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Chapter 1

Introduction to Differential Equations

1.1 Definitions and Terminology

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)*

3. Fourth order; linear

4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)? or \/1 + (dy/dx)?
6. Second order; nonlinear because of R?

7. Third order; linear

8. Second order; nonlinear because of 42

9. Writing the differential equation in the form z(dy/dz) + y? = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y? — 1)(dx/dy) + = = 0, we see that it is

linear in .

10. Writing the differential equation in the form u(dv/du)+ (1+u)v = ue* we see that it is linear
in v. However, writing it in the form (v+wuv —ue®)(du/dv)+u = 0, we see that it is nonlinear

in wu.
11. From y = e~%/2 we obtain ¢/ = —%e‘w/z. Then 2y +y = —e %/2 + e=%/2 = .

12. From y = g — g t we obtain dy/dt = 24e=2% so that

dy 6 6
~Z 4+ 20y = 24e7 20t 1 9 —20t ) — 94,
dt+ Oy e + O<5 €

3z

13. From y = €3 cos 2z we obtain ¢/ = 3e3* cos 2z —2¢3% sin 22 and 3" = 5e3% cos 2z — 123% sin 2z,

so that y” — 6y’ + 13y = 0.
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14. From y = — cos x In(sec z + tan x) we obtain ' = —1 + sinx In(sec x + tan z) and

y" =tanz + cos x In(secx + tan z). Then y” + y = tan .

15. The domain of the function, found by solving z+2 > 0, is [~2,00). From 3/ = 1+2(z42)~1/?

we have

(y—2)y = (y— 2)[1 + 20z +2)""/7
—y—x+2y—x)(x+2)"1/?
—y—a+42z+4x+2)"? - z)(z +2)" 12

—y—z+8x+2)2(x+2)" V2 =y—z+8

An interval of definition for the solution of the differential equation is (—2,00) because ¢’ is
not defined at z = —2.

16. Since tanx is not defined for x = 7/2 + nm, n an integer, the domain of y = 5tanbx is
{z |5z # /2 +nw}
or {z | x # n/10 + n7/5}. From y’ = 25sec? 5z we have

y' = 25(1 4 tan? 5z) = 25 4 25 tan® 5z = 25 + 32

An interval of definition for the solution of the differential equation is (—/10,7/10). Another
interval is (7/10,37/10), and so on.

17. The domain of the function is {x ‘ 4 — 2% # 0} or {z ‘ x # =2 or x # 2}. From y =

22 /(4 — 22)? we have
1 2
y = 2x <4—x2> :2xy2.

An interval of definition for the solution of the differential equation is (—2,2). Other intervals
are (—oo,—2) and (2, 00).

18. The function is y = 1/4/1 — sinx, whose domain is obtained from 1 —sinx # 0 or sinz # 1.
Thus, the domain is {z | 2 # 7/2 + 2n7}. From ' = —3(1 — sin 2)~3/2(— cos x) we have

2y = (1 —sinz) 3% cosz = [(1 —sinz) V%P cos & = 3> cos z.

An interval of definition for the solution of the differential equation is (/2,57 /2). Another
one is (57/2,97/2), and so on.
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19. Writing In(2X — 1) — In(X — 1) = t and differentiating N

implicitly we obtain

2 _dX_ 1 dX _ 2
2X —1 dt X -—1dt

2 L \dX _ 2 N2 a !
2X -1 X-—-1) dt \
-2

2X —2-2X+1dX
22X -1)(X—1) dt 4
dx

—r = —2X — (X —1) = (X — (1 -2X).

Exponentiating both sides of the implicit solution we obtain

2X -1,
x-1 ¢

2X —1=Xet — ¢!

(' —1) = (e = 2)X

Solving e! — 2 = 0 we get t = In 2. Thus, the solution is defined on (—oo,In2) or on (In 2, c0).
The graph of the solution defined on (—oo,In2) is dashed, and the graph of the solution
defined on (In 2, c0) is solid.

20. Implicitly differentiating the solution, we obtain Y
d d
9,2 % —4xy—|—2y—y =0
dx

dx
—2?dy — 2zydx +ydy =0

2zy dz + (z° — y)dy = 0. 2 NL 72 4
-2
Using the quadratic formula to solve y? — 222y —1 = 0
for y, we get y = (222 £ Vda?+4)/2 = 2 £ Val +1. -4

Thus, two explicit solutions are y; = z? + Va? +1 and
yo = 22 — /2% + 1. Both solutions are defined on (—o0, 00).

The graph of y;(x) is solid and the graph of y, is dashed.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

21. Differentiating P = ce! / (1 + ¢ et) we obtain

dp (1+ cref) cret — cret - et e [(1+cret) — cref]
dt (1+ clet)2 14 cpet 1+ cret
¢ ¢
—_ae 9 1 _pa-p).
1+ cet 1+ cret
dy _2:02

22. Differentiating y = 222 — 1 + 616_2902 we obtain I 4o — dzcye , so that
x

d
el +4xy = da — 4xcle_2x2 + 823 — 4a + 4clxe_x2 = 822

dx

2

d
and d—;é = (4c1 4 4cp)e®® +

2x 2x

d
23. From y = ¢1e?® 4 caxe® we obtain Y9 _ (2¢1 + ¢2)e* 4+ 2coze

dx
462336 , so that
dzy d 2z 2r
prch 4d— + 4y = (4eg +4eg — 8y — 4deg + 4y ) e + (deg — 8eg + 4eg)ze™ = 0.

24. From y = c;z~! + cox + ez Inx + 422 we obtain

d
& _ —c1z 2 + e+ 3+ c3lna + 8z,
dx

d2

d—azz = 261x_3 + 03x_1 + 8,

and 3
d—aj?/’ = —60133_4 — 0333_2,
so that
5 3y 5 d%y dy 1
x° —=% 4 22° — —x—+y—( 6cy +4cy +c1+c1)r” 4+ (—cg+2c3 —ca — 3+ co)x

dz3 dz? dx
4+ (—c3 +ez)xInz + (16 — 8 4 4)a?

= 1222

In Problems 2528, we use the Product Rule and the derivative of an integral ((12) of this section):
— / t)dt = g(z).

T e—3t dy T e—3t e—3t
25. Differentiating y = €** / — dt we obtain —— = &** / ——dt+ — €T or
1 t dx 1 t X
—3t

d v 1
—y:e?’x/ e—dt—l——,sothat
dx 1t x

T —3t
x@—&ny—x(?’x/ —dt + >—3x< /—dt>
dx Tt
/—dt—i—l—?m:e /—dt—l
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d 1 T cost
26. Differentiating y = \/_/ — dt we obtain ﬁ = SNl Ci)/SZ dt + Ci)/S; vz or
dy 1 T cost

% 2\/_ \/_ dt + cos z, so that

dy 1 T cost cost
22 —y =2
xd:n Y :E<2\/, \/_dt—l—coszn> \/_/

t t
—\/_/ ﬂdt+2azcosaj \/_/ ﬂaHE 2z cos T

t d t 10
27. Differentiating y = — + — / sint dt we obtain = = 2 _ —/ sint smaj or
x x
d 5 10 t 10
&2 —/ sin dt + sinz , so that
dx x2 x? ), ot x2

x2@+x 2 _E_E/msintdt+1OSin$ / Smt
dr YT 2 x? ), ot x2
sint sint
:—5—10/ —dt+1081na:+5+10/ —dt—lOsma:

d xr
28. Differentiating y = e~ 7?4 e / e” dt we obtain d—y T T / e’ dt+e® e
0 €z 0

dy g2 g2 z 2
or —— = —2xe” ¥ — 2ze e’ dt + 1, so that
dx 0

d x T
d—y + 2zy = (—23:6_“"”2 — 2z / e’ dt + 1> + 2z (e_IQ te / et’ dt)
€L 0 0

X X
— _9pe ™ _ 2ze / et dt + 1+ oxe2 + ore % / e dt =1
0 0

—2%, <0
Yy=19 5

29. From

x“, z >0
;) 2z, <0
4 2x, x>0

30. The function y(x) is not continuous at x = 0 since lim y(z) =5 and lim y(x) = —5. Thus,

x—0~ z—0t+
y'(x) does not exist at x = 0.

we obtain

so that zy’ — 2y = 0.

