CHAPTER 1 SOLUTIONS

Problem 1.1

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} 0.002 \, A, & t \ge 0 \\ 0 \, A, & t < 0 \end{cases} = \begin{cases} 2 \, mA, & t \ge 0 \\ 0 \, mA, & t < 0 \end{cases}$$

Problem 1.2

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} -e^{-0.2t} A, & t \ge 0\\ 0 A, & t < 0 \end{cases}$$

Problem 1.3

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} 0.024e^{-0.003t} A, & t \ge 0 \\ 0.024e^{-0.003t} A, & t < 0 \end{cases} = \begin{cases} 24e^{-0.003t} mA, & t \ge 0 \\ 0.0000, & t < 0 \end{cases}$$

Problem 1.4

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} \left(7e^{-0.003t} - 0.021te^{-0.003t}\right)A, & t \ge 0 \\ 0A, & t < 0 \end{cases} = \begin{cases} \left(7 - 0.021t\right)e^{-0.003t}A, & t \ge 0 \\ 0A, & t < 0 \end{cases}$$

Problem 1.5

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} 16\pi \times 10^{-3} \cos(2\pi \times 1000t) A, & t \ge 0 \\ 0 A, & t < 0 \end{cases} = \begin{cases} 50.2655 \cos(2\pi \times 1000t) mA, & t \ge 0 \\ 0 mA, & t < 0 \end{cases}$$

Problem 1.6

The charge q(t) entering an element can be written as

$$q(t) = \begin{cases} 0.5 \times 10^{-3} t, & 0 \le t < 2\\ -10^{-3} t + 3 \times 10^{-3}, & 2 \le t < 4\\ \frac{1}{3} \times 10^{-3} t - \frac{7}{3} \times 10^{-3}, & 4 \le t < 7\\ 0, & elsewhere \end{cases}$$

The current through the element can be written as

$$i(t) = \frac{dq(t)}{dt} = \begin{cases} 0.5 \times 10^{-3} A, & 0 \le t < 2 \\ -10^{-3} A, & 2 \le t < 4 \\ \frac{1}{3} \times 10^{-3} A, & 4 \le t < 7 \end{cases} = \begin{cases} 0.5 \, mA, & 0 \le t < 2 \\ -1 \, mA, & 2 \le t < 4 \\ \frac{1}{3} \, mA, & 4 \le t < 7 \\ 0 \, mA, & elsewhere \end{cases}$$

The current i(t) is shown in Figure S1.6.

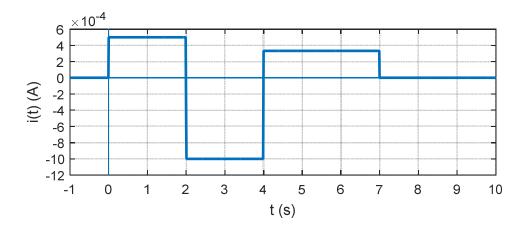


Figure S1.6

Problem 1.7

$$q(t) = \int_{0}^{5} 5 \times 10^{-3} dt = 5 \times 10^{-3} \times 5 = 25 \times 10^{-3} C$$

Problem 1.8

$$q(t) = \int_{0}^{5} 5 \times 10^{-6} e^{-0.2t} dt = 5 \times 10^{-6} \frac{e^{-0.2t} \Big|_{0}^{5}}{-0.2} = 5 \times 10^{-6} \times \frac{e^{-1} - 1}{-0.2} = 1.5803 \times 10^{-5} C = 15.803 \,\mu\text{C}$$

Problem 1.9

$$q(t) = \int_{0}^{5} 3(1 - e^{-0.5t}) dt = \int_{0}^{5} 3dt - 3\int_{0}^{5} e^{-0.5t} dt = 3t\Big|_{0}^{5} - 3\frac{e^{-0.5t}\Big|_{0}^{5}}{-0.5} = 3(5 - 0) + \frac{3(e^{-2.5} - 1)}{0.5} = 9.4925C$$

Problem 1.10

From integral table, we have $\int te^{at} dt = \frac{e^{at} (at-1)}{a^2}$. Thus,

$$q(t) = \int_{0}^{5} 2te^{-3t} dt = 2\frac{e^{-3t} \left(-3t-1\right)\Big|_{0}^{5}}{9} = \frac{2}{9} \left[e^{-15} \left(-15-1\right) - e^{-0} \left(-0-1\right)\right] \approx \frac{2}{9} = 0.2222C$$

