
0 Preliminaries

0.9 Problems

P.0.1 Let f : {1, 2, . . . , n}! {1, 2, . . . , n} be a function. Show that the following are equiv-
alent: (a) f is one to one. (b) f is onto. (c) f is a permutation of 1, 2, . . . , n.

Solution. If S is a finite set, let #S denote the number of elements in S. The
following arguments rely on the fact that if R and T are subsets of a finite set, then
#(R [ T )  #R+#T , with equality if and only if R and T are disjoint.

(a) ) (b) If n = 1 there is nothing to prove. Proceed by induction. For each k =
1, 2, . . . , n let Sk be the statement #{f(1), f(2), . . . , f(k)} = k. Then S1 = {f(1)}
contains one element, so S1 is true. Assume that 1  k  n� 1 and that Sk is true.
Observe that

{f(1), f(2), . . . , f(k + 1)} = {f(1), f(2), . . . , f(k)} [ {f(k + 1)}.

Because f is one to one, {f(k+1)} is disjoint from {f(1), f(2), . . . , f(k)}. Therefore,
the induction hypothesis ensures that

#{f(1), f(2), . . . , f(k + 1)} = #{f(1), f(2), . . . , f(k)}+#{f(k + 1)} = k + 1,

which shows that Sk+1 is true. The principle of mathematical induction ensures
that Sn is true, so #{f(1), f(2), . . . , f(n)} = n. Since

{f(1), f(2), . . . , f(n)} ✓ {1, 2, . . . , n}

and both sets contain n elements, they are identical. This means that f is onto.

(b) ) (a) If n = 1 there is nothing to prove, so assume that n � 2. Let k 2
{1, 2, . . . , n} be given and let Fk = {f(1), f(2), . . . , f(n)} \ {f(k)} denote the set
obtained by omitting the element f(k) from {f(1), f(2), . . . , f(n)}. Since f is onto,

{1, 2, . . . , n} = {f(1), f(2), . . . , f(n)} = Fk [ {f(k)}.

Therefore,

n = #{1, 2, . . . , n} = #(Fk [ {f(k)})  #Fk +#{f(k)}, (0.9.1)
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8 Preliminaries

with equality if and only if Fk and {f(k)} are disjoint. Since #Fk  n � 1 and
#{f(k)} = 1, the inequality in (0.9.1) is an equality; we conclude that Fk and
{f(k)} are disjoint. Therefore, f(k) 6= f(i) for all i 2 {1, 2, . . . , n} such that i 6= k.

Since k 2 {1, 2, . . . , n} is arbitrary, it follows that f is one to one.

(a) , (c) This is a definition.

P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal
entries of a skew-Hermitian matrix are purely imaginary; (c) the diagonal entries
of a skew-symmetric matrix are zero.

Solution. (a) If A is Hermitian, then A
⇤ = [aji] = [aij ] = A, so ajj = ajj (that is,

each ajj is real) for all j = 1, 2, . . . , n.

(b) If A is skew-Hermitian, then A
⇤ = [aji] = [�aij ] = �A, so ajj = �ajj (that is,

each ajj is pure imaginary) for all j = 1, 2, . . . , n.

(c) If A is skew-symmetric, then A
T = [aji] = [�aij ] = �A

T, so ajj = �ajj (that
is, each ajj = 0) for all j = 1, 2, . . . , n.

P.0.3 Use mathematical induction to prove that 12 + 22 + · · · + n
2 = n(n+1)(2n+1)

6 for
n = 1, 2, . . ..

Solution. Let n � 1 and let Sn be the statement that

nX

k=1

k
2 = n(n+ 1)(2n+ 1)/6.

Then S1 is the assertion that

1 =
1(1 + 1)(2 + 1)

6
,

which is true. Let n � 1 and assume that Sn is true. Then

n+1X

k=1

k
2 =

nX

k=1

k
2 + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6
,

which shows that Sn+1 is true. The principle of mathematical induction ensures
that Sn is true for all n = 1, 2, . . ..

P.0.4 Use mathematical induction to prove that 13 + 23 + · · · + n
3 =

�n(n+1)
2

�2
for

n = 1, 2, . . ..

Solution. Let n � 1 and let Sn be the statement that
Pn

k=1 k
3 = n

2(n + 1)2/4.
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9 Problems

The S1 is the assertion that

1 =
1222

4
= 1,

which is true. Let n � 1 and assume that Sn is true. Then

n+1X

k=1

k
3 =

nX

k=1

k
3 + (n+ 1)3 =

n
2(n+ 1)2

4
+ (n+ 1)3

= (n+ 1)2
n
2 + 4(n+ 1)

4
=

(n+ 1)2(n+ 2)2

4
,

which shows that Sn+1 is true. The principle of mathematical induction ensures
that Sn is true for all n = 1, 2, . . ..

