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1.1  Use calculus to verify that Eq. (1.9) is a solution of Eq. (1.8) for the initial condition v(0) = 0. 
==========================================
You are given the following differential equation with the initial condition, v(0) = 0,


Multiply both sides by m/cd



Define 


Integrate by separation of variables,


A table of integrals can be consulted to find that


Therefore, the integration yields


If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and the solution is


This result can then be rearranged to yield





1.2  Use calculus to solve Eq. (1.21) for the case where the initial velocity is (a) positive and (b) negative. (c) Based on your results for (a) and (b), perform the same computation as in Example 1.1 but with an initial velocity of −40 m/s. Compute values of the velocity from t = 0 to 12 s at intervals of 2 s. Note that for this case, the zero velocity occurs at t = 3.470239 s. 
==========================================
[bookmark: OLE_LINK3][bookmark: OLE_LINK4](a) For the case where the initial velocity is positive (downward), Eq. (1.21) is


Multiply both sides by m/cd



Define 


Integrate by separation of variables,


A table of integrals can be consulted to find that


Therefore, the integration yields


If v = +v0 at t = 0, then 


Substitute back into the solution


Multiply both sides by a, taking the hyperbolic tangent of each side and substituting a gives,

								(1)
(b) For the case where the initial velocity is negative (upward), Eq. (1.21) is



Multiplying both sides of Eq. (1.8) by m/cd and defining  yields


Integrate by separation of variables,


A table of integrals can be consulted to find that


Therefore, the integration yields


The initial condition, v(0) =  v0 gives


Substituting this result back into the solution yields


Multiplying both sides by a and taking the tangent gives


or substituting the values for a and simplifying gives

								(2)
(c) We use Eq. (2) until the velocity reaches zero. Inspection of Eq. (2) indicates that this occurs when the argument of the tangent is zero. That is, when


The time of zero velocity can then be computed as


Thereafter, the velocities can then be computed with Eq. (1.9),

									(3)
Here are the results for the parameters from Example 1.2, with an initial velocity of –40 m/s.


Therefore, for t = 2, we can use Eq. (2) to compute


For t = 4, the jumper is now heading downward and Eq. (3) applies


The same equation is then used to compute the remaining values. The results for the entire calculation are summarized in the following table and plot:
	t (s)
	v (m/s)

	0
	-40

	2
	-14.8093

	3.470239
	0

	4
	5.17952

	6
	23.07118

	8
	35.98203

	10
	43.69242

	12
	47.78758
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1.3 The following information is available for a bank account: 
	Date
	Deposits
	Withdrawals
	Balance

	5/1
	
	
	1512.33

	
	220.13
	327.26
	

	6/1
	
	
	

	
	216.80
	378.61
	

	7/1
	
	
	

	
	450.25
	106.80
	

	8/1
	
	
	

	
	127.31
	350.61
	

	9/1
	
	
	


Note that the money earns interest which is computed as 



where i = the interest rate expressed as a fraction per month, and  the initial balance at the beginning of the month. 
(a) Use the conservation of cash to compute the balance on 6∕1, 7∕1, 8∕1, and 9∕1 if the interest rate is 1% per month (i = 0.01∕month). Show each step in the computation. 
(b) Write a differential equation for the cash balance in the form 


where t = time (months), D(t) = deposits as a function of time ($/month), W(t) = withdrawals as a function of time ($/month). For this case, assume that interest is compounded continuously; that is, interest = iB. 
(c) Use Euler’s method with a time step of 0.5 month to simulate the balance. Assume that the deposits and withdrawals are applied uniformly over the month. 
(d) Develop a plot of balance versus time for (a) and (c).
========================================== 
(a) This is a transient computation. For the period ending June 1:
Balance = Previous Balance + Deposits – Withdrawals + Interest
Balance = 1512.33 + 220.13 – 327.26 + 0.01(1512.33) = 1420.32
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below: 
	Date
	Deposit
	Withdrawal
	Interest
	Balance

	1-May
	
	
	
	$1,512.33 

	
	$220.13 
	$327.26 
	$15.12 
	

	1-Jun
	
	
	
	$1,420.32 

	
	$216.80 
	$378.61 
	$14.20 
	

	1-Jul
	
	
	
	$1,272.72 

	
	$450.25 
	$106.80 
	$12.73 
	

	1-Aug
	
	
	
	$1,628.89 

	
	$127.31 
	$350.61 
	$16.29 
	

	1-Sep
	
	
	
	$1,421.88 



(b)  
(c) for t = 0 to 0.5:

 

 
for t = 0.5 to 1:

 

 
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below: 
	Date
	Deposit
	Withdrawal
	Interest
	dB/dt
	Balance

	1-May
	$220.13 
	$327.26 
	$15.12 
	-$92.01
	$1,512.33 

	16-May
	$220.13 
	$327.26 
	$14.66 
	-$92.47
	$1,466.33 

	1-Jun
	$216.80 
	$378.61 
	$14.20 
	-$147.61
	$1,420.09 

	16-Jun
	$216.80 
	$378.61 
	$13.46 
	-$148.35
	$1,346.29 

	1-Jul
	$450.25 
	$106.80 
	$12.72 
	$356.17
	$1,272.12 

	16-Jul
	$450.25 
	$106.80 
	$14.50 
	$357.95
	$1,450.20 

	1-Aug
	$127.31 
	$350.61 
	$16.29 
	-$207.01
	$1,629.18 

	16-Aug
	$127.31 
	$350.61 
	$15.26 
	-$208.04
	$1,525.67 

	1-Sep
	
	
	
	
	$1,421.65 


(d) As in the plot below, the results of the two approaches are very close.
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1.4 Repeat Example 1.2. Compute the velocity to t = 12 s, with a step size of (a) 1 and (b) 0.5 s. Can you make any statement regarding the errors of the calculation based on the results?
==========================================
[bookmark: OLE_LINK1]At t = 12 s, the analytical solution is 50.6175 (Example 1.1). The numerical results are:
	step
	v(12)
	absolute relative error

	2
	51.6008
	1.94%

	1
	51.2008
	1.15%

	0.5
	50.9259
	0.61%


where the relative error is calculated with


The error versus step size can be plotted as
[image: ]
Thus, halving the step size approximately halves the error.