31. Force the function y = €™* into the equation 3’ + 2y = 0 to get
(™) +2(e™) = 0
me™* + 2e™* =0
M (m+2) =0

Now since €™ > 0 for all values of z, we must have m = —2 and so y = e~%* is a solution.
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32. Force the function y = ¢™* into the equation 3y’ — 4y = 0 to get
3(emm)/ _ 4(emm) — 0
3me™* — 4e™* =0

em*(3m—4)=0

dx/3

Now since ™ > 0 for all values of z, we must have m = 4/3 and so y = e is a solution.

33. Force the function y = ¢™* into the equation 3" — 5y’ + 6y = 0 to get
(€)Y —5(e™) +6(e™") =0
m?e™® — 5me™® + 6™ = 0
€™ (m? — 5m 4 6) =0

em™(m—2)(m—-3)=0

Now since €™ > 0 for all values of x, we must have m = 2 and m = 3 therefore y = €2* and
y = €3 are solutions.
34. Force the function y = €™* into the equation 2y” + 9y’ — 5y = 0 to get
2(e™)" 4+ 9(e™*) —5(e™*) =0
2m2e™ + 9me™® — 5™ = ()
™" (2m* 4+ 9m —5) = 0
" (m+5)(2m—1)=0
Now since €™ > 0 for all values of = , we must have m = —5 and m = 1/2 therefore y = e~5¢

and y = /2 are solutions.

35. Force the function y = 2™ into the equation xy” + 2y’ = 0 to get
T - ($m)// + 2(xm)/ — 0
z-m(m—1)2™ %+ 2ma™ "t =0

2 —m)z™ 4 2ma™ T =0

(m
2™ m? +m] =0

2™ Hm(m+1)] =0

1

The last line implies that m = 0 and m = —1 therefore y = 2° = 1 and y = 2! are solutions.
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finitions and Termlnology

36. Force the function y = 2™ into the equation z?y” — Tzy’ + 15y = 0 to get
22 (™) — Tz - (2™) 4+ 15(z™) =0
22 m(m—1Dz™ 2 — 7z -ma™ 4+ 152™ =0
(m? —m)z™ — Tma™ + 152™ = 0
™[m? — 8m +15] =0
z™[(m = 3)(m —5)] =0

5

The last line implies that m = 3 and m = 5 therefore y = 2% and y = 2 are solutions.

In Problems 37-40, we substitute y = ¢ into the differential equations and use y' =0 and y" =0
37. Solving 5¢ = 10 we see that y = 2 is a constant solution.
38. Solving ¢? +2c—3 = (c+3)(c—1) = 0 we see that y = —3 and y = 1 are constant solutions.
39. Since 1/(¢ — 1) = 0 has no solutions, the differential equation has no constant solutions.

40. Solving 6¢ = 10 we see that y = 5/3 is a constant solution.

41. From z = e 2" 4 3¢5 and y = —e 2! + 5¢5 we obtain
d d
d—f = —2¢ 2 +18¢%  and d—i = 2e 2t 4 30e5¢.
Then
d
x4+ 3y = (e +3e%) + 3(—e™ 4 5e8) = —2¢7% 4 18¢5 d_:;
and J
5z + 3y = 5(e 2 + 3¢5 + 3(—e 2 4 5e) = 27 4 305 = d_i .
42. From x = cos 2t + sin 2t + 1e and y = —cos 2t — sin 2t — %et we obtain
d 1 d 1
d—f = —2sin 2t + 2cos 2t + get and d—i = 2sin 2t — 2cos 2t — 3et
and ) )
d 1 d 1
d—tj = —4cos2t — 4sin 2t + get and ﬁy = 4 cos 2t + 4sin 2t — get
Then
1 1 d?
4y + €' = 4(— cos 2t — sin 2t — get) + €' = —4cos 2t — 4sin 2t + 5et = d—tf
and
t . 1 1, d%
4x — e = 4(cos 2t + sin 2t + € B —e! = 4cos 2t + 4sin 2t — €= aa
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43. (y')* +1 = 0 has no real solutions because (y')? + 1 is positive for all differentiable functions
y = o(

1
= ¢(z).
44. The only solution of (y/)? +y? = 0is y = 0, since if y # 0, y?> > 0 and (3/)% +y> > 3% > 0.

45. The first derivative of f(x) = e® is e®. The first derivative of f(z) = ek is keF®. The

differential equations are v’ = y and 3’ = ky, respectively.

46. Any function of the form y = ce® or y = ce™™ is its own second derivative. The corresponding
differential equation is ¢y —y = 0. Functions of the form y = c¢sinz or y = ccos x have second

derivatives that are the negatives of themselves. The differential equation is y” 4+ y = 0.

47. We first note that /1 — y2 = /1 —sin?x = Vcos? x = | cos #|. This prompts us to consider

values of z for which cosz < 0, such as x = 7. In this case

Z—z = —(sinx)

dx

:cosx‘ =cosm = —1,
T=Tr

T=T T=Tr

but

V1—12per = V1 —sin?r =1 =1

Thus, y = sinz will only be a solution of 3’ = /1 —y2? when cosz > 0. An interval of
definition is then (—7n/2,7/2). Other intervals are (37/2,57/2), (77/2,97/2), and so on.

48. Since the first and second derivatives of sin ¢ and cost involve sin t and cos t, it is plausible that
a linear combination of these functions, Asint+ B cost, could be a solution of the differential
equation. Using 3y’ = Acost — Bsint and y” = —Asint — Bcost and substituting into the

differential equation we get

y" +2y +4y = —Asint — Beost + 2Acost — 2Bsint + 4Asint + 4B cost

= (3A —2B)sint + (2A + 3B) cost = 5sint

Thus 34 — 2B = 5 and 24 + 3B = 0. Solving these simultaneous equations we find A = %

_ 10 : A L 10
and B = —13. A particular solution is y = 33 sint — {3 cost.

49. One solution is given by the upper portion of the graph with domain approximately (0, 2.6).
The other solution is given by the lower portion of the graph, also with domain approximately
(0,2.6).

50. One solution, with domain approximately (—oo, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution,
with domain approximately (0,1.6) is the upper part of the graph in the first quadrant. The
third solution, with domain (0, c0), is the part of the graph in the fourth quadrant.
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51. Differentiating (2 4 y?)/zy = 3¢ we obtain

zy (322 + 3y%y') — (¢° + ) (xy +y)

2242 =0

3:1:32/ + 3333/32/ _ x4y/ _ $3y _ :L,y3y/ _ y4 — 0
(Bzy® — 2t — 2 )y = =323y + 23y + o

,_yt—2ty  y(y® - 227
2ry? — 2t 2y —23)

Y

52. A tangent line will be vertical where 3/ is undefined, or in this case, where x(2y® — 23) = 0.

This gives = 0 and 2y3 = 3. Substituting y* = 23/2 into 2® + y* = 32y we get

1 1
2°+ =~ = 3z <Wx>

2

3 3 3 o
PR TN
23— 92/3,2

2 (x—2%3) = 0.

Thus, there are vertical tangent lines at = 0 and = = 2%/3, or at (0,0) and (2%/3,2/3).

Since 22/3 ~ 1.59, the estimates of the domains in Problem 50 were close.

53. The derivatives of the functions are ¢ (x) = —z/v/25 — 22 and ¢4 (x) = x/v/25 — 2, neither
of which is defined at z = +5.