P.0.5 Let A 2 Mn be invertible. Use mathematical induction to prove that (A�1)k =
(Ak)�1 for all integers k.

Solution. For each k 2 Z we must prove that Ak(A�1)k = (A�1)kAk = I; denote
this statement by Sk. Then S0 is true because A

0 = I by definition, A0(A�1)0 =
II = I, and (A�1)0A0 = II = I. If k 2 Z is negative, then by definition A

k(A�1)k =
(A�1)�k((A�1)�1)�k = (A�1)�k

A
�k. Therefore, it su�ces to prove that Sk is true

for each positive integer k. The statement S
1 is A(A�1) = (A�1)A = I, which is

true. Assume that k � 1 and S
k is true. Then Sk+1 is the statement

A
k+1(A�1)k+1 = (A�1)k+1

A
k+1 = I.

The induction hypothesis ensures that

A
k+1(A�1)k+1 = A(Ak(A�1)k)A�1 = AIA

�1 = I

and

(A�1)k+1
A

k+1 = A
�1((A�1)kAk)A = A

�1
IA = I,

so Sk+1 is true. The principle of mathematical induction ensures that Sk is true for
all k = 1, 2, . . ..

P.0.6 Let A 2 Mn. Use mathematical induction to prove that A
j+k = A

j
A

k for all
integers j, k.

Solution. Since A is not assumed to be invertible, we prove this assertion for all
j, k 2 N. Let j 2 N be given and let Sk be the statement that Aj+k = A

j
A

k. Then
A

j+0 = A
j = A

j
I = A

j
A

0, so S0 is true. Suppose that Sk is true for some k � 0.
Then A

j+k+1 = (Aj+k)A = (Aj
A

k)A = A
j
A

k
A = A

j
A

k+1
, so Sk+1 is true. The

principle of mathematical induction ensures that Sk is true for all k 2 N.
An alternative approach is to invoke the associativity of matrix multiplication:
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10 Preliminaries

If j, k � 1, then

A
j+k = A · · ·A| {z }

j+k factors

= A · · ·A| {z }
j factors

A · · ·A| {z }
k factors

= (A · · ·A| {z }
j factors

)(A · · ·A| {z }
k factors

) = A
j
A

k
.

If j = 0, then A
0+k = A

k = IA
k = A

0
A

k. If k = 0, then A
j+0 = A

j = A
j
I = A

j
A

0.

P.0.7 Use mathematical induction to prove Binet’s formula (9.5.5) for the Fibonacci
numbers.

Solution. Define fk by f1 = f2 = 1 and fk+1 = fk + fk�1 for k = 2, 3, . . ..
Let � = (1 +

p
5)/2 and ⌧ = (1 �

p
5)/2. Compute (� � ⌧)/

p
5 = 1 = f1 and

(�2 � ⌧
2)/

p
5 = 1 = f2. We must show that (�k � ⌧

k)/
p
5 = fk for all k � 2.

Suppose that z 2 C and z
2 � z � 1 = 0, that is, z2 = z + 1; check that � and ⌧

satisfy this equation. Notice that z2 = f2z + f1 and

z
3 = z(f2z + f1) = f2z

2 + f1z

= f2(z + 1) + f1z = (f2 + f1)z + f2

= f3z + f2.

Let k � 2 and let Sk be the statement that tk = fkz + fk�1. We have shown that
S1 and S2 are true. If k � 2 and Sk is true, then

z
k+1 = z(fkz + fk�1) = fkz

2 + fk�1z

= fk(z + 1) + fk�1z = (fk + fk�1)z + fk

= fk+1z + fk,

so Sk+1 is true. The principle of mathematical induction ensures that Sk is true for
all k = 1, 2, . . ..

Since � and ⌧ satisfy the equation z
2 � z � 1 = 0, we have

�
k = fk�+ fk�1

and

⌧
k = fk⌧ + fk�1

for all k = 1, 2, . . .. Therefore, �k � ⌧
k = fk(�� ⌧) = fk

p
5 and hence

fk =
�
k � ⌧

k

p
5

for all k = 1, 2, . . ..

P.0.8 Use mathematical induction to prove that 1 + z + z
2 + · · · + z

n�1 = 1�zn

1�z for
complex z 6= 1 and all positive integers n.