1.5 Rather than the nonlinear relationship of Eq. (1.7), you might choose to model the upward force on the bungee jumper as a linear relationship: 


where c′ = a first-order drag coefficient (kg/s). 
(a) Using calculus, obtain the closed-form solution for the case where the jumper is initially at rest (v = 0 at t = 0). 
(b) Repeat the numerical calculation in Example 1.2 with the same initial condition and parameter values. Use a value of 11.5 kg/s for c′. 
==========================================
(a) The force balance is

 
Applying Laplace transforms,

 
Solve for 

 									(1)
The first term to the right of the equal sign can be evaluated by a partial fraction expansion,

 									(2)

 
Equating like terms in the numerators yields

 
Therefore,

 
These results can be substituted into Eq. (2), and the result can be substituted back into Eq. (1) to give

 

Applying inverse Laplace transforms yields
	

 
or

 
where the first term to the right of the equal sign is the general solution and the second is the particular solution. For our case, v(0) = 0, so the final solution is


 

Alternative solution: Another way to obtain solutions is to use separation of variables,

 
The integrals can be evaluated as

 
where C = a constant of integration, which can be evaluated by applying the initial condition

 
which can be substituted back into the solution

 
This result can be rearranged algebraically to solve for v,


where the first term to the right of the equal sign is the general solution and the second is the particular solution. For our case, v(0) = 0, so the final solution is


 
(b) The numerical solution can be implemented as

 

 
The computation can be continued, and the results summarized and plotted as:
	t
	v
	dv/dt

	0
	0
	9.81

	2
	19.6200
	6.4968

	4
	32.6136
	4.3026

	6
	41.2187
	2.8494

	8
	46.9176
	1.8871

	10
	50.6917
	1.2497

	12
	53.1911
	0.8276

	
	58.0923
	


[image: ]
Note that the analytical solution is included on the plot for comparison.


1.6 For the free-falling bungee jumper with linear drag (Prob. 1.5), assume a first jumper is 70 kg and has a drag coefficient of 12 kg/s. If a second jumper has a drag coefficient of 15 kg/s and a mass of 80 kg, how long will it take her to reach the same velocity jumper 1 reached in 9 s? 
==========================================



jumper #1: 

jumper #2: 








1.7 For the second-order drag model (Eq. 1.8), compute the velocity of a free-falling parachutist using Euler’s method for the case where m = 80 kg and cd = 0.25 kg/m. Perform the calculation from t = 0 to 20 s with a step size of 1 s. Use an initial condition that the parachutist has an upward velocity of 20 m/s at t = 0. At t = 10 s, assume that the chute is instantaneously deployed so that the drag coefficient jumps to 1.5 kg/m. 
==========================================
Note that the differential equation should be formulated as


This ensures that the sign of the drag is correct when the parachutist has a negative upward velocity. Before the chute opens (t < 10), Euler’s method can be implemented as


After the chute opens (t  10), the drag coefficient is changed and the implementation becomes


Here is a summary of the results along with a plot:
	Chute closed
	
	Chute opened
	

	t
	v
	dv/dt
	t
	v
	dv/dt

	0
	-20.0000
	11.0600
	10
	51.5260
	-39.9698

	1
	-8.9400
	10.0598
	11
	11.5561
	7.3060

	2
	1.1198
	9.8061
	12
	18.8622
	3.1391

	3
	10.9258
	9.4370
	13
	22.0013
	0.7340

	4
	20.3628
	8.5142
	14
	22.7352
	0.1183

	5
	28.8770
	7.2041
	15
	22.8535
	0.0172

	6
	36.0812
	5.7417
	16
	22.8707
	0.0025

	7
	41.8229
	4.3439
	17
	22.8732
	0.0003

	8
	46.1668
	3.1495
	18
	22.8735
	0.0000

	9
	49.3162
	2.2097
	19
	22.8736
	0.0000

	
	
	
	20
	22.8736
	0.0000
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1.8 The amount of a uniformly distributed radioactive contaminant contained in a closed reactor is measured by its concentration c (becquerel/liter or Bq/L). The contaminant decreases at a decay rate proportional to its concentration; that is 
Decay rate = −kc 
where k is a constant with units of day−1. Therefore, according to Eq. (1.14), a mass balance for the reactor can be written as 


(a) Use Euler’s method to solve this equation from t = 0 to 1 d with k = 0.175 d–1. Employ a step size of Δt = 0.1 d. The concentration at t = 0 is 100 Bq/L. 
(b) Plot the solution on a semi-log graph (i.e., ln c versus t) and determine the slope. Interpret your results. 
==========================================

 

 
The process can be continued to yield
	t
	c
	dc/dt

	0
	100.0000
	-17.5000

	0.1
	98.2500
	-17.1938

	0.2
	96.5306
	-16.8929

	0.3
	94.8413
	-16.5972

	0.4
	93.1816
	-16.3068

	0.5
	91.5509
	-16.0214

	0.6
	89.9488
	-15.7410

	0.7
	88.3747
	-15.4656

	0.8
	86.8281
	-15.1949

	0.9
	85.3086
	-14.9290

	1
	83.8157
	-14.6678


(b) The results when plotted on a semi-log plot yields a straight line
[image: ]
The slope of this line can be estimated as

 
Thus, the slope is approximately equal to the negative of the decay rate. If we had used a smaller step size, the result would be more exact.

1.9 A storage tank (Fig. P1.9) contains a liquid at depth y where y = 0 when the tank is half full. Liquid is withdrawn at a constant flow rate Q to meet demands. The contents are resupplied at a sinusoidal rate 3Q sin2(t). Equation (1.14) can be written for this system as 


or, since the surface area A is constant 


Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step size of 0.5 d. The parameter values are A = 1250 m2 and Q = 450 m3/d. Assume that the initial condition is y = 0. 
[image: ]
==========================================
The first two steps yield




The process can be continued to give the following table and plot:
	t
	y
	dy/dt
	t
	y
	dy/dt