54. To determine if a solution curve passes through (0,3) we let ¢ = 0 and P = 3 in the equation
P = cie' /(14 cie'). This gives 3 =c1/(1+¢1) or ¢; = —3 . Thus, the solution curve

(—=3/2)et =3¢

P —
1—(3/2)et 2 —3et

passes through the point (0,3). Similarly, letting ¢ = 0 and P = 1 in the equation for the
one-parameter family of solutions gives 1 = ¢1/(1 4+ ¢1) or ¢4 = 1 + ¢;. Since this equation

has no solution, no solution curve passes through (0,1).

55. For the first-order differential equation integrate f(z). For the second-order differential equa-

tion integrate twice. In the latter case we get y = [([ f(z)dz) dz + c12 + co.

56. Solving for 3 using the quadratic formula we obtain the two differential equations

1 1
y/:—<2—|—2\/1+3:p6) and ¢ = (2—2 1—|—3aj6>,
x

X

so the differential equation cannot be put in the form dy/dz = f(z,vy).
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57. The differential equation yy' — xy = 0 has normal form dy/dz = z. These are not equivalent

because y = 0 is a solution of the first differential equation but not a solution of the second.

58. Differentiating we get v/ = ¢ + 3cox? and 3" = 6coz. Then ¢y = v /6 and ¢; =y — 29" /2,

" "
1
y = (y/_ mg >33—|— (?éx> o zy — §$2y//

and the differential equation is z?y” — 3zy’ + 3y = 0.

SO

59. (a) Since e~ is positive for all values of x, dy/dx > 0 for all x, and a solution, y(z), of the

differential equation must be increasing on any interval.

xT

d d
(b) lim Y lim e =0and lim 2 = lim e~ = 0. Since dy/dx approaches 0 as

z——o00 dx T——00 T—00 AX T—00
x approaches —oo and oo, the solution curve has horizontal asymptotes to the left and

to the right.
(c) To test concavity we consider the second derivative

dz?  dx \dr) dx N '

Since the second derivative is positive for x < 0 and negative for z > 0, the solution

curve is concave up on (—oo,0) and concave down on (0, c0).

(d) J‘

60. (a) The derivative of a constant solution y = ¢ is 0, so solving 5 — ¢ = 0 we see that ¢ = 5

and so y = 5 is a constant solution.

(b) A solution is increasing where dy/dr =5 —y > 0 or y < 5. A solution is decreasing
where dy/dx =5 —y <0ory>5.

61. (a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a — by) = by(a/b—y) >0o0r 0 <y < a/b. A
solution is decreasing where dy/dx = by(a/b—1y) < 0ory <0 ory > a/b.
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(c) Using implicit differentiation we compute

d2y _ b / / b ! 2b
a2 = Y(=ty) +y(a—by) = y(a - 2by).
Solving d?y/dx? = 0 we obtain y = a/2b. Since d*y/dz? > 0 for 0 < y < a/2b and

d*y/dx® < 0 for a/2b < y < a/b, the graph of y = ¢(x) has a point of inflection at

y = a/2b.
(d)
A
y=alb
x

62. (a) If y = cis a constant solution then ¢y’ = 0, but ¢? + 4 is never 0 for any real value of c.

(b) Since y' = y*> +4 > 0 for all x where a solution y = ¢(x) is defined, any solution must
be increasing on any interval on which it is defined. Thus it cannot have any relative

extrema.

(c) Using implicit differentiation we compute d?y/dz?> = 2yy’ = 2y(y*> + 4). Setting
d*y/dz* = 0 we see that y = 0 corresponds to the only possible point of inflection.
Since d?y/dx? < 0 for y < 0 and d?y/dz? > 0 for y > 0, there is a point of inflection
where y = 0.

(d)
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63. In Mathematica use

Clear[y]

y[x]:= x Exp[5x] Cos[2x]

y[x]

y''''[x] = 20y''[x] + 158y"'' [x] — 580y [x] +841y[x]//Simplify

5

The output will show y(z) = e**x cos 2z, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.
64. In Mathematica use
Clear[y]
y[x_]:= 20Cos[5Log[x]]/x — 3Sin[5Log[x]]/x
y[x]

x"3y'""'[x] + 2x"2 y'"'[x] + 20x y'[x] — T8y[x]//Simplify

The output will show y(x) = 20cos(5Inx)/x — 3sin(51n x)/x, which verifies that the correct
function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 Initial-Value Problems

1. Solving —1/3 =1/(1 + ¢1) we get ¢; = —4. The solution is y = 1/(1 — 4e™").
2. Solving 2 =1/(1 + c1e) we get ¢; = —(1/2)e~!. The solution is y = 2/(2 — e~ @+1)

3. Letting = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(x? — 1).

This solution is defined on the interval (1, 00).

4. Letting x = —2 and solving 1/2 = 1/(4 + ¢) we get ¢ = —2. The solution is y = 1/(z% — 2).
This solution is defined on the interval (—oo, —/2).

5. Letting 2 = 0 and solving 1 = 1/c we get ¢ = 1. The solution is y = 1/(2? +1). This solution

is defined on the interval (—oo, 00).

6. Letting = 1/2 and solving —4 = 1/(1/4 + ¢) we get ¢ = —1/2. The solution is y =
1/(z% — 1/2) = 2/(22% — 1). This solution is defined on the interval (—1/v/2,1/v/2).

In Problems 7-10, we use v = ¢y cost + cagsint and ¥’ = —cysint + cocost to obtain a system of
two equations in the two unknowns ci and cs.
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7. From the initial conditions we obtain the system
c1 = —1lcg =8
The solution of the initial-value problem is = — cost + 8sint.
8. From the initial conditions we obtain the system
co=0—c1 =1
The solution of the initial-value problem is = — cost.

9. From the initial conditions we obtain

3 1 1 1
£Cl-l-—CQZ———CQ—I-

=0
2 2 2 2

|5

itial-Value P
egram,

WhLtsApp, Bitaa)

Solving, we find ¢; = v/3/4 and ¢ = 1/4. The solution of the initial-value problem is

x = (V3/4)cost + (1/4)sint.

10. From the initial conditions we obtain

V2o V2 s

DAty es
2 2
[6pt] — £61 + £02 =2V/2.
2 2
Solving, we find ¢y = —1 and ¢ = 3. The solution of the initial-value problem is z =

—cost+ 3sint.

In Problems 11-14, we use y = c1€®* + coe™® and y' = c1e% — cae™® to obtain a system of two

equations in the two unknowns c¢1 and cs.

11. From the initial conditions we obtain

c1t+c=1

Cl1 — Cy = 2.
Solving, we find ¢ = % and ¢ = —%. The solution of the initial-value problem is y =
3 x 1 —=z
56 — 56 .

12. From the initial conditions we obtain
ec1 + 6_162 =0
ecy — 6_162 =e.

1

Solving, we find ¢; = % and ¢y = —562. The solution of the initial-value problem is
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13. From the initial conditions we obtain

6_1(31 +ecy =5H

e_lcl —ecy = —b.

Solving, we find ¢; = 0 and ¢y = 5e~'. The solution of the initial-value problem is y =

Se~le™® = Ke~1-7,
14. From the initial conditions we obtain

c1+co=0

01—0220.

Solving, we find ¢; = co = 0. The solution of the initial-value problem is y = 0.

15. Two solutions are y = 0 and y = 2.

16. Two solutions are y = 0 and y = 22. (Also, any constant multiple of 22 is a solution.)

0 2
17. For f(z,y) = y%/3 we have 8_f = gy_l/ 3. Thus, the differential equation will have a unique
Y

solution in any rectangular region of the plane where y # 0.

18. For f(z,y) = /xy we have Of /0y = %\/:E/y. Thus, the differential equation will have a

unique solution in any region where z > 0 and y > 0 or where x < 0 and y < 0.

0 1
19. For f(x,y) = L4 we have —f = — . Thus, the differential equation will have a unique solution
x x

dy

in any region where x # 0.

0
20. For f(z,y) = = +y we have 8_f = 1. Thus, the differential equation will have a unique
Y
solution in the entire plane.