Problem 1.11

From integral table, we have $\int \sin(at)dt = -\frac{1}{a}\cos(at)$. Thus,

$$q(t) = \int_{0}^{5} 7 \sin\left(\frac{\pi t}{5}\right) dt = -\frac{7}{\frac{\pi}{5}} \cos\left(\frac{\pi t}{5}\right) \Big|_{0}^{5} = -\frac{35}{\pi} \left[\cos(\pi) - 1\right] = \frac{70}{\pi} = 22.2817 C$$

Problem 1.12

 $P = VI = 5 V \times 2 A = 10 W$, absorbing power

Problem 1.13

 $P = VI = 2 V \times (-3 A) = -6 W$, delivering power

Problem 1.14

 $P = VI = (-5 \text{ V}) \times 4 \text{ mA} = -20 \text{ mW}$, delivering power

Problem 1.15

 $P = VI = (-12 \text{ V}) \times (-10 \text{ mA}) = 120 \text{ mW}$, absorbing power

Problem 1.16

$$p(t) = v(t) i(t) = (5 V) \times (2 mA) = 10 mW$$

Problem 1.17

 $p(t) = v(t) i(t) = [5 \sin(2\pi 1000t) V] \times [25 \cos(2\pi 1000t) mA]$ = $125 \sin(2\pi 1000t) \cos(2\pi 1000t) \text{ mW} = 62.5 \sin(2\pi 2000t) \text{ mW}$

Problem 1.18

$$p(t) = v(t) i(t) = 420 e^{-0.15t} u(t) mW$$

Problem 1.19

$$p(t) = v(t) i(t) = [3 cos(2\pi100t) V] \times [8 cos(2\pi100t) mA]$$

= 24 cos²(2\pi100t) mW = [12 + 12 cos(2\pi200t)] mW

Problem 1.20

$$p(t) = v(t) i(t) = [2 \sin(2\pi 100t) V] \times [6 \sin(2\pi 100t) mA]$$

= 12 sin²(2\pi 100t) mW = [6 - 6 cos(2\pi 200t)] mW

Problem 1.21

The circuit with one current source and one voltage source is shown in Figure S1.21.

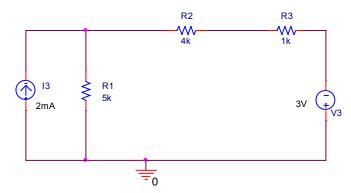


Figure S1.21 Circuit with one current source and one voltage source.

Problem 1.22

The circuit with one current source and one voltage source is shown in Figure S1.22.

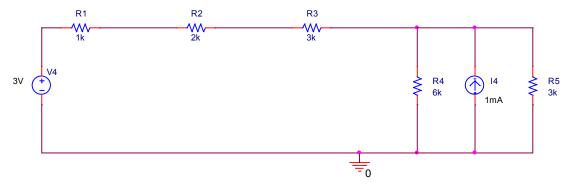


Figure S1.22 Circuit with one current source and one voltage source.

Problem 1.23

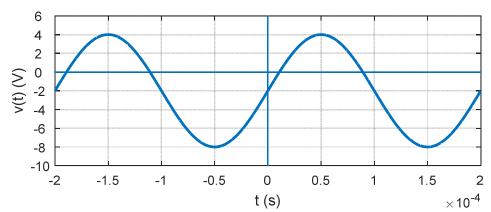


Figure S1.23

Problem 1.24

$$v(t) = -2 + 8\cos(2\pi 10^6 t - 135^\circ) V$$

Problem 1.25

The voltage across the VCVS from positive to negative is given by

$$0.5 \text{ v}_a = 0.5 \times 1.2908 \text{ V} = 0.6454 \text{ V}$$

The current through the VCCS in the direction indicated in Figure P1.25 (\downarrow) is

$$0.001 \text{ v}_a = 0.001 \text{ (A/V)} \times 1.2908 \text{ V} = 0.0012908 \text{ A} = 1.2908 \text{ mA}$$