	0
	0.00000
	-0.36000
	5.5
	1.10271
	0.17761

	0.5
	-0.18000
	-0.11176
	6
	1.19152
	-0.27568

	1
	-0.23588
	0.40472
	6.5
	1.05368
	-0.31002

	1.5
	-0.03352
	0.71460
	7
	0.89866
	0.10616

	2
	0.32378
	0.53297
	7.5
	0.95175
	0.59023

	2.5
	0.59026
	0.02682
	8
	1.24686
	0.69714

	3
	0.60367
	-0.33849
	8.5
	1.59543
	0.32859

	3.5
	0.43443
	-0.22711
	9
	1.75972
	-0.17657

	4
	0.32087
	0.25857
	9.5
	1.67144
	-0.35390

	4.5
	0.45016
	0.67201
	10
	1.49449
	-0.04036

	5
	0.78616
	0.63310
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1.10 For the same storage tank described in Prob. 1.9, suppose that the outflow is not constant but rather depends on the depth. For this case, the differential equation for depth can be written as 


Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step size of 0.5 d. The parameter values are A = 1250 m2, Q = 450 m3/d, and α = 150. Assume that the initial condition is y = 0. 
==========================================
The first two steps yield




The process can be continued to give
	t
	y
	dy/dt
	t
	y
	dy/dt

	0
	0.00000
	-0.12000
	5.5
	1.61981
	0.02876

	0.5
	-0.06000
	0.13887
	6
	1.63419
	-0.42872

	1
	0.00944
	0.64302
	6.5
	1.41983
	-0.40173

	1.5
	0.33094
	0.89034
	7
	1.21897
	0.06951

	2
	0.77611
	0.60892
	7.5
	1.25372
	0.54423

	2.5
	1.08058
	0.02669
	8
	1.52584
	0.57542

	3
	1.09392
	-0.34209
	8.5
	1.81355
	0.12227

	3.5
	0.92288
	-0.18708
	9
	1.87468
	-0.40145

	4
	0.82934
	0.32166
	9.5
	1.67396
	-0.51860

	4.5
	0.99017
	0.69510
	10
	1.41465
	-0.13062

	5
	1.33772
	0.56419
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1.11 Apply the conservation of volume (see Prob. 1.9) to simulate the level of liquid in a conical storage tank (Fig. P1.11).
The liquid flows in at a sinusoidal rate of Qin = 3 sin2(t) and flows out according to 


where flow has units of m3/d and y = the elevation of the water surface above the bottom of the tank (m). Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step size of 0.5 d. The parameter values are rtop = 2.5 m, ytop = 4 m, and yout = 1 m. Assume that the level is initially below the outlet pipe with y(0) = 0.8 m. 

[image: ]
==========================================
When the water level is above the outlet pipe, the volume balance can be written as


In order to solve this equation, we must relate the volume to the level. To do this, we recognize that the volume of a cone is given by V =  r2y/3. Defining the side slope as s = ytop/rtop, the radius can be related to the level (r = y/s) and the volume can be reexpressed as 


which can be solved for

											(1)
and substituted into the volume balance

								(2)
For the case where the level is below the outlet pipe, outflow is zero and the volume balance simplifies to 

											(3)
These equations can then be used to solve the problem. Using the side slope of s = 4/2.5 = 1.6, the initial volume can be computed as


For the first step, y < yout and Eq. (3) gives

	
and Euler’s method yields


For the second step, Eq. (3) still holds and


	


Equation (1) can then be used to compute the new level,


			
Because this level is now higher than the outlet pipe, Eq. (2) holds for the next step


		


The remainder of the calculation is summarized in the following table and figure.
	t
	Qin
	V
	y
	Qout
	dV/dt

	0
	0
	0.20944
	0.8
	0
	0

	0.5
	0.689547
	0.20944
	0.8
	0
	0.689547

	1
	2.12422
	0.554213
	1.106529
	0.104309
	2.019912

	1.5
	2.984989
	1.564169
	1.563742
	1.269817
	1.715171

	2
	2.480465
	2.421754
	1.809036
	2.183096
	0.29737

	2.5
	1.074507
	2.570439
	1.845325
	2.331615
	-1.25711

	3
	0.059745
	1.941885
	1.680654
	1.684654
	-1.62491

	3.5
	0.369147
	1.12943
	1.40289
	0.767186
	-0.39804

	4
	1.71825
	0.93041
	1.31511
	0.530657
	1.187593

	4.5
	2.866695
	1.524207
	1.55031
	1.224706
	1.641989

	5
	2.758607
	2.345202
	1.78977
	2.105581
	0.653026

	5.5
	1.493361
	2.671715
	1.869249
	2.431294
	-0.93793

	6
	0.234219
	2.202748
	1.752772
	1.95937
	-1.72515

	6.5
	0.13883
	1.340173
	1.48522
	1.013979
	-0.87515

	7
	1.294894
	0.902598
	1.301873
	0.497574
	0.79732

	7.5
	2.639532
	1.301258
	1.470703
	0.968817
	1.670715

	8
	2.936489
	2.136616
	1.735052
	1.890596
	1.045893

	8.5
	1.912745
	2.659563
	1.866411
	2.419396
	-0.50665

	9
	0.509525
	2.406237
	1.805164
	2.167442
	-1.65792

	9.5
	0.016943
	1.577279
	1.568098
	1.284566
	-1.26762

	10
	0.887877
	0.943467
	1.321233
	0.5462
	0.341677


[image: ]
1.12 A group of 35 students attend a class in an insulated room which measures 11 by 8 by 3 m. Each student takes up about 0.075 m3 and gives out about 80 W of heat (1 W = 1 J/s). Calculate the air temperature rise during the first 20 minutes of the class if the room is completely sealed and insulated. Assume the heat capacity Cv for air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20 °C and 101.325 kPa. Note that the heat absorbed by the air Q is related to the mass of the air m the heat capacity, and the change in temperature by the following relationship: 


The mass of air can be obtained from the ideal gas law: 


where P is the gas pressure, V is the volume of the gas, Mwt is the molecular weight of the gas (for air, 28.97 kg/kmol), and R is the ideal gas constant [8.314 kPa m3/(kmol K)].
==========================================






Thus, the rise in temperature during the 20 minutes of the class is 14.86571 K. Therefore, the final temperature is (20 + 273.15) + 14.86571 = 308.01571 K.



1.13 Figure P1.13 depicts the various ways in which an average man gains and loses water in one day. One liter is ingested as food, and the body metabolically produces 0.3 liters. In breathing air, the exchange is 0.05 liters while inhaling, and 0.4 liters while exhaling over a one-day period. The body will also lose 0.3, 1.4, 0.2, and 0.35 liters through sweat, urine, feces, and through the skin, respectively. To maintain steady state, how much water must be drunk per day? 