21. For f(x,y) = 22/(4 — y?) we have df /0y = 2x%y/(4 — y*)?. Thus the differential equation

will have a unique solution in any region where y < —2, -2 <y < 2, or y > 2.

2 9 32242
* 5 we have —f = % Thus, the differential equation will have a
L+y dy (14?3

22. For f(xz,y) =

unique solution in any region where y # —1.

2 o 2 2
Y we have —f -y Thus, the differential equation will have a

23. For f(:Evy) = 72 + y2 8y (IE2 +y2)2

unique solution in any region not containing (0, 0).
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24. For f(z,y) = (y+x)/(y — x) we have df /0y = —2z/(y — x)?. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.

In Problems 25-28, we identify f(z,y) = \/y?>—9 and 0f/0y =y//y?> — 9. We see that f and
Of /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on x.
25. Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

26. Since (5,3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee
of a unique solution through (5, 3).

27. Since (2,—3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (2, —3).

28. Since (—1,1) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee
of a unique solution through (—1,1).

29. (a) A one-parameter family of solutions is y = cx. Since ' = ¢, 2y’ = z¢ = y and y(0) =
c-0=0.

(b) Writing the equation in the form y’ = y/x, we see that R cannot contain any point on the
y-axis. Thus, any rectangular region disjoint from the y-axis and containing (xq, yo) will
determine an interval around zy and a unique solution through (¢, y0). Since g = 0 in

part (a), we are not guaranteed a unique solution through (0, 0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not
differentiable at x = 0.

d
30. (a) Since . tan (x + ¢) = sec? (x + ¢) = 1+tan? (x + ¢), we see that y = tan (z + c) satisfies
x

the differential equation.

(b) Solving y(0) = tanc = 0 we obtain ¢ = 0 and y = tanz. Since tanz is discontinuous at

x = +7/2, the solution is not defined on (—2,2) because it contains +m /2.

(¢) The largest interval on which the solution can exist is (—7/2,7/2).

_d 1 1 ) 1
31. (a) Since £<_x+c) = CFWSE = y*, we see that y = —
ential equation.

is a solution of the differ-
c

(b) Solving y(0) = —1/c =1 we obtain ¢ = —1 and y = 1/(1—=x). Solving y(0) = —1/c = —1
we obtain ¢ = 1 and y = —1/(1+x). Being sure to include z = 0, we see that the interval
of existence of y = 1/(1 —x) is (—o0, 1), while the interval of existence of y = —1/(1+x)

is (—1,00).
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32. (a) Solving y(0) = —1/c = yo we obtain ¢ = —1/yy and

1

y:_—l/yO—Fx

=yol —yor, o #0

Since we must have —1/yg + x # 0, the largest interval of existence (which must contain
0) is either (—o0,1/yo) when yo > 0 or (1/yo, 00) when yo < 0.

(b) By inspection we see that y = 0 is a solution on (—o0, 00).
33. (a) Differentiating 322 — y? = ¢ we get 6z — 2yy’ = 0 or yy' = 3z.

(b) Solving 322 — y? = 3 for y we get

y
y=¢1(x) =322 -1), 1<z < oo, 41
y = ¢a(z) = —/3(2% — 1), 1<z < oo, 2
* . . * X
y=¢3(x) =3(*-1), —oo <z <—1, -4 2 2 4
2t
Y= ¢u(x) = —/3(x2 = 1), —oo <z < —1.
4|
(c¢) Only y = ¢3(x) satisfies y(—2) = 3.
34. (a) Setting z = 2 and y = —4 in 322 — y? = ¢ we get
y
12 — 16 = —4 = ¢, so the explicit solution is A
y=—V3a2+4, —oo<uz<o0. ol
4 2 > 4
-2
(b) Setting ¢ = 0 we have y = v/3z and y = —v/3z, both defined on (—oc, o).
In Problems 35-38, we consider the points on the graphs with x-coordinates xo = —1, xo = 0,

and xg = 1. The slopes of the tangent lines at these points are compared with the slopes given by
y'(z9) in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).
36. The graph satisfies the conditions in (e).

37. The graph satisfies the conditions in (c) and (d).
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Initia Value Problems

38. The graph satisfies the conditions in (a).

39. Using the function y = ¢1 cos 3z + ¢o sin 3z and the first boundary condition we get

y(0) = c1cos0 + casin0 =0

Therefore ¢; = 0. Similarly for the second boundary condition we get
y(m/6) = casin3 (w/6) = —
Therefore cg = —1. The solution to the boundary value problem is y(x) = — sin 3.
40. Using the function y = ¢1 cos 3x + ¢9 sin 3z and the first boundary condition we get

y(0) = c1cos0 + casin0 =0

Therefore ¢; = 0. Thus y(z) = cpsin 3z. Similarly for the second boundary condition we get

y(m) = cosin3(m) =0

But the last line is satisfied for any choice of ¢2 since sin 3w = 0 therefore there are infinitely

many solutions in this case.

41. The derivative of the function y = ¢y cos 3z + cosin3x is ¢y = —3cy sin 3z + 3cg cos 3z and

using the first boundary condition we get

y'(0)=0+3c2=0

Therefore co = 0 So far then we have ¢y = —3¢y sin 3z. Similarly, using the second boundary

condition we get
Y (7/4) = —3¢; (\/5/2) ~0

Therefore ¢; = 0. The solution is thus the trivial solution y = 0.

42. The derivative of the function y = ¢y cos 3z + cosin3x is ¢y = —3cy sin 3z + 3c¢g cos 3z and

using the two boundary conditions we get
y0)=c1+0=1
Therefore ¢; = 1. In addition

Yy (m)=0—3c =5

Therefore co = —5/3. The solution to this boundary value problem is y(z) = cos 3z — g sin 3z
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

43. Using the function y = ¢1 cos 3x + c9 sin 3z and the first boundary condition we get

y(0) = c1cos0 + casin0 =0

Therefore ¢; = 0. Thus y(z) = ¢z sin 3z. Similarly for the second boundary condition we get

cosin3(m) =4cg -0 =40 =14

The last line is obviously a contradiction and so therefore the boundary value problem has

no solution in this case.

44. The derivative of the function y = ¢y cos 3z + cosin3x is ¢y = —3cy sin 3z + 3cg cos 3z and

using the first boundary condition we get
Y (m/3) =0—3c; =1
Therefore cg = —1/3. Similarly, using the second boundary condition we get
Yy (m)=0—3co =0
Therefore co = 0, which is a contradiction so the problem has no solution.
45. Integrating iy = 8€2* + 6 we obtain

y= / (8€%® + 6x) dr = 4e** + 322 + c.

Setting # =0 and y = 9 we have 9 =4+ cso ¢ =5 and y = 4€%* + 322 + 5.

46. Integrating 3" = 12z — 2 we obtain

y/:/(12x—2)dx:6:172—2:17+61.

Then, integrating 3 we obtain
Y= /(6:172 —2x+c1)dx =223 — 2% 4 12 + co.

At x = 1 the y-coordinate of the point of tangency is y = —1 + 5 = 4. This gives the initial
condition y(1) = 4. The slope of the tangent line at z = 1 is 3/(1) = —1. From the initial

conditions we obtain
2—14+c+cy=4 or c1+c=3

and
6—-—24+c=-1 or cp = —b.

Thus, ¢; = —5 and ¢ = 8, so y = 223 — 22 — 5z + 8.
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Initia Value Problems

47. When x =0 and y = % , ' = —1, so the only plausible solution curve is the one with negative

slope at (0, % ), or the black curve.

48. If the solution is tangent to the x-axis at (z0,0), then y¥ = 0 when x = zp and y = 0.
Substituting these values into 3’ + 2y = 3z — 6 we get 0 +0 = 329 — 6 or z¢ = 2.

49. The theorem guarantees a unique (meaning single) solution through any point. Thus, there

cannot be two distinct solutions through any point.