Problem 1.26

The voltage across the CCVS from positive to negative is given by

$$500 i_a = 500 \times 0.8714 \text{ mA} = 0.4357 \text{ V}$$

The current through the CCCS in the direction indicated in Figure P1.26 (\leftarrow) is

$$0.6 i_a = 0.6 (A/V) \times 0.8714 \text{ mA} = 0.52284 \text{ mA}$$

Problem 1.27

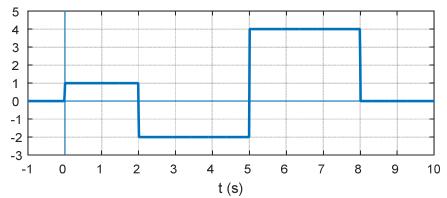


Figure S1.27

Problem 1.28

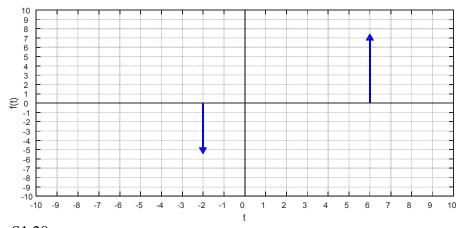


Figure S1.28

Problem 1.29

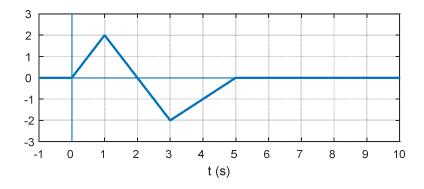


Figure S1.29

Problem 1.30

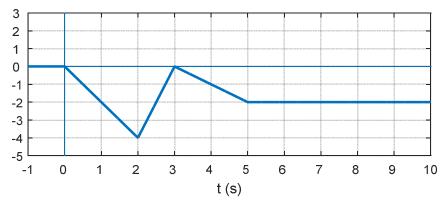


Figure S1.30

Problem 1.31

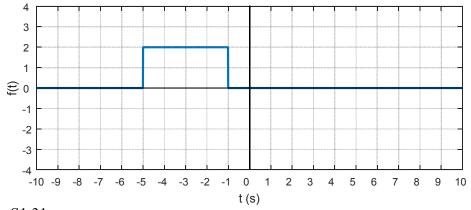


Figure S1.31

Problem 1.32

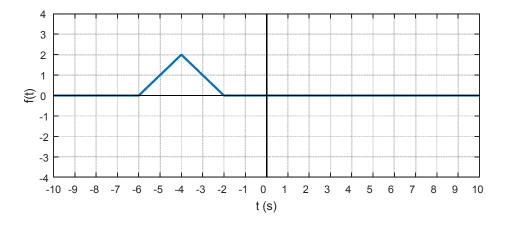


Figure S1.32

CHAPTER 2 SOLUTIONS

Problem 2.1

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V}{R_1} = \frac{6V}{3k\Omega} = \frac{6V}{3000\Omega} = 0.002A = 2mA$$

Notice that 1 V/1 $k\Omega = 1$ mA.

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V}{R_2} = \frac{6V}{6k\Omega} = \frac{6V}{6000\Omega} = 0.001A = 1mA$$

Problem 2.2

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.4 V}{800 \Omega} = 0.003 A = 3 mA$$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_2}{R_2} = \frac{3.6 V}{2 k\Omega} = 1.8 \, mA$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_2}{R_3} = \frac{3.6 \, V}{3 \, k \Omega} = 1.2 \, mA$$

Problem 2.3

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.4V}{4k\Omega} = 0.6 \, mA = 600 \, \mu A$$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_1}{R_2} = \frac{2.4 V}{6 k\Omega} = 0.4 \, mA = 400 \, \mu A$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_2}{R_2} = \frac{1.2V}{1.8k\Omega} = \frac{2}{3}mA = 0.6667 \, mA = 666.5557 \, \mu A$$

From Ohm's law, the current I₄ through R₄ is given by

$$I_4 = \frac{V_2}{R_4} = \frac{1.2 V}{6 k \Omega} = 0.2 \, mA = 200 \, \mu A$$

From Ohm's law, the current I₅ through R₅ is given by

$$I_5 = \frac{V_2}{R_s} = \frac{1.2V}{9k\Omega} = \frac{2}{15} mA = 0.1333 mA = 133.3333 \mu A$$

Problem 2.4

From Ohm's law, the voltage across R₂ is given by

$$V_o = R_2 I_2 = 6 \text{ k}\Omega \times 1.2 \text{ mA} = 6000 \times 0.0012 = 7.2 \text{ V}$$

Notice that $1 \text{ k}\Omega \times 1 \text{ mA} = 1 \text{ V}$.