[image: ]
==========================================






1.14 In our example of the free-falling bungee jumper, we assumed that the acceleration due to gravity was a constant value of 9.81 m/s2. Although this is a decent approximation when we are examining falling objects near the surface of the earth, the gravitational force decreases as we move above sea level. A more general representation based on Newton’s inverse square law of gravitational attraction can be written as 

 
where g(x) = gravitational acceleration at altitude x (in m) measured upward from the earth’s surface (m/s2), g(0) = gravitational acceleration at the earth’s surface (≅ 9.81 m/s2), and R = the earth’s radius (≅ 6.37 × 106 m). 
(a) In a fashion similar to the derivation of Eq. (1.8), use a force balance to derive a differential equation for velocity as a function of time that utilizes this more complete representation of gravitation. However, for this derivation, assume that upward velocity is positive. 
(b) For the case where drag is negligible, use the chain rule to express the differential equation as a function of altitude rather than time. Recall that the chain rule is 



(c) Use calculus to obtain the closed form solution where at x = 0. 
(d) Use Euler’s method to obtain a numerical solution from x = 0 to 100,000 m using a step of 10,000 m where the initial velocity is 1500 m/s upward. Compare your result with the analytical solution. 
==========================================
(a) The force balance can be written as:


Dividing by mass gives


(b) Recognizing that dx/dt = v, the chain rule is


Setting drag to zero and substituting this relationship into the force balance gives


(c) Using separation of variables


Integrating gives


Applying the initial condition yields


which can be solved for C = v02/2 – g(0)R, which can be substituted back into the solution to give


or


Note that the plus sign holds when the object is moving upwards and the minus sign holds when it is falling.
(d) Euler’s method can be developed as


The first step can be computed as


The remainder of the calculations can be implemented in a similar fashion as in the following table
	x
	v
	dv/dx
	v-analytical

	0
	1500.000
	-0.00654
	1500.000

	10000
	1434.600
	-0.00682
	1433.216

	20000
	1366.433
	-0.00713
	1363.388

	30000
	1295.089
	-0.00750
	1290.023

	40000
	1220.050
	-0.00794
	1212.476

	50000
	1140.644
	-0.00847
	1129.885

	60000
	1055.974
	-0.00912
	1041.050

	70000
	964.800
	-0.00995
	944.208

	80000
	865.319
	-0.01106
	836.581

	90000
	754.745
	-0.01264
	713.303

	100000
	628.364
	-0.01513
	564.203


For the analytical solution, the value at 10,000 m can be computed as


The remainder of the analytical values can be implemented in a similar fashion as in the last column of the above table. The numerical and analytical solutions can be displayed graphically.
[image: ]


1.15 Suppose that a spherical droplet of liquid evaporates at a rate that is proportional to its surface area. 


where V = volume (mm3), t = time (min), k = the evaporation rate (mm/min), and A = surface area (mm2). Use Euler’s method to compute the volume of the droplet from t = 0 to 10 min using a step size of 0.25 min. Assume that k = 0.08 mm/min and that the droplet initially has a radius of 2.5 mm. Assess the validity of your results by determining the radius of your final computed volume and verifying that it is consistent with the evaporation rate. 
==========================================
The volume of the droplet is related to the radius as

											(1)
This equation can be solved for radius as

											(2)	
The surface area is

											(3)
Equation (2) can be substituted into Eq. (3) to express area as a function of volume

					
This result can then be substituted into the original differential equation,

										(4)
The initial volume can be computed with Eq. (1),


Euler’s method can be used to integrate Eq. (4). Here are the beginning and last steps
	t
	V
	dV/dt

	0
	65.44985
	-6.28319

	0.25
	63.87905
	-6.18225

	0.5
	62.33349
	-6.08212

	0.75
	60.81296
	-5.98281

	1
	59.31726
	-5.8843

	•
•
•
	
	

	9
	23.35079
	-3.16064

	9.25
	22.56063
	-3.08893

	9.5
	21.7884
	-3.01804

	9.75
	21.03389
	-2.94795

	10
	20.2969
	-2.87868



A plot of the results is shown below. We have included the radius on this plot (dashed line and right scale):
[image: ]
Eq. (2) can be used to compute the final radius as




Therefore, the average evaporation rate can be computed as




which is approximately equal to the given evaporation rate of 0.08 mm/min.


1.16 A fluid is pumped into the network shown in Fig. P1.16. If Q2 = 0.7, Q3 = 0.5, Q7 = 0.1, and Q8 = 0.3 m3/s, determine the other flows.
[image: ]
==========================================
Continuity at the nodes can be used to determine the flows as follows:












Therefore, the final results are
[image: ]


1.17 Newton’s law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature), 


where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute), and Ta = the ambient temperature (°C). Suppose that a cup of coffee originally has a temperature of 70 °C. Use Euler’s method to compute the temperature from t = 0 to 20 min using a step size of 2 min if Ta = 20 °C and k = 0.019/min.
==========================================
The first two steps can be computed as


The remaining results are displayed below along with a plot of the results.
	t
	T
	dT/dt
	t
	T
	dT/dt

	0
	70.00000
	-0.95000
	12.00000
	59.62967
	-0.75296

	2
	68.10000
	-0.91390
	14.00000
	58.12374
	-0.72435

	4
	66.27220
	-0.87917
	16.00000
	56.67504
	-0.69683

	6
	64.51386
	-0.84576
	18.00000
	55.28139
	-0.67035

	8
	62.82233
	-0.81362
	20.00000
	53.94069
	-0.64487

	10
	61.19508
	-0.78271
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1.18 You are working as a crime scene investigator and must predict the temperature of a homicide victim over a 5-hr period. You know that the room where the victim was found was at 10 °C when the body was discovered. 
(a) Use Newton’s law of cooling (Prob. 1.17) and Euler’s method to compute the victim’s body temperature for the 5-hr period using values of k = 0.12/hr and Δt = 0.5 hr. Assume that the victim’s body temperature at the time of death was 37 °C, and that the room temperature was at a constant value of 10 °C over the 5-hr period. 
(b) Further investigation reveals that the room temperature had actually dropped linearly from 20 to 10 °C over the 5-hr period. Repeat the same calculation as in (a) but incorporate this new information. 
(c) Compare the results from (a) and (b) by plotting them on the same graph.
========================================== 
(a) For the constant temperature case, Newton’s law of cooling is written as