50. When y = +at, v/ = 123 = 2(32?) = zy/?, and y(2) = +(16) = 1. When
0, x <0
¥=911
1—6334, x>0
we have
0, xz <0 0, z <0
y/ = = — $y1/2’
ia:?’, x>0 ia:z, z >0

and y(2) = 1—16(16) = 1. The two different solutions are the same on the interval (0, c0), which
is all that is required by Theorem 1.2.1.

51. We note that the initial condition y(0) = 0,
v
0= / dt
0 Vt3+41
is satisfied only when y = 0. For any y > 0, necessarily

Y 1
/*dt>0
0o Vi +1

because the integrand is positive on the interval of integration. Then from (12) of Section 1.1
and the Chain Rule we have:

ix_i/y L dy
dr”  dr ), VB +1 %zvy?’—kl

and

_ 1 dy , -

Computing the second derivative, we see that:

d? d 32 d 392 3
ay _ & y3+1:¢_y:L.‘/—y3+1:§y2

dxz?  dx 23+ 1dr 2\/y3+1
ey
dz?2 27

. . d2y 2
This is equivalent to 2—5 — 3y = 0.
dx
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.3 Differential Equations as Mathematical Models

dP dP

1.E—kp+7", %—kP—T

2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = kyP. Since
dP/dt = b — d, the differential equation is dP/dt = k1P — ko P.

3. Let b be the rate of births and d the rate of deaths. Then b = kP and d = kyP?. Since
dP/dt = b — d, the differential equation is dP/dt = ki P — ko P2.
P
4. d = kP —koP?2—h, h>0
dt
5. From the graph in the text we estimate Ty = 180° and T}, = 75°. We observe that when
T =85, dT'/dt = —1. From the differential equation we then have

dr/dt 1

k:T—Tm_85—75

= —0.1.

6. By inspecting the graph in the text we take T}, to be T, (t) = 80 — 30 cos (7t/12). Then the

temperature of the body at time ¢ is determined by the differential equation

Z—f:k[ ~ (80— 30008(12))] t> 0.

7. The number of students with the flu is  and the number not infected is 1000 — z, so dz/dt =
kx(1000 — z).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that
the rate at which the technological innovation is adopted is proportional to the number of
people who have adopted the innovation and also to the number of people, y(¢), who have
not yet adopted it. If one person who has adopted the innovation is introduced into the
population, then x +y =n + 1 and

dx

i kx(n+1—=z), z(0)=1.

9. The rate at which salt is leaving the tank is

A A
Rout (3 gal/min) - <300 lb/gal> 100 1b/min.

Thus dA/dt = A/100. The initial amount is A(0) = 50.
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10. The rate at which salt is entering the tank is
R;n, = (3 gal/min) - (2 1b/gal) = 6 1b/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of (3 —
2)gal/min = 1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank. The

rate at which salt is leaving is

. A 2A .
Rout = (2 gal/mln) : (m lb/gal) = m lb/mln.

The differential equation is
a2
dt 300+t

11. The rate at which salt is entering the tank is
R;n = (3 gal/min) - (2 1b/gal) = 6 1b/min.

Since the tank loses liquid at the net rate of
3 gal/min — 3.5 gal/min = —0.5 gal/min,

after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate

at which salt is leaving is

A 3.54 7A
ot = | ———Tb/gal | - (3.5 gal/min) = —~>2_ 1b/min = ——— Ib /min.
Hout (300 — /2 /ga> (8:5 gal/min) = 35575 Ib/min = w55 1b/min
The differential equation is
dA 7A dA 7
at "% 60—t " @ Teo—:17"

12. The rate at which salt is entering the tank is
R, = (¢in Ib/gal) - (14, gal/min) = ¢, iy, 1b/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine
in the tank at time t. The concentration of salt in the tank as well as in the outflow is
c(t) = z(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,
or is decreased depending on whether r;, = rout, Tin > Tout, OF Tin < Touwt. In any case, the
number of gallons of brine in the tank at time ¢ is N(t) = No + (73 — rout)t. The output rate
of salt is then

A
Rou =
' <N0 + (Tin - Tout)t
The differential equation for the amount of salt, dA/dt = R;, — Rout, is
dA A dA Tout

— = CipnTin, — T or  —- A:C‘T.'
o7 inTin out No + (Tin — Tout)t dt * No + (Tin — Tout)t -

A
NO + (Tin - Tout)t

b/ gal) (Tout gal/min) = 7y 1b /min.

R AR

;?Waa)
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13. The volume of water in the tank at time ¢ is V' = A, h. The differential equation is then

dh

1 dV 1 A
dt—A—%:A—(—&‘lW?ghF - hv

s

9\ 2
Using Ap, =7 <12> =35 A, = 10% =100, and g = 32, this becomes

dh /36— cm
@ = a00 Vo= T Vi

14. The volume of water in the tank at time ¢ is V = %m“zh where 7 is the radius of the tank
at height h. From the figure in the text we see that r/h = 8/20 so that r = %h and
V=1 (3 h) h = =wh3. Differentiating with respect to ¢ we have dV/dt = semh?dh/dt or

dh _ % dv
dt — 4wh? dt

From Problem 13 we have dV/dt = —cAp\/2gh where ¢ = 0.6, A, = 7 (%) ,and g = 32.
Thus dV/dt = —27v/h/15 and

dh 25 (_277\/5): 5

dt ~ 4rh? 15 632

15. Since i = dq/dt and L d?q/dt*> + Rdq/dt = E(t), we obtain Ldi/dt + Ri = E(t).

d 1
16. By Kirchhoft’s second law we obtain Rd_? + ol= E(t).
’ : d’U 2
17. From Newton’s second law we obtain ma = —kv® 4+ mg.

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below
its equilibrium position the number of cubic feet in the additional submerged portion is
the volume of the circular cylinder: mx (radius)?xheight or 7(s/2)?y. Then we have from

Archimedes’ principle

upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)

= (62.4)7(s/2)%*y = 15.6ms>y.

It then follows from Newton’s second law that

w d%y 9 d’>y  15.6mws%g
EW:_1567TS?J or W—i_Ty:O’

where g = 32 and w is the weight of the barrel in pounds.
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1.3 Differential Equations as Mathematical Models

19. The net force acting on the mass is

F=ma=m— =—k(s+2)+mg=—kx+mg— ks.

Since the condition of equilibrium is mg = ks, the differential equation is

d’x
20. From Problem 19, without a damping force, the differential equation is m d?z/dt? = —kx.

With a damping force proportional to velocity, the differential equation becomes

i
dt?

d?x

m _
dt?

dx dx
= —kxr — [— or — + kx=0.
s dt +5 dt +
21. As the rocket climbs (in the positive direction), it spends its amount of fuel and therefore the
mass of the fuel changes with time. The air resistance acts in the opposite direction of the
motion and the upward thrust R works in the same direction. Using Newton’s second law we

get
9 ) kot R
—(mv) = —mg — kv
dt g
Now because the mass is variable, we must use the product rule to expand the left side of the

equation. Doing so gives us the following:

d

E(mv) =-mg—kv+R

dm dv
UXE—f—mX%——mg—kU‘FR

The last line is the differential equation we wanted to find.

22. (a) Since the mass of the rocket is m(t) = m, + m, + my(t), take the time rate-of-change

and get, by straight-forward calculation,

d d d
— = — v t = / = —
dtm(t) dt(mp—l—m +my(t) =0+ 0+ mi(t) dtmf(t)

Therefore the rate of change of the mass of the rocket is the same as the rate of change

of the mass of the fuel which is what we wanted to show.

(b) The fuel is decreasing at the constant rate of A and so from part (a) we have

d d
Zm(t) = Zm;(6) = —A

m(t) = =Xt +c
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Using the given condition to solve for ¢, m(0) = 0+ ¢ = mg and so m(t) = —At + my.

