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D. Liberzon, Calculus of Variations and Optimal Control Theory
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Chapter 1

1.1

The answer is no.

Counterexample: on the (x1, x2)-plane, consider the function f(x) = x1(1 + x1) + x2(1 + x2).
Let D be the union of the closed first quadrant {(x1, x2) : x1 ≥ 0, x2 ≥ 0} and some curve (e.g,
a circular arc) directed from the origin into the third quadrant. The origin x∗ = (0, 0) is clearly
not a local minimum, because f(x∗) = 0 but f is negative for small negative values of x1 and x2.
However, it is easy to check that the listed conditions are satisfied because the feasible directions are

{(d1, d2) : d1 ≥ 0, d2 ≥ 0} and we have ∇f(x∗) =
(

1
1

)
and ∇2f(x∗) =

(
2 0
0 2

)
.
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2 DANIEL LIBERZON

1.2

Example: on the (x1, x2)-plane, let h1(x) = x2
1 − x2 and h2(x) = x2. Then D consists of the

unique point x∗ = (0, 0) which is automatically a minimum of any function f over D. The gradients

are ∇h1(x
∗) =

(
0
−1

)
and ∇h2(x

∗) =
(

0
1

)
and they are linearly dependent, hence x∗ is not a regular

point. It remains to choose any function f whose gradient at x∗ is not proportional to
(

0
1

)
—e.g.,

f(x) = x1 + x2 works.

See also Example 3.1.1 on pp. 279–280 in [Ber99].

Another example, a little more complicated but also more interesting, is to consider, on the
(x1, x2)-plane, the functions h1(x) = x2 and h2(x) = x2 − g(x1) where

g(x1) =

{
x2

1 if x1 > 0

0 if x1 ≤ 0

Then D = {x : x1 ≤ 0, x2 = 0}. The point x∗ = (0, 0) is not a regular point, and we can again easily
choose f for which the necessary condition fails. The interesting thing about this example is that
the tangent space to D at x∗ is not even a vector space: it is a ray pointing to the left.
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CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 3

1.3

Let’s do it for 2 constraints, then it will be obvious how to handle an arbitrary number of
constraints. For d1, d2, d3 ∈ R

n, consider the following map from R
3 to itself:

F :



α1

α2

α3


 7→



f(x∗ + α1d1 + α2d2 + α3d3)
h1(x

∗ + α1d1 + α2d2 + α3d3)
h2(x

∗ + α1d1 + α2d2 + α3d3)


 .

The Jacobian of F at (0, 0, 0) is




∇f(x∗) · d1 ∇f(x∗) · d2 ∇f(x∗) · d3

∇h1(x
∗) · d1 ∇h1(x

∗) · d2 ∇h1(x
∗) · d3

∇h2(x
∗) · d1 ∇h2(x

∗) · d2 ∇h2(x
∗) · d3


 .

Arguing exactly as in the notes, we know that this Jacobian must be singular for any choice of
d1, d2, d3. Since x∗ is a regular point and so ∇h1(x

∗) and ∇h2(x
∗) are linearly independent, we can

choose d1 and d2 such that the lower left 2 × 2 submatrix

(
∇h1(x

∗) · d1 ∇h1(x
∗) · d2

∇h2(x
∗) · d1 ∇h2(x

∗) · d2

)

is nonsingular (for example, using the Gram-Schmidt orthogonalization process: choose d1 aligned
with ∇h1(x

∗) and d2 in the plane spanned by ∇h1(x
∗) and ∇h2(x

∗) to be orthogonal to d1). Since the
Jacobian is singular, its top row must be a linear combination of the bottom two, linearly independent
by construction, rows:

∇f(x∗) · di = λ∗1∇h1(x
∗) · di + λ∗2∇h2(x

∗) · di, i = 1, 2, 3.

Note that the coefficients λ∗1 and λ∗2 are uniquely determined by our choice of d1 and d2, and do not
depend on the choice of d3. In other words, we have

∇f(x∗) · d3 = λ∗1∇h1(x
∗) · d3 + λ∗2∇h2(x

∗) · d3 ∀ d3 ∈ R
3

from which it follows that ∇f(x∗) = λ∗1∇h1(x
∗) + λ∗2∇h2(x

∗).
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1.4

This is Problem 3.1.3 in [Ber99], page 292 (an easier version appears earlier as Problem 1.1.8, page
19). The function being minimized is f(x) = |x− y|+ |x− z|. Writing |x− y| as ((x− y)T (x− y))1/2,
and similarly for |x− z|, it is easy to compute that

∇f(x∗) =
x∗ − y

|x∗ − y| +
x∗ − z

|x∗ − z| .

By the first-order necessary condition for constrained optimality, this vector must be aligned with
the normal vector ∇h(x∗). Geometrically, the fact that the two unit vectors appearing in the above
formula sum up to a constant multiple of ∇h(x∗) means that the angles they make with it are equal.
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CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 5

1.5, 1.6

These follow easily from the definitions of the first and second variation by writing down the
Taylor expansion of g(y(x) + αη(x)) around α = 0 inside the integral:

J(y + αη) =

∫ 1

0
g(y(x) + αη(x))dx =

∫ 1

0

(
g(y(x)) + g′(y(x))αη(x) +

1

2
g′′(y(x))α2η2(x) + o(α)

)
dx.

The second variation is

δ2J
∣∣
y
(η) =

1

2

∫ 1

0
g′′(y(x))η2(x)dx.

This example also appears in Section 5.5 of [AF66].
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1.7

Let V = C0([0, 1],R) with the 0-norm ‖ · ‖0, let A = {y ∈ V : y(0) = y(1) = 0, ‖y‖0 ≤ 1}, and let
J(y) =

∫ 1
0 y(x)dx. It is easy to see that A is bounded, that J is continuous, and that J does not have

a global minimum over A because the infimum value of J over A is −1 but it’s not achieved for any
continuous curve. What’s not obvious is that A is closed, because to show this we must show that if
a sequence of continuous functions {yk} converges to some function y in 0-norm then the limit y is
also continuous. The proof of this goes as follows. To show continuity of y, we must show that for
every ε > 0 there exists a δ > 0 such that when |x1 − x2| < δ we have |y(x1) − y(x2)| < ε. Let k
be large enough so that ‖yk − y‖0 ≤ ε/3, and let δ be small enough so that |yk(x1) − yk(x2)| < ε/3
whenever |x1 − x2| < δ (using continuity of yk). This gives

|y(x1) − y(x2)| ≤ |y(x1) − yk(x1)| + |yk(x1) − yk(x2)| + |yk(x2) − y(x2)| < ε

and we are done. See also [Rud76, p. 150, Theorem 7.12] or [AF66, p. 103, Theorem 3-11] or [Kha02,
p. 655] or [Sut75, p. 120, Theorem 8.4.1].
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