The first two steps of Euler’s methods are


The remaining calculations are summarized in the following table:
	t
	Ta
	T
	dT/dt

	0:00
	10
	37.0000
	-3.2400

	0:30
	10
	35.3800
	-3.0456

	1:00
	10
	33.8572
	-2.8629

	1:30
	10
	32.4258
	-2.6911

	2:00
	10
	31.0802
	-2.5296

	2:30
	10
	29.8154
	-2.3778

	3:00
	10
	28.6265
	-2.2352

	3:30
	10
	27.5089
	-2.1011

	4:00
	10
	26.4584
	-1.9750

	4:30
	10
	25.4709
	-1.8565

	5:00
	10
	24.5426
	-1.7451



(b) For this case, the room temperature can be represented as


where t = time (hrs). Newton’s law of cooling is written as


The first two steps of Euler’s methods are


The remaining calculations are summarized in the following table:
	t
	Ta
	T
	dT/dt

	0:00
	20
	37.0000
	-2.0400

	0:30
	19
	35.9800
	-2.0376

	1:00
	18
	34.9612
	-2.0353

	1:30
	17
	33.9435
	-2.0332

	2:00
	16
	32.9269
	-2.0312

	2:30
	15
	31.9113
	-2.0294

	3:00
	14
	30.8966
	-2.0276

	3:30
	13
	29.8828
	-2.0259

	4:00
	12
	28.8699
	-2.0244

	4:30
	11
	27.8577
	-2.0229

	5:00
	10
	26.8462
	-2.0215


Comparison with (a) indicates that the effect of the room air temperature has a significant effect on the expected temperature at the end of the 5-hr period (difference = 26.8462 – 24.5426 = 2.3036oC).
(c) The solutions for (a) Constant Ta, and (b) Cooling Ta are plotted below:
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1.19 The velocity is equal to the rate of change of distance, x (m): 

											 (P1.19) 
Use Euler’s method to numerically integrate Eqs. (P1.19) and (1.8) in order to determine both the velocity and distance fallen as a function of time for the first 10 seconds of freefall using the same parameters and conditions as in Example 1.2. Develop a plot of your results.
========================================== 
The two equations to be solved are


Euler’s method can be applied for the first step as


For the second step:


The remaining steps can be computed in a similar fashion as tabulated and plotted below: 
	t
	x
	v
	dx/dt
	dv/dt

	0
	0.0000
	0.0000
	0.0000
	9.8100

	2
	0.0000
	19.6200
	19.6200
	8.3968

	4
	39.2400
	36.4137
	36.4137
	4.9423

	6
	112.0674
	46.2983
	46.2983
	1.9409

	8
	204.6640
	50.1802
	50.1802
	0.5661

	10
	305.0244
	51.3123
	51.3123
	0.1442
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1.20 In addition to the downward force of gravity (weight) and drag, an object falling through a fluid is also subject to a buoyancy force which is proportional to the displaced volume (Archimedes’ principle). For example, for a sphere with diameter d (m), the sphere’s volume is V = π d3/6, and its projected area is A = πd2/4. The buoyancy force can then be computed as Fb = −ρVg. We neglected buoyancy in our derivation of Eq. (1.8) because it is relatively small for an object like a bungee jumper moving through air. However, for a denser fluid like water, it becomes more prominent. 
(a) Derive a differential equation in the same fashion as Eq. (1.8) but include the buoyancy force and represent the drag force as described in Sec. 1.4. 
(b) Rewrite the differential equation from (a) for the special case of a sphere. 
(c) Use the equation developed in (b) to compute the terminal velocity (i.e., for the steady-state case). Use the following parameter values for a sphere falling through water: sphere diameter = 1 cm, sphere density = 2700 kg/m3, water density = 1000 kg/m3, and Cd = 0.47. 
(d) Use Euler’s method with a step size of Δt = 0.03125 s to numerically solve for the velocity from t = 0 to 0.25 s with an initial velocity of zero. 
==========================================
(a) The force balance with buoyancy can be written as


Divide both sides by mass,


(b) For a sphere, the mass is related to the volume as in m = sV where s = the sphere’s density (kg/m3). Substituting this relationship gives 


The formulas for the volume and projected area can be substituted to give


(c) At steady state (dv/dt = 0), 


which can be solved for the terminal velocity


Substituting the values, the terminal velocity is found to be,


(d) Before implementing Euler’s method, the parameters can be substituted into the differential equation to give


The first two steps for Euler’s method are


The remaining steps can be computed in a similar fashion as tabulated and plotted below: 
	t
	v
	dv/dt

	0
	0.000000
	6.176667

	0.03125
	0.193021
	5.690255

	0.0625
	0.370841
	4.381224

	0.09375
	0.507755
	2.810753

	0.125
	0.595591
	1.545494

	0.15625
	0.643887
	0.763953

	0.1875
	0.667761
	0.355136

	0.21875
	0.678859
	0.160023

	0.25
	0.683860
	0.071055
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1.21 As noted in Sec. 1.4, a fundamental representation of the drag force, which assumes turbulent conditions (i.e., a high Reynolds number), can be formulated as 


where Fd = the drag force (N), ρ = fluid density (kg/m3), A = the frontal area of the object on a plane perpendicular to the direction of motion (m2), υ = velocity (m/s), and Cd = a dimensionless drag coefficient. 
(a) Write the pair of differential equations for velocity and position (see Prob. 1.19) to describe the vertical motion of a sphere with diameter, d (m), and a density of ρs (kg/m3). The differential equation for velocity should be written as a function of the sphere’s diameter. 
(b) Use Euler’s method with a step size of Δt = 2 s to compute the position and velocity of a sphere over the first 14 seconds. Employ the following parameters in your calculation: d = 120 cm, ρ = 1.3 kg/m3, ρs = 2700 kg/m3, and Cd = 0.47. Assume that the sphere has the initial conditions: x(0) = 100 m and υ(0) = −40 m/s. 
(c) Develop a plot of your results (i.e., y and υ versus t) and use it to graphically estimate when the sphere would hit the ground. 
(d) Compute the value for the bulk second-order drag coefficient, cd′ (kg/m). Note that the bulk second-order drag coefficient is the term in the final differential equation for velocity that multiplies the term υ |υ|. 
==========================================
(a) The force balance can be written as