The differential equation in Problem 21 now becomes

dm dv
vﬁ—k E—Hﬁv——mg—i-R

dv
=+ (=AMt +mg)— ; +kv=—-mg+R

d

dv
(— )\t—l—mo)dt (k—MNv=—-mg+R

dv k— A —mg R

— + v= +

dt —At + myg — At + my —At + my

dv kxR

dt " X+mo 0T e+ mo

(c) From part (b) we have that %mf(t) = —\ and so by integrating this result we get

mys(t) = —At+c. Now at time t = 0, m¢(0) = 04 ¢ = c therefore m¢(t) = —At+my(0) .
At some later time ¢, we then have my(t,) = =ty +ms(0) = 0 and solving this equation

for that time we get ¢, = mf(0) /X which is what we wanted to show.

23. From g = k/R? we find k = gR%. Using a = d?r/dt? and the fact that the positive direction
is upward we get
d*r k gR? d*r  gR?

w- T e e gt =

24. The gravitational force on m is F' = —kM,m/r?. Since M, = 47ér3/3 and M = 475 R /3 we
have M, = r>M/R? and

M,m r3Mm/R3 mM
F=—k 3 :_kT:_k s
Now from F = ma = d*r/dt*> we have
R 2 R
. . .. dA
25. The differential equation is i E(M — A).

dA
26. The differential equation is i ki(M — A) — ko A.

27. The differential equation is 2/(t) = r — kz(t) where k > 0.
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1.3 Differential Equations as Matgematical Models

28. Notice from the diagram that the segment from the waterskier to the boat is tangent to the
curve at the point P(z,y). For the sake of simplicity, let’s label the coordinates of the boat

on the x-axis as (a,0). The equation of this tangent line is y = y/(z)(x — a) from which we

get
y =y (z)(z - a)
y _
?—x—a
y _
—? a—x

By the Pythagorean Theorem we have y2 + (a — x)? = s? from which we make a substitution

and then solve for the derivative to get

y? + (a—2)* = s

v+ (y)y) =5

Notice that the sign of the derivative is negative because as the boat proceeds along the

positive z-axis, the y-coordinate decreases.

29. We see from the figure that 20 + o = 7. Thus

2 tan 6

Y —tana = tan(m — 20) = —tan 20 = —Lz .

—x 1 —tan=6
Since the slope of the tangent line is ¥/ = tanf we have
y/z = 2y'[1—(y')? or y—y(y/)? = 227/, which is the quadratic
equation y(y')? + 22y’ —y = 0 in 3. Using the quadratic )
formula, we get

y,:—2$:t\/43:2+4y2 :—azzl:\/az2—|—y2 / X 1
2y '

Y

]
A

Since dy/dx > 0, the differential equation is

d — 2 2 d
W _TrENVE Y or y—y— 22 +y?+2=0.
dx Y dx
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

30. The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, a one-parameter

family of solutions is P = cek*.

31. The differential equation in (3) is dT'/dt = k(T — T,,). When the body is cooling, T > T,,,
so T —T,, > 0. Since T is decreasing, dT'/dt < 0 and k < 0. When the body is warming,
T < Tp,soT —1T, <0. Since T is increasing, dT'/dt > 0 and k < 0.

32. The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then
dA/dt = 0 at this time and A = 600. If A(¢) continues to increase without reaching a
maximum, then A’(t) > 0 for ¢t > 0 and A cannot exceed 600. In this case, if A’(t) approaches

0 as t increases to infinity, we see that A(t) approaches 600 as ¢ increases to infinity.
33. This differential equation could describe a population that undergoes periodic fluctuations.

34. (a) Asshown in Figure 1.3.23(a) in the text, the resultant of the reaction force of magnitude
F and the weight of magnitude mg of the particle is the centripetal force of magnitude
mw?z. The centripetal force points to the center of the circle of radius « on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

Fcosf =mg and Fsinf = mw’z.

(b) Using the equations in part (a) we find

Fsing mw?cx Wz dy 2

tanf = = = or = =
Fcost mg g dx g

35. From Problem 23, d?r/dt?> = —gR?/r?. Since R is a constant, if r = R + s, then d?r/dt?> =
d%s/dt? and, using a Taylor series, we get

d?s R? 2 2 2 p—2 —3 2gs

Thus, for R much larger than s, the differential equation is approximated by d?s/dt?> = —g.

36. (a) If p is the mass density of the raindrop, then m = pV and

dm av di4 4 odr dr
_— = _ = _ = 4 N R
at pdt[:aﬂ] p(4r dt) P
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the
radius is decreasing, k < 0. Solving dr/dt = k/p we get r = (k/p)t + co. Since r(0) = ro,

co =19 and r = kt/p + ro.

(b) From Newton’s second law, —[muv] = mg, where v is the velocity of the raindrop. Then

dt
dv dm 4 .3 dv 4 4
mE—HJE—mg or p<§ )E—Fv(k‘élm‘ ) = p(gm* )g.
Dividing by 4p7mr3/3 we get
dv 3l<: dv 3k/p
= —t ————v= k <O.
P T Ty Pt L
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1.3 Differential Equations as Mathematical Models

37. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let ¢ be the
time in hours after noon, z(¢) the depth in miles of the snow at time ¢, and y(¢) the distance
the plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption

gives
dy
wr— =k
dt ’
where w is the width of the plow. Each side of this equation simply represents the volume
of snow plowed in one hour. Now let ¢35 be the number of hours before noon when it started
snowing and let s be the constant rate in miles per hour at which z increases. Then for

t > —tog, x = s(t +tg). The differential equation then becomes

dy k1
dt  wst+ty
Integrating, we obtain
k

Y= E[ln(t—kto)—i-c]

where ¢ is a constant. Now when ¢t =0, y =0 so ¢ = —Inty and
k t
y=—In <1 + —).
ws to
Finally, from the fact that when t = 1, y = 2 and when ¢t = 2, y = 3, we obtain
2\° 1)\?
1+—) =(1+—| .
< i t0> ( i t0>

Expanding and simplifying gives t3 +to — 1 = 0. Since ¢y > 0, we find ¢y ~ 0.618 hours ~ 37
minutes. Thus it started snowing at about 11:23 in the morning.

38.
dP dA
(1) : o kP is linear (2) : i kA is linear
dr d
(3): i k(T —T,,) is linear (5) : d_at: =kx(n+1—2x) isnonlinear
(6) : % =k(a— X) (beta — X) is nonlinear (8): % =6— % is linear
dh Ap . . d*q dg 1 -
(10) - pri —A—w\/2gh is nonlinear (11) : LW + RE + 1= E(t) is linear
d?s . dv -
(12) : 2 =9 is linear (14) : m—y =mg = kv is linear
(15) : mﬁ + k:ﬁ = myg is linear (16) : (12_3: - 6—43: =0 is linear
e T g T Car T Lt

(17) = linearity or nonlinearity is determined by the manner in which W and T} involve x.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

39. At time ¢, when the population is 2 million cells, the differential equation P’(t) = 0.15P(t)
gives the rate of increase at time t. Thus, when P(t) = 2 (million cells), the rate of increase
is P'(t) = 0.15(2) = 0.3 million cells per hour or 300,000 cells per hour.

40. Setting A’(t) = —0.002 and solving A’(t) = —0.0004332A(t) for A(t), we obtain

Ay —0.002
—0.0004332 ~ —0.0004332

~ 4.6 grams.