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.8 V}{1.4 k\Omega} = 2 mA$$

From Ohm's law, the voltage across R₂ is given by

$$V_o = R_2 I_2 = 6 \text{ k}\Omega \times 1.2 \text{ mA} = 6000 \times 0.0012 = 7.2 \text{ V}$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{7.2 V}{9 k\Omega} = 0.8 \, mA = 800 \, \mu A$$

Problem 2.5

From Ohm's law, the voltage across R₄ is given by

$$V_0 = R_4I_4 = 18 \text{ k}\Omega \times 0.2 \text{ mA} = 18000 \times 0.0002 = 3.6 \text{ V}$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{3.6 V}{6 k\Omega} = 0.6 \, mA = 600 \, \mu A$$

Problem 2.6

From Ohm's law, the voltage across R₄ is given by

$$V_0 = R_4I_4 = 8 \text{ k}\Omega \times 0.4 \text{ mA} = 8000 \times 0.0004 = 3.2 \text{ V}$$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_o}{R_2} = \frac{3.2V}{3k\Omega} = \frac{16}{15}mA = 1.06667 \, mA$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{3.2 V}{6 k\Omega} = \frac{16}{30} mA = 0.53333 mA = 533.3333 \mu A$$

Problem 2.7

From Ohm's law, the voltage across R₃ is given by

$$V_o = R_3 I_3 = 42 \text{ k}\Omega \times (1/12) \text{ mA} = 42/12 \text{ V} = 3.5 \text{ V}$$

From Ohm's law, the resistance value R₂ is given by

$$R_2 = \frac{V_o}{I_2} = \frac{3.5V}{\frac{7}{60}mA} = 30 \, k\Omega$$

 $1 \text{ V/1 mA} = 1 \text{ k}\Omega$

Problem 2.8

The power on R_1 is

$$P_{R_1} = I^2 R_1 = (2 \times 10^{-3})^2 \times 2000 = 4 \times 10^{-6} \times 2 \times 10^3 = 8 \times 10^{-3} W = 8 \, \text{mW} \text{ (absorbed)}$$

The power on R_2 is

$$P_{R_2} = I^2 R_1 = (2 \times 10^{-3})^2 \times 3000 = 4 \times 10^{-6} \times 3 \times 10^3 = 12 \times 10^{-3} W = 12 \, mW \text{ (absorbed)}$$

The power on V_s is

$$P_{V_s} = -IV_s = -2 \times 10^{-3} \times 10 = -20 \times 10^{-3} W = -20 \, mW$$
 (released)

Total power absorbed = 20 mW = total power released

Problem 2.9

The power on R_1 is

$$P_{R_1} = \frac{V_o^2}{R_1} = \frac{4.8^2}{8000} = 2.88 \times 10^{-3} W = 2.88 \, mW \text{ (absorbed)}$$

The power on R_2 is

$$P_{R_2} = \frac{V_o^2}{R_2} = \frac{4.8^2}{12000} = 1.92 \times 10^{-3} W = 1.92 \, mW \text{ (absorbed)}$$

The power on V_s is

$$P_{I_s} = -I_s V_o = -1 \times 10^{-3} \times 4.8 = -4.8 \times 10^{-3} W = -4.8 \, \text{mW}$$
 (released)