Dividing by mass gives

										(1)
The mass of the sphere is sV where V = volume (m3). The projected area and volume of a sphere are d2/4 and d3/6, respectively. Substituting these relationships gives


(b) The first step for Euler’s method is



 
The remaining steps are shown in the following table:
	t
	x
	v
	dx/dt
	dv/dt

	0
	100.0000
	-40.0000
	-40.0000
	10.0363

	2
	20.0000
	-19.9274
	-19.9274
	9.8662

	4
	-19.8548
	-0.1951
	-0.1951
	9.8100

	6
	-20.2450
	19.4249
	19.4249
	9.7566

	8
	18.6049
	38.9382
	38.9382
	9.5956

	10
	96.4813
	58.1293
	58.1293
	9.3321

	12
	212.7399
	76.7935
	76.7935
	8.9759

	14
	366.3269
	94.7453
	94.7453
	8.5404



(c) The results can be graphed as (notice that we have reversed the axis for the distance, x, so that the negative elevations are upwards.  
[image: ]
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(d) Inspecting the differential equation for velocity (Eq. 1) indicates that the bulk drag coefficient is


Therefore, for this case, because A = (1.2)2/4 = 1.131 m2, the bulk drag coefficient is





1.22 As depicted in Fig. P1.22, a spherical particle settling through a quiescent fluid is subject to three forces: the downward force of gravity (FG), and the upward forces of buoyancy (FB) and drag (FD). Both the gravity and buoyancy forces can be computed with Newton’s second law with the latter equal to the weight of the displaced fluid. For laminar flow, the drag force can be computed with Stoke’s law, 


where μ = the dynamic viscosity of the fluid (N s/m2), d = the particle diameter (m), and v = the particle’s settling velocity (m/s). The mass of the particle can be expressed as the product of the particle’s volume and density, ρs (kg/m3), and the mass of the displaced fluid can be computed as the product of the particle’s volume and the fluid’s density, ρ (kg/m3). The volume of a sphere is πd3/6. In addition, laminar flow corresponds to the case where the dimensionless Reynolds number, Re, is less than 1, where Re = ρdυ/μ. 
(a) Use a force balance for the particle to develop the differential equation for dυ/dt as a function of d, ρ, ρs, and μ.
(b) At steady-state, use this equation to solve for the particle’s terminal velocity. 
(c) Employ the result of (b) to compute the particle’s terminal velocity in m/s for a spherical silt particle settling in water: d = 10 μm, ρ = 1 g/cm3, ρs = 2.65 g/cm3, and μ = 0.014 g/(cm·s). 
(d) Check whether flow is laminar. 
(e) Use Euler’s method to compute the velocity from t = 0 to 2-15 s with Δt = 2-18 s given the initial condition: υ(0) = 0. 
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==========================================
(a) A force balance on a sphere can be written as:


where



		
Substituting the individual terms into the force balance yields


Divide by m


Note that m = sV, so


The volume can be represented in terms of more fundamental quantities as V = d3/6. Substituting this relationship into the differential equation gives the final differential equation


(b) At steady-state, the equation is


which can be solved for the terminal velocity


This equation is sometimes called Stokes Settling Law.
(c) Before computing the result, it is important to convert all the parameters into consistent units. For the present problem, the necessary conversions are


	


	
The terminal velocity can then computed as


(d) The Reynolds number can be computed as


This is far below 1, so the flow is very laminar.
(e) Before implementing Euler’s method, the parameters can be substituted into the differential equation to give


The first two steps for Euler’s method are




The remaining steps can be computed in a similar fashion as tabulated and plotted below: 
	t
	v
	dv/dt
	t
	v
	dv/dt

	0
	0
	6.108113
	2.2910–5
	5.9910–5
	0.409017

	3.8110–6
	2.3310–5
	3.892358
	2.6710–5
	6.1510–5
	0.260643

	7.6310–6
	3.8110–5
	2.480381
	3.0510–5
	6.2510–5
	0.166093

	1.1410–5
	4.7610–5
	1.580608
	3.4310–5
	6.3110–5
	0.105842

	1.5310–5
	5.3610–5
	1.007233
	3.8110–5
	6.3510–5
	0.067447

	1.9110–5
	5.7510–5
	0.641853
	
	
	




1.23 As depicted in Fig. P1.23, the downward deflection, y (m), of a cantilever beam with a uniform load, w = 10,000 kg/m, can be computed as 


where x = distance (m), E = the modulus of elasticity = 2 × 1011 Pa, I = moment of inertia = 3.25 × 10–4 m4, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward deflection as a function of x 


If y = 0 at x = 0, use this equation with Euler’s method (Δx = 0.125 m) to compute the deflection from x = 0 to L. Develop a plot of your results along with the analytical solution computed with the first equation.

[image: ]
==========================================
Substituting the parameters into the differential equation gives


The first step of Euler’s method is


The second step is


The remainder of the calculations along with the analytical solution are summarized in the following table and plot. Note that the results of the numerical and analytical solutions are close.
	x
	y-Euler
	dy/dx
	y-analytical
	x
	y-Euler
	dy/dx
	y-analytical