A(t) =

Chapter 1 in Review

Yy
d
1. . 16" = k ¢1eh?; ﬁ = ky
Yy
d — d d
2. %(5 e ) = —2¢1e7% = —2(5 + cre” 2 —5); % =—2(y—>5) or % = —2y+ 10
d . .
3. d—(q cos kx + cosinkx) = —key sin kx + keg cos ka;
T
2 A
c1 coskx + cosin k) = —k%cq cos kx — k?co sin kx = —k*(¢q cos kx + ¢o sin kz ;
dz2
d2y 2 d2 2
@:—ky or W—i—k y=20
d . .
4. d—(cl cosh kx + cg sinh kz) = kep sinh kx + kcg cosh kax;
T
2 5e
1 cosh kz + co sinh kz) = k?cy cosh kx + k%cy sinh kz = k(¢ cosh kx + ¢ sinh kx ;
dx2
Py o, Py
W =k Yy or W —k Yy = 0
5. y = c1e% + cowe®; Yy = c1e® + cowe® + coe’; Yy’ = c1e® + cowe® + 2c9e”;

/

Y+ 1y =2(c1e” + cowe®) + 2c9e” = 2(c1e” + cowe® + cpe”) = 2y/; y' =2y +y=0

6. Y = —cre¥sinx + c1e® cosx + cge® cos T + cae” sin x;
y' = —cie®cosx — cre¥sinx — cre¥sinx + c1e¥ cosx — coe’ sinx + coe® cos T + ce” cosx +
et sin

= —2c1e”sinx + 2cze” cos x;

Yy’ — 2y = —2c1e” cosx — 2c0e” sinx = —2y; y' =2y +2y =0
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Chapter 1 in Review

7. a,d 8. ¢ 9. b 10. a, c 11. b 12. a, b, d

13. A few solutions are y =0, y = ¢, and y = e”.
14. Easy solutions to see are y = 0 and y = 3.

15. The slope of the tangent line at (x,%) is ¥/, so the differential equation is 3 = 2% + 3.

/

16. The rate at which the slope changes is dy’/dx = 3", so the differential equation is 3" = —y
ory”" +1y =0.

17. (a) The domain is all real numbers.

(b) Since y = 2/3z/3, the solution y = 2?/3 is undefined at x = 0. This function is a

solution of the differential equation on (—o0,0) and also on (0, c0).
18. (a) Differentiating y? — 2y = 2% — 2 + ¢ we obtain 2yy’ — 2y’ =2z — 1 or (2y —2)y’ =2z — 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 —2 =0—0+ c or ¢ = —1. Thus, a

2

solution of the initial-value problem is 3% — 2y = 2? — x — 1.

(c) Solving the equation y? — 2y — (#2 — 2 — 1) = 0 by the quadratic formula we get
y=02+\4+4@2-2-1))/2 =1+Va2—2z =14+ /z(x—1). Since z(x —1) >0
for ¥ < 0 or z > 1, we see that neither y = 1+ \/z(z —1) nor y = 1 — /z(z — 1) is

differentiable at x = 0. Thus, both functions are solutions of the differential equation,

but neither is a solution of the initial-value problem.
19. Setting x =x¢p and y =1 in y = —2/x + z, we get
1:—%—#950 or 22 —20—2= (20— 2)(x0 +1) =0.
Thus, zg = 2 or 29 = —1. Since z = 0 in y = —2/x + z, we see that y = —2/x + z is a
solution of the initial-value problem zy’ + y = 2z, y(—1) = 1, on the interval (—oo,0) and

y = —2/x + x is a solution of the initial-value problem xy’ +vy = 2z, y(2) = 1, on the interval
(0,00).

20. From the differential equation, 3/(1) = 12+[y(1)]?> = 1+(~1)? = 2 > 0, so y(z) is increasing in
some neighborhood of z = 1. From y” = 22+ 2yy’ we have y”(1) = 2(1)+2(-1)(2) = -2 < 0,

so y(x) is concave down in some neighborhood of x = 1.

\7

1

—3—2%72 3"

-2
-3

21. (a)

y=x2+4¢
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(b) When y = 22 + ¢1, v = 2z and (y)? = 422. When y = —2% + 2, ¥ = —22 and
(y')? =422,
—2%, <0

(c) Pasting together 2%, z > 0, and —2%, z < 0, we get y =
z2, xz>0.

22. The slope of the tangent line is y’|(_1’4) =6V4+5(-1)3=7.
23. Differentiating y = xsinxz 4+ x cos z we get
Yy =xcosz +sinz — xsinz + cosx
and

i . . .
Yy = —TSINT -+ COST + COST — X COST — SN — SINT

= —zsinx —xcosx + 2cosx — 2sinx.
Thus
y'+y=—xsinx —xcosz +2cosx — 2sinx + xsinx + xcosx = 2cosx — 2sinz.
An interval of definition for the solution is (—o0, 00).

24. Differentiating y = zsinz + (cos z) In(cos x) we get

—sinx

> — (sinz) In (cos z)

/ .
Yy =xcosx +sinx + cosx
Ccos T

=xcosx +sinz — sinz — (sinx) In (cos )

=xzcosz — (sinz)In (cos x)

and

” . . —sinx
Y = —TSINT+ COST —sSInT

> — (cosz) In (cos )

COS T

sin2

= —xsinz +cosz + — (cosx)In (cos x)

COS T

1 —cos?x

= —xsinz + cosx + ————— — (cos ) In (cos x)
cos

= —xsinz + cosx + secx — cos x — (cos ) In (cos x)

= —zsinz + secx — (cos x) In (cos z).
Thus
y" +y = —wzsinz + secx — (cos ) In(cos x) + zsinz + (cos z) In (cos z) = sec z.

To obtain an interval of definition we note that the domain of Inx is (0, 00), so we must have
cosx > 0. Thus, an interval of definition is (—m/2,7/2).
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Chapter 1 in Review

25. Differentiating y = sin (In x) we obtain 3’ = cos (Inz)/x and y"" = —[sin (Inx) + cos (In z)] /2.

Then

$2y//+$y/+y:$2 <

_sin (In) + cos (In x)) + xCOS (n2) +sin(lnz) = 0.

22
An interval of definition for the solution is (0, c0).

26. Differentiating y = cos (Inz)In (cos (Inz)) + (Inx) sin (In ) we obtain

cos (11n ) (‘Sm (;n Z

In (cos (Inx)) sin (In ) n (Inz)cos (Inx)

y' = cos (Inx)

> + In (cos (Inz)) <_M> i Cos () | sin(in)

T X X

and

y' = —x [ln (cos (In :E))w + sin (Inx) o (1ln . <— sin (;n 3:))} %
+In (cos (Inx)) sin (In x)% +x [(ln x) <— sin (;;n 3:)) + 2= (;n 3:)} % — (Inx) cos (In a:)%

sin? (In >
= % [— In (cos (Inx)) cos (Inz) + ﬁ + In (cos (Inx)) sin (In z)

— (Inz)sin (Inx) + cos (Inz) — (Inx) cos (In :L'):| .

Then

2,1 / sin” (lnx) : :
z*y" + 2y +y=—1In(cos(Inx))cos (Inz) + cos (Ina) +1In (cos (Inx)) sin (Inz) — (Inz) sin (Inx)

+cos(Inz) — (Inx) cos (Inz) — In (cos (Inx)) sin (In x)
+ (Inz)cos (Inz) + cos (Inx) In (cos (Inz)) + (Inz) sin (In z)

.. 92 12 2
_ sin (Inz) + cos (In) = sin” (Inz) + cos® (Inx) _ 1 _ sec (Ina),
cos (Inx) cos (Inx) cos (In x)

To obtain an interval of definition, we note that the domain of Inz is (0,00), so we must
have cos (Inz) > 0. Since cosxz > 0 when —7/2 < x < 7/2, we require —7/2 < Inxz < 7/2.
Since e® is an increasing function, this is equivalent to e ™2 < 2 < ¢™2. Thus, an interval
of definition is (e~™/2,e™?). (Much of this problem is more easily done using a computer

algebra system such as Mathematica or Maple.)
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

In Problems 27 - 30 we use (12) of Section 1.1 and the Product Rule.

