (1) for \tilde{V}_s and replacing R_1 , R_2 , L and ω with their numerical values, we have

$$\begin{split} \tilde{I}_{\rm L} &= \frac{30}{20 \times 30 + j4 \times 10^4 \times 0.4 \times 10^{-3} (20 + 30)} \ 25e^{-j45^\circ} \\ &= \frac{30 \times 25}{600 + j800} \ e^{-j45^\circ} \\ &= \frac{7.5}{6 + j8} \ e^{-j45^\circ} = \frac{7.5e^{-j45^\circ}}{10e^{j53.1^\circ}} = 0.75e^{-j98.1^\circ} \quad (A). \end{split}$$

Finally,

$$\begin{split} i_{\rm L}(t) &= \mathfrak{Re}[\tilde{I}_{\rm L}e^{j\omega t}] \\ &= 0.75\cos(4\times10^4t-98.1^\circ) \qquad (\mathrm{A}). \end{split}$$