	0
	0
	0
	0
	2.125
	0.001832
	0.001472
	0.001925

	0.125
	0
	0.000149
	9.42E-06
	2.25
	0.002016
	0.001504
	0.002111

	0.25
	1.86E-05
	0.000289
	3.69E-05
	2.375
	0.002204
	0.001531
	0.002301

	0.375
	5.47E-05
	0.00042
	8.13E-05
	2.5
	0.002395
	0.001554
	0.002494

	0.5
	0.000107
	0.000542
	0.000141
	2.625
	0.00259
	0.001574
	0.00269

	0.625
	0.000175
	0.000655
	0.000216
	2.75
	0.002787
	0.001591
	0.002887

	0.75
	0.000257
	0.000761
	0.000305
	2.875
	0.002985
	0.001605
	0.003087

	0.875
	0.000352
	0.000859
	0.000406
	3
	0.003186
	0.001615
	0.003288

	1
	0.000459
	0.000949
	0.000519
	3.125
	0.003388
	0.001624
	0.003491

	1.125
	0.000578
	0.001032
	0.000643
	3.25
	0.003591
	0.00163
	0.003694

	1.25
	0.000707
	0.001108
	0.000777
	3.375
	0.003795
	0.001635
	0.003898

	1.375
	0.000845
	0.001177
	0.00092
	3.5
	0.003999
	0.001638
	0.004103

	1.5
	0.000992
	0.00124
	0.001071
	3.625
	0.004204
	0.00164
	0.004308

	1.625
	0.001147
	0.001298
	0.00123
	3.75
	0.004409
	0.001641
	0.004513

	1.75
	0.00131
	0.001349
	0.001395
	3.875
	0.004614
	0.001641
	0.004718

	1.875
	0.001478
	0.001395
	0.001567
	4
	0.004819
	0.001641
	0.004923

	2
	0.001653
	0.001436
	0.001744
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1.24 Use Archimedes’ principle to develop a steady-state force balance for a spherical ball of ice floating in seawater (Fig. P1.24). The force balance should be expressed as a third-order polynomial (cubic) in terms of height of the cap above the water line (h), and the seawater’s density (ρf), the ball’s density (ρs) and radius (r).
[image: ]
========================================== 
[Note that students can easily get the underlying equations for this problem off the web]. The volume of a sphere can be calculated as


The portion of the sphere above water (the “cap”) can be computed as


Therefore, the volume below water is


Thus, the steady-state force balance can be written as


Cancelling common terms gives


Collecting terms yields




1.25 Beyond fluids, Archimedes’ principle has proven useful in geology when applied to solids on the earth’s crust. Figure P1.25 depicts one such case where a lighter conical granite mountain “floats on” a denser basalt layer at the earth’s surface. Note that the part of the cone below the surface is formally referred to as a frustum. Develop a steady-state force balance for this case in terms of the following parameters: basalt’s density (ρb), granite’s density (ρg), the cone’s bottom radius (r), and the height above (h1) and below (h2) the earth’s surface.

[image: ]
==========================================
[Note that students can easily get the underlying equations for this problem off the web]. The total volume of a right circular cone can be calculated as


The volume of the frustum below the earth’s surface can be computed as


Archimedes’ principle says that, at steady state, the downward force of the whole cone must be balanced by the upward buoyancy force of the below ground frustum,

							(1)
Before proceeding we have too many unknowns: r1 and h1. So before solving, we must eliminate r1 by recognizing that using similar triangles (r1/h1 = r2/H)


which can be substituted into Eq. (1) (and cancelling the g’s)


Therefore, the equation now has only 1 unknown: h1, and the steady-state force balance can be written as


Cancelling common terms gives


and collecting terms yields





1.26 As depicted in Fig. P1.26, an RLC circuit consists of three elements: a resistor (R), an inductor (L), and a capacitor (C). The flow of current across each element induces a voltage drop. Kirchhoff’s second voltage law states that the algebraic sum of these voltage drops around a closed circuit is zero, 


where i = current, R = resistance, L = inductance, t = time, q = charge, and C = capacitance. In addition, the current is related to charge as in 


(a) If the initial values are i(0) = 0 and q(0) = 1 C, use Euler’s method to solve this pair of differential equations from t = 0 to 0.1 s using a step size of Δt = 0.01 s. Employ the following parameters for your calculation: R = 200 Ω, L = 5 H, and C = 10−4 F. 
(b) Develop a plot of i and q versus t.

[image: ]

==========================================
(a) The pair of differential equations to be solved are




At t  = 0,






At t = 0.01


The calculation can be continued to give
	t
	i
	q
	di/dt
	dq/dt

	0
	0
	1
	-2000
	0

	0.01
	-20
	1
	-1200
	-20

	0.02
	-32
	0.8
	-320
	-32

	0.03
	-35.2
	0.48
	448
	-35.2

	0.04
	-30.72
	0.128
	972.8
	-30.72

	0.05
	-20.992
	-0.1792
	1198.08
	-20.992

	0.06
	-9.0112
	-0.38912
	1138.688
	-9.0112

	0.07
	2.37568
	-0.47923
	863.4328

	2.37568

	0.08
	11.01001

	-0.45547

	470.5396

	11.01005

	0.09
	15.71553
	-0.34537
	62.1236

	15.71541


	0.1
	16.33665

	-0.18822
	-277.026

	16.33665



(b)
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1.27 Suppose that a parachutist with linear drag (m = 70 kg, c = 12.5 kg/s) jumps from an airplane flying at an altitude of 200 m with a horizontal velocity of 180 m/s relative to the ground. 
(a) Write a system of four differential equations for x, y, υx = dx/dt and υy = dy/dt. 
(b) If the initial horizontal position is defined as x = 0, use Euler’s methods with Δt = 1 s to compute the jumper’s position over the first 10 seconds. 
(c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open. 
==========================================
[bookmark: _Hlk524451650] (a) 




						
(b) Substituting the parameters


		


						
First step:


			


						
vx = 180 – 32.1429(1) =147.8571
vy = 0 + 9.81(1) = 9.81




The calculation can be continued to give
	t
	vx
	vy
	x
	y
	dvx/dt
	dvy/dt
	dx/dt
	dy/dt

	0
	180
	0
	0
	0
	-32.1429
	9.81
	180
	0

	1
	147.8571
	9.81
	180
	0
	-26.4031
	8.058214
	147.8571
	9.81

	2
	121.4541
	17.86821
	327.8571
	9.81
	-21.6882
	6.619247
	121.4541
	17.86821

	3
	99.76585
	24.48746
	449.3112
	27.67821
	-17.8153
	5.437239
	99.76585
	24.48746

	4
	81.95052
	29.9247
	549.0771
	52.16568
	-14.634
	4.466303
	81.95052
	29.9247

	5
	67.3165
	34.391
	631.0276
	82.09038
	-12.0208
	3.668749
	67.3165
	34.391

	6
	55.2957
	38.05975
	698.3441
	116.4814
	-9.87423
	3.013615
	55.2957
	38.05975

	7
	45.42147
	41.07337
	753.6398
	154.5411
	-8.11098
	2.47547
	45.42147
	41.07337

	8
	37.31049
	43.54884
	799.0613
	195.6145
	-6.66259
	2.033422
	37.31049
	43.54884