Problem 2.10

From Ohm's law, current I₁ is given by

$$I_1 = \frac{20V - 15V}{R_1} = \frac{5V}{0.5k\Omega} = 10 \, mA$$

From Ohm's law, current I₂ is given by

$$I_2 = \frac{20V - 10V}{R_2} = \frac{10V}{2k\Omega} = 5 \, mA$$

From Ohm's law, current I₃ is given by

$$I_3 = \frac{10V - 0V}{R_2} = \frac{10V}{1k\Omega} = 10 \, mA$$

From Ohm's law, current I₄ is given by

$$I_4 = \frac{10V - 15V}{R_A} = \frac{-5V}{1k\Omega} = -5 \, mA$$

Problem 2.11

From Ohm's law, current i is given by

$$i = \frac{10V - 8V}{R_3} = \frac{2V}{2k\Omega} = 1mA$$

From Ohm's law, current I₁ is given by

$$I_1 = \frac{12V - 10V}{R_1} = \frac{2V}{1k\Omega} = 2mA$$

From Ohm's law, current I₂ is given by

$$I_2 = \frac{10V - 5V}{R_2} = \frac{5V}{5k\Omega} = 1mA$$

From Ohm's law, current I₃ is given by

$$I_3 = \frac{12V - 8V}{R_4} = \frac{4V}{2k\Omega} = 2mA$$

From Ohm's law, current I₄ is given by

$$I_4 = \frac{8V - 5V}{R_5} = \frac{3V}{3k\Omega} = 1mA$$

From Ohm's law, current I₅ is given by

$$I_5 = \frac{8V}{R_6} = \frac{8V}{4k\Omega} = 2\,mA$$

Problem 2.12

Application of Ohm's law results in

$$I_1 = \frac{34V - 24V}{R_1} = \frac{10V}{2k\Omega} = 5 \, mA$$

$$I_2 = \frac{24V - 10V}{R_2} = \frac{14V}{2k\Omega} = 7 \, mA$$

$$I_3 = \frac{24V - 28V}{R_3} = \frac{-4V}{2k\Omega} = -2mA$$

$$I_4 = \frac{34V - 28V}{R_4} = \frac{6V}{0.6k\Omega} = 10 \, mA$$

$$I_5 = \frac{28V - 10V}{R_5} = \frac{18V}{6k\Omega} = 3 \, mA$$

$$I_6 = \frac{28V}{R_6} = \frac{28V}{5.6k\Omega} = 5 \, mA$$

$$I_7 = \frac{10V}{R_7} = \frac{10V}{1k\Omega} = 10 \, mA$$

Problem 2.13

The total voltage from the four voltage sources is

$$V = V_{s1} + V_{s2} + V_{s3} + V_{s4} = 9 V + 2 V - 3 V + 2 V = 10V$$

The total resistance from the five resistors is

$$R = R_1 + R_2 + R_3 + R_4 + R_5 = 3 k\Omega + 5 k\Omega + 4 k\Omega + 2 k\Omega + 4 k\Omega = 18 k\Omega$$

The current through the mesh is

$$I = \frac{V}{R} = \frac{10V}{18000\Omega} = \frac{5}{9} mA = 0.5556 mA$$

From Ohm's law, the voltages across the five resistors are given respectively

$$V_1 = R_1 I = 3 \times 5/9 \text{ V} = 15/9 \text{ V} = 5/3 \text{ V} = 1.6667 \text{ V}$$

$$V_2 = R_2 I = 5 \times 5/9 \text{ V} = 25/9 \text{ V} = 2.7778 \text{ V}$$

$$V_3 = R_3I = 4 \times 5/9 \text{ V} = 20/9 \text{ V} = 2.2222 \text{ V}$$

$$V_4 = R_4 I = 2 \times 5/9 V = 10/9 V = 1.1111 V$$

$$V_5 = R_5 I = 4 \times 5/9 \text{ V} = 20/9 \text{ V} = 2.2222 \text{ V}$$

Problem 2.14

Radius is
$$r = d/2 = 0.2025 \text{ mm} = 0.2025 \times 10^{-3} \text{ m}$$

 $A = \pi r^2 = 1.28825 \times 10^{-7} \text{ m}^2$

(a)
$$R = \frac{\ell}{\sigma A} = \frac{20}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 2.7285 \Omega$$

$$R = \frac{\ell}{\sigma A} = \frac{200}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 27.2846 \Omega$$

$$R = \frac{\ell}{\sigma A} = \frac{2000}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 272.8461\Omega$$

(d)

$$R = \frac{\ell}{\sigma A} = \frac{20000}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 2728.4613\Omega$$

Problem 2.15

From Ohm's law, the voltage across R₂ is given by

$$V_2 = I_2 R_2 = 3 \text{ mA} \times 2 \text{ k}\Omega = 6 \text{ V}$$

From Ohm's law, the current through R₃ is given by

$$I_3 = \frac{V_2}{R_3} = \frac{6V}{3k\Omega} = 2 \, mA$$

According to KCL, current I_1 is the sum of I_2 and I_3 . Thus, we have

$$I_1 = I_2 + I_3 = 3 \text{ mA} + 2 \text{ mA} = 5 \text{ mA}$$

The voltage across R_1 is given by

$$V_1 = R_1 I_1 = 1 \text{ k}\Omega \times 5 \text{ mA} = 5 \text{ V}$$

Problem 2.16

From Ohm's law, the currents I₂, I₃, and I₄ are given respectively by