27.
Y= ecosw/th_COStdt
0
@ — gCtos T ($e—cosx) — gin retosT /x te_COStdt
dx 0
d T T
Uy (sinz)y = e“®Txe” “®% —sin a:ecosx/ te” St dt + sinx <e'3°”/ te™ cost dt>
dx 0 0
xr x
=z —sin xec"”/ te” 8t dt 4 sin xec"”/ te”Stdt =z
0 0
28.
y=e" /m et~ dt
0
@_ T° o r—T —l—2x€m2/xet_t2dt
dx 0
dy 2 _x—x? x2 v t—t2 x2 v t—t2 T
— —2xy=-¢€" e + 2ze e dt —2z (e e dt ) =e
dx 0 0
29.

T —1
y:x/ €t
1t
xe—t
y—x—+/ —dt—e /—dt
1t

2y + (2® —2)y + (1—2)y = (—2e™" +ze™™)
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Chapter 1 in Review

30.

X X

. 2 2 .,

y =sinzx et costdt—cosa:/ et sint dt
0 0

/ : x? ‘ t2 2 : ’ t2
Yy =sinx e’ cosx |+ cosx e costdt—coszx (e’ sinz |+ sinx e’ sintdt
0 0

xX xr

2 . 2 .

= CoS¥ el costdt—l—sma:/ et sintdt
0 0

T

x
2 . 2 . 2 . 2 .,
y”:cosac(ex cosac) —smw/ e costdt—ksmw(ex smw) +cosw/ e sintdt
0 0

Y

X X
2 . . 2 2 .
=¢e” (coszx—i-smzw) — smx/ et costdt—cosx/ el sint dt
0 0

T

Y ty=e" —yty=e"

31. Using implicit differentiation we get

Pyt =23 +5

d
3z2 3+ a3 3y2d—y = 322
x

3z2y3 x33y2@: 322
3x2y?  3x2y2dx 3x?y?

. dy 1
T—— = —
4 dv  y?
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

32. Using implicit differentiation we get

(=77 +y* =1

(&) - =57

Now from the original equation, isolating the first term leads to (z —7)? = 1 —%2. Continuing

from the last line of our proof we now have

<@>2:(x—7)2:1—y2:i_1

dx 12

Adding 1 to both sides leads to the desired result.

33. Using implicit differentiation we get
3 _
¥y’ +3y=2-—3x

vy +y =1
(y* + 1)y =—1
o= L
y?+1
Differentiating the last line and remembering to use the quotient rule on the right side leads
to ,
y// _ 2yy
(y* +1)?
Now since ¢y = —1 / (y2 + 1) we can write the last equation as
Y R —— < — >3 = 2y(y')’
W +1)27 (P +1)2 @2+ 1) y2+1

which is what we wanted to show.
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Chapter 1 in Review

34. Using implicit differentiation we get
y=e "
y =e"(—y—ay)
ye Y +xe Wy +4 =0

ye ™ + (ze”™ + 1)y’ =0

Now since y = e~*Y, substitute this into the last line to get
yy + (zy + 1)y’ =0

r (14 zy)y’ + y? = 0 which is what we wanted to show.

In Problem 35 - 88, y = c1e3% + cpe® + 4x is given as a two-parameter family of solutions of the
second-order differential equation y" + 2y’ — 3y = —12x + 8.

35. If y(0) = 0 and 3/(0) = 0, then

c1+co=0
—3c1+c9g=—4
subtracting the second equation from the first gives us 4c; = 4 or ¢; = 1, and thus ¢ = —1.
Therefore y = e™3% — e® + 4.
36. If y(0) = 5 and y/(0) = —11, then
c1+c=5
—3c1 +cog=—15

subtracting the second equation from the first gives us 4¢; = 20 or ¢; = 5, and thus ¢, = 0.
Therefore y = 5e73% + 4z.

37. If y(1) = —2 and 3/(1) = 4, then

e + e = —6

—3cie? + e =0

3
subtracting the second equation from the first gives us 4¢y = —6 or ¢ = —563, and thus
9 3 9
= —56_1. Therefore y = —56_3””3 — §em_1 + 4.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

38. If y(—1) =1 and y/(—1) = 1, then

1€+t =5

—3c1e® + et = -3

subtracting the second equation from the first gives us 4¢; = 8 or ¢; = 2e~3, and thus ¢y = 3e.
Therefore y = 2e73273 4 3¢ ! 4 42,

39. We are to use the Leibniz’s rule

d [*@ dv du  [*@ 9
— t)ydt = F — —F — —F(z,t)dt
i Pt =Pee@)g - Peueg s [ e

Since y(x) = é/m f(t)sin (3x — 3t) dt, take F(x,t) = f(t)sin(3z —3t), u(z) = 0, and
v(z) = x to get ’

de/f sin (3z — 3t) dt

[F(:z:, xz)-1—F(z,0)-0+ /Ox (%f(t) sin (3z — 3t) dt]

Wl =

[f(:n) sin (3x — 3x) + /01‘ 3f(t) cos (3x — 3t) dt}

Wl

= /x f(t)cos (3x — 3t)dt
0

Apply the Leibniz’s rule a second time to 3’ = / f(t) cos (3x — 3t) dt by taking F(z,t) =
0
f(t)cos (3x — 3t), u(x) = 0, and v(x) = = to get

%y’(:ﬂ) — %/0 f(t) cos (3x — 3t) dt

:F(x,x)-l—F(x,O)-O—I—/m%f(t)cos(?):n—iit)dt
0

= f(z)cos (3z — 3x) + /1‘ —3f(t)sin (3z — 3t) dt

0

)3 /O " Ft) sin (3¢ — 3¢) dt

Therefore y” = f(x / f(t)sin (3x — 3t) dt. Now substituting y and 3" into the differential

equation we get

Y +9y = f(x) —3/0mf(t)sin(3x—3t)dt+9-%/Oxf(t)sin(?)a;—i%t)dt:f(a:)


https://ebookyab.ir/solution-manual-advanced-engineering-mathematics-6th-ise-dennis-zill/

E&gﬂ?ﬂ%%%‘?iﬁ}’g&iir/@%lH%Qﬂ?@&%‘fa&'ﬁ‘&ﬂ%@%‘é‘&@%@%ﬁ%ﬂ‘W&@SP&%@%%&%’E}E;@I'(aa)

Chapter 1 in Review

40. We are to use the Leibniz’s rule

d [*@ dv du  [*@ 9
— F(x,t)dt =F — —F — —F(x,t)dt
i P =Pe@)g - Peawig s [ e

Since y(z) = / e” St dt, take F(x,t) = e*°! u(z) = 0, and v(z) = 7 to get
0
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Applying the Leibniz’s rule a second time to y/(z) = / coste” St dt by taking F(x,t) =
0

coste St y(x) =0, and v(x) = 7 to get
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An alternative form of 3’ can be obtained by integrating by parts with respect to t:
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y =sint-e + / ze®Stsin? t dt = / e Stgin? ¢ dt = 3:/ e” St gin? ¢ dt.
0 0 0

0

We use this last form of 3’ instead of the first in the differential equation:

s ™
2y +y =2 / €5t cos? ¢ dt + w/ e® St sin? ¢ dt
0 0
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s /—/% s
:3:/ cos® t + sin’ ¢ e“OStdt:x/ et dt =y
0 0
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Therefore, zy” + " — xy = 0.

41. From the graph we see that estimates for yo and y; are yop = —3 and y; = 0.
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42.

43.

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

The differential equation is

dh CA(] \/ﬂ
dt
Using Ag = 7(1/24)? = 7/576, A, = 7(2)% = 47?, and g = 32, this becomes
dh _ cm/576
- V64h = ———
dt 47 G4h = 288 \/_

Let z(t) represent the height of the top of the rope at any time ¢ with the positive direction
upward as indicated. The weight of the portion of the rope off the ground is given by
W = (z ft) - (1 1b/ft) = 2. The mass of the rope is m = W/g = x/32.
F=5—W=5—2x. Now by Newton’s second law we get

F:i %<$ v>:5—:17

o (mv) =
Now expand the derivative and remember that v = dz/dt to get

i(i
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oSallai <—x> 4 322 = 160

The net force is

'v):5—x

=160 — 32%

dt? dt
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