Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

برای دسترسی به نسخه کامل حل المسائل، روی لینک زیر کلیک کنید و یا به وبسایت "ایبوک یاب" مراجعه بفرمایید

https://ebookyab.ir/solution-manual-biomechanics-oomens-brekelmans/

Contents

1	Answers to the exercises of chapter 1	page 1
2	Answers to the exercises of chapter 2	4
3	Answers to the exercises of chapter 3	5
4	Answers to the exercises of chapter 4	7
5	Answers to the exercises of chapter 5	9
6	Answers to the exercises of chapter 6	15
7	Answers to the exercises of chapter 7	18
8	Answers to the exercises of chapter 8	20
9	Answers to the exercises of chapter 9	22
10	Answers to the exercises of chapter 10	23
11	Answers to the exercises of chapter 11	25
12	Answers to the exercises of chapter 12	26
13	Answers to the exercises of chapter 13	27
14	Answers to the exercises of chapter 14	29
15	Answers to the exercises of chapter 15	38
16	Answers to the exercises of chapter 16	41
17	Answers to the exercises of chapter 17	48
18	Answers to the exercises of chapter 18	51

1

Answers to the exercises of chapter 1

Exercises

1.1 (a)
$$|\vec{e}_i| = 1$$

(b)
$$\vec{e}_i \cdot \vec{e}_j = 0$$
 if $i \neq j$
 $\vec{e}_i \cdot \vec{e}_j = 1$ if $i = j$

- (c) $\vec{e}_x \cdot (\vec{e}_y \times \vec{e}_z) = 1$
- (d) Definition of a right-handed orthonormal basis.

$$1.2 \qquad \vec{F}_z = \vec{e}_x - 3\vec{e}_y - 5\vec{e}_z$$

1.3 (a)

$$\underline{a} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} 0 \\ -3 \\ 4 \end{bmatrix} \qquad \underline{c} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

(b)

$$\begin{array}{rcl} \vec{a} + \vec{b} & = & -3\vec{e_y} + 8\vec{e_z} \\ 3(\vec{a} + \vec{b} + \vec{c}) & = & 3\vec{e_x} - 9\vec{e_y} + 30\vec{e_z} \end{array}$$

(c)

$$\begin{array}{rcl} \vec{a} \cdot \vec{b} & = & \vec{b} \cdot \vec{a} & = 16 \\ \vec{a} \times \vec{b} & = & 12 \vec{e}_x \\ \vec{b} \times \vec{a} & = & -12 \vec{e}_x \end{array}$$

(d)

$$|\vec{a}| = 4$$
$$|\vec{b}| = 5$$

2 Answers to the exercises of chapter 1

$$|\vec{a} \times \vec{b}| = 12$$
$$|\vec{b} \times \vec{a}| = 12$$

- (e) $\phi = \arccos(\frac{4}{5})$
- (f) \vec{e}_x or $-\vec{e}_x$

(g)

$$\vec{a} \times \vec{b} \cdot \vec{c} = 12$$

 $\vec{a} \times \vec{c} \cdot \vec{b} = -12$

(h)

$$\vec{a}\vec{b} \cdot \vec{c} = 32\vec{e}_z$$

$$(\vec{a}\vec{b})^T \cdot \vec{c} = -24\vec{e}_y + 32\vec{e}_z$$

$$\vec{b}\vec{a} \cdot \vec{c} = -24\vec{e}_y + 32\vec{e}_z$$

- (i) The vectors are independent, but not perpendicular. So the vectors \vec{a} , \vec{b} and \vec{c} form a suitable but non-orthogonal basis.
- 1.4

$$\vec{d} + \vec{e} = 3\vec{a} + 2\vec{b} - 3\vec{c}$$
$$\vec{d} \cdot \vec{e} = 24$$