	9
	30.6479
	45.58226
	836.3718
	239.1633
	-5.47284
	1.670311
	30.6479
	45.58226

	10
	25.17506
	47.25257
	867.0197
	284.7456
	-4.49555
	1.372041
	25.17506
	47.25257

	11
	20.67952
	48.62461
	892.1947
	331.9982
	-3.69277
	1.127034
	20.67952
	48.62461

	12
	16.98674
	49.75165
	912.8742
	380.6228
	-3.03335
	0.925778
	16.98674
	49.75165

	13
	13.9534
	50.67742
	929.861
	430.3744
	-2.49168
	0.76046
	13.9534
	50.67742

	14
	11.46172
	51.43788
	943.8144
	481.0519
	-2.04674
	0.624664
	11.46172
	51.43788

	15
	9.414984
	52.06255
	955.2761
	532.4897
	-1.68125
	0.513117
	9.414984
	52.06255

	16
	7.733737
	52.57566
	964.6911
	584.5523
	-1.38102
	0.421489
	7.733737
	52.57566

	17
	6.352712
	52.99715
	972.4248
	637.1279
	-1.13441
	0.346223
	6.352712
	52.99715

	18
	5.218299
	53.34338
	978.7775
	690.1251
	-0.93184
	0.284397
	5.218299
	53.34338

	19
	4.28646
	53.62777
	983.9958
	743.4685
	-0.76544
	0.233612
	4.28646
	53.62777

	20
	3.521021
	53.86138
	988.2823
	797.0962
	-0.62875
	0.191896
	3.521021
	53.86138

	21
	2.892267
	54.05328
	991.8033
	850.9576
	-0.51648
	0.157629
	2.892267
	54.05328

	22
	2.375791
	54.21091
	994.6956
	905.0109
	-0.42425
	0.129481
	2.375791
	54.21091

	23
	1.951542
	54.34039
	997.0714
	959.2218
	-0.34849
	0.106359
	1.951542
	54.34039

	24
	1.603053
	54.44675
	999.0229
	1013.562
	-0.28626
	0.087366
	1.603053
	54.44675

	25
	1.316793
	54.53411
	1000.626
	1068.009
	-0.23514
	0.071765
	1.316793
	54.53411


(c)
Plot of the four variables versus time
[image: ] 
Plot of y versus x
[image: ]
Inspecting these figures and the numerical results indicates that the individual would hit the ground at a little over 24 seconds if the chute did not open.


1.28 Figure P1.28 shows the forces exerted on a hot air balloon system. Formulate the drag force as 


where ρa = air density (kg/m3), υ = velocity (m/s), A = projected frontal area (m2), and Cd = the dimensionless drag coefficient (≅ 0.47 for a sphere). Note also that the total mass of the balloon consists of two components: 
m = mG + mP 
where mG = the mass of the gas inside the expanded balloon (kg), and mP = the mass of the payload (basket, passengers, and the unexpanded balloon = 265 kg). Assume that the ideal gas law holds (P = ρRT), that the balloon is a perfect sphere with a diameter of 17.3 m, and that the heated air inside the envelope is at roughly the same pressure as the outside air. 
Other necessary parameters are: 
Normal atmospheric pressure, P = 101,300 Pa 
The gas constant for dry air, R = 287 Joules/(kg K) 
The air inside the balloon is heated to an average temperature, T = 100 ºC 
The normal (ambient) air density, ρ = 1.2 kg/m3. 
(a) Use a force balance to develop the differential equation for dυ/dt as a function of the model’s fundamental parameters. 
(b) At steady-state, calculate the particle’s terminal velocity. 
(c) Use Euler’s method and Excel to compute the velocity from t = 0 to 60 s with Δt = 2 s given the previous parameters along with the initial condition: υ(0) = 0. Develop a plot of your results. 

[image: ]

==========================================

(a) 

				(1)


(Note: Only the balloon’s volume is used to calculate the buoyant force since it is much larger than the payload volume.)








(b) Using Eq. (1) at steady state






(c) 
	Cd
	0.47
	
	
	P
	101300
	Pa
	
	Volume
	2711

	Mp
	265
	kg
	
	R
	287
	J/kg.K
	
	Area
	235

	d
	17.3
	m
	
	T
	373
	K
	
	
	

	g
	9.81
	
	
	row_a
	1.2
	kg/m3
	
	
	

	mg
	2564.3349
	N
	
	row_g
	0.9459
	kg/m3
	
	
	

	vterm
	7.92118
	m/s
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	Total mass
	2829.3349
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	FB
	31914.44
	
	FG
	25166.61
	
	
	
	
	

	Fp
	2599.65
	
	
	
	
	
	
	
	



	t
	v
	dv/dt

	0
	0
	1.466133

	2
	2.932265
	1.264689

	4
	5.461643
	0.767267

	6
	6.996178
	0.319383

	8
	7.634944
	0.100422

	10
	7.835789
	0.027624

	12
	7.891038
	0.007268

	14
	7.905573
	0.001888

	16
	7.909349
	0.000489

	18
	7.910327
	0.000127

	20
	7.91058
	0.000033

	22
	7.910646
	0.000008

	24
	7.910663
	0.000002

	26
	7.910667
	0.000001

	28
	7.910668
	0

	30
	7.910669
	0

	.
	.
	.

	.
	.
	.

	.
	.
	.

	56
	7.910669
	0

	58
	7.910669
	0

	60
	7.910669
	0


The values can be plotted as

0	2.9322650000000001	5.4616429999999996	6.9961779999999996	7.634944	7.8357890000000001	7.891038	7.9055730000000004	7.9093489999999997	7.9103269999999997	7.9105800000000004	7.9106459999999998	7.9106629999999996	7.9106670000000001	7.9106680000000003	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	7.9106690000000004	
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FIGURE P1.23
A cantilever beam.
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FIGURE P1.28
Forces on a hot air balloon: 5 = buoyancy, F; = weight of
gas, F» = weight of payload (including the balloon envelope),
and Fp = drag. Note that the direction of the drag is down-
ward when the balloon is rising.
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