1.5 (a)
$$\vec{a}_z = -25\vec{e}_z$$

(b)
$$|\vec{a}_x| = |\vec{a}_y| = 5$$
; $|\vec{a}_z| = 25$

(c)
$$\vec{a}_x \times \vec{a}_y \cdot \vec{a}_z = 625$$

(d)
$$\phi = \frac{\pi}{2}$$

(e)

$$\begin{array}{rcl} \vec{\alpha}_x & = & 4/5 \; \vec{e}_x + 3/5 \; \vec{e}_y \\ \vec{\alpha}_y & = & 3/5 \; \vec{e}_x - 4/5 \; \vec{e}_y \\ \vec{\alpha}_z & = & -\vec{e}_z \end{array}$$

So the basis $\{\vec{\alpha}_x, \vec{\alpha}_y, \vec{\alpha}_z\}$ is right-handed and orthogonal.

(f)
$$\vec{b} = 2\vec{e}_x + 3\vec{e}_y + \vec{e}_z$$
 so with respect to $\{\vec{e}_x, \vec{e}_y, \vec{e}_z\}, \quad b = [2\ 3\ 1]^T$

Enhttps://ebookyabgir/solution-manual-biomechanics-comens-brekelmans/itaa)

$$Exercises \qquad 3$$

$$\vec{b} = \frac{17}{25} \vec{a}_x - \frac{6}{25} \vec{a}_y - \frac{1}{25} \vec{a}_z$$
so with respect to $\{\vec{a}_x, \vec{a}_y, \vec{a}_z\}, \quad b = \frac{1}{25} [17 - 6 - 1]^T$

$$\vec{b} = \frac{17}{5} \vec{\alpha}_x - \frac{6}{5} \vec{\alpha}_y - \vec{\alpha}_z$$
so with respect to $\{\vec{\alpha}_x, \vec{\alpha}_y, \vec{\alpha}_z\}, \quad b = \frac{1}{5} [17 - 6 - 1]^T$

- 1.6 The triple product is zero. This means that the vectors are not independent. The vector \vec{a} is lying in the plane, that is defined by the vectors \vec{b} and \vec{c} . Relation: $2\vec{a} - \vec{b} - \vec{c} = \vec{0}$.
- Both operators are associated with a rotation. 1.7
- 1.8 (a) $a_x \vec{e}_x$
 - (b) $a_x \vec{e}_x + a_y \vec{e}_y$
 - (c) no effect
 - (d) $a_y \vec{e}_x a_x \vec{e}_y + a_z \vec{e}_z$ (e) $a_x \vec{e}_x a_y \vec{e}_y + a_z \vec{e}_z$

2

Answers to the exercises of chapter 2

Exercises

2.1 (a)
$$\vec{F} = \frac{5}{2}\sqrt{2} \vec{\epsilon}_1 + \frac{1}{2}\sqrt{2} \vec{\epsilon}_2 - 4 \vec{\epsilon}_3$$

(b) $|\vec{F}| = \sqrt{29}$

- 2.3 (a) 0
 - (b) $2F\ell$ positive if counterclockwise
 - (c) $F\ell$ positive if counterclockwise
 - (d) $2F\ell$ positive if counterclockwise
 - (e) $2F\ell$ positive if counterclockwise

$$2.4 f = \frac{R}{r} F$$

$$2.5 \qquad \vec{M}_P = 6\vec{e}_x - 9\vec{e}_y$$

$$2.6 \qquad \vec{M}_S = 12 \vec{e}_z \quad ; \quad \vec{M}_E = 3 \vec{e}_z$$

2.7 (a)
$$\vec{M}_S = 3\vec{e}_u + 3\vec{e}_z$$

$$\begin{array}{l} {\rm (a)} \ \, \vec{M}_S = 3\vec{e_y} + 3\vec{e_z} \\ {\rm (b)} \ \, \vec{M}_O = -2\vec{e_x} + 22\vec{e_y} + 13\vec{e_z} \end{array}$$