Solution. Let Sn be the statement that (1� z)(1+ z+ · · ·+ z
n�1) = 1� z

n. Then
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11 Problems

S1 is the statement that (1� z)(1) = 1� z, which is true. Suppose that n � 2 and
Sn is true. Then

(1� z)(1 + z + · · ·+ z
n�1 + z

n) = (1� z)(1 + z + · · ·+ z
n�1) + (1� z)zn

= (1� z
n) + z

n � z
n+1

= 1� z
n+1

,

which shows that Sn+1 is true. The principle of mathematical induction ensures
that Sn is true for all n = 1, 2, . . .. If z 6= 1, it follows that

1 + z + · · ·+ z
n�1 + z

n =
1� z

n+1

1� z

for all n = 1, 2, . . ..

P.0.9 (a) Compute the determinants of the matrices

V2 =


1 z1

1 z2

�
, V3 =

2

64
1 z1 z

2
1

1 z2 z
2
2

1 z3 z
2
3

3

75 , V4 =

2

66664

1 z1 z
2
1 z

3
1

1 z2 z
2
2 z

3
2

1 z3 z
2
3 z

3
3

1 z4 z
2
4 z

3
4

3

77775
,

and simplify your answers as much as possible. (b) Use mathematical induction to
evaluate the determinant of the n⇥ n Vandermonde matrix

Vn =

2

666664

1 z1 z
2
1 · · · z

n�1
1

1 z2 z
2
2 · · · z

n�1
2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 zn z
2
n · · · z

n�1
n

3

777775
. (0.9.2)

(c) Find conditions on z1, z2, . . . , zn that are necessary and su�cient for Vn to be
invertible.

Solution. (a) To compute detV2, subtract z1 times the first column from the second
column:

detV2 = det


1 0
1 z2 � z1

�
= z2 � z1.

To compute detV3, subtract z1 times the third column from the fourth column,
subtract z1 times the first column from the second column, expand by minors
across the first row, factor each row, pull out the factors, and use the 2⇥ 2 case:

detV3 = det

2

4
1 z1 0
1 z2 z

2
2 � z2z1

1 z3 z
2
3 � z3z1

3

5 = det

2

4
1 0 0
1 z2 � z1 z

2
2 � z2z1

1 z3 � z1 z
2
3 � z3z1

3

5
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12 Preliminaries

= det


z2 � z1 z

2
2 � z2z1

z3 � z1 z
2
3 � z3z1

�
= (z2 � z1)(z3 � z1) det


1 z2

1 z3

�

= (z3 � z2)(z3 � z1)(z2 � z1)

=
Y

i,j=1,2,3
i>j

Y

i,j=1,2,3
i>j

(zi � zj).

To compute detV4, proceed as in the 3 ⇥ 3 case to create zero entries in the first
row. Subtract a suitable multiple of a column from the column to its right, starting
at the right. Expand by minors along the first row, remove a factor from each row,
and use the result for the 3⇥ 3 case:

detV4 = det

2

664

1 z1 z
2
1 z

3
1

1 z2 z
2
2 z

3
2

1 z3 z
2
3 z

3
3

1 z4 z
2
4 z

3
4

3

775 = det

2

664

1 z1 z
2
1 0

1 z2 z
2
2 z

3
2 � z

2
2z1

1 z3 z
2
3 z

3
3 � z

2
3z1

1 z4 z
2
4 z

3
4 � z

2
4z1

3

775

= det

2

664

1 z1 0 0
1 z2 z

2
2 � z2z1 z

3
2 � z

2
2z1

1 z3 z
2
3 � z3z1 z

3
3 � z

2
3z1

1 z4 z
2
4 � z4z1 z

3
4 � z

2
4z1

3

775

= det

2

664

1 0 0 0
1 z2 � z1 z

2
2 � z2z1 z

3
2 � z

2
2z1

1 z3 � z1 z
2
3 � z3z1 z

3
3 � z

2
3z1

1 z4 � z4 z
2
4 � z4z1 z

3
4 � z

2
4z1

3

775

= det

2

4
z2 � z1 z

2
2 � z2z1 z

3
2 � z

2
2z1

z3 � z1 z
2
3 � z3z1 z

3
3 � z

2
3z1

z4 � z1 z
2
4 � z1 z

3
4 � z

2
4z1

3

5

= (z4 � z1)(z3 � z1)(z2 � z1) det

2

4
1 z2 z

2
2

1 z3 z
2
3

1 z4 z
2
4

3

5

= (z4 � z1)(z3 � z1)(z2 � z1)
Y

i,j=2,3,4
i>j

Y

i,j=2,3,4
i>j

(zi � zj)

=
Y

i,j=1,2,3,4
i>j

Y

i,j=1,2,3,4
i>j

(zi � zj).

(b) Let n � 2 and let Sn be the statement that

detVn =
Y

i,j=1,2,...,n
i>j

Y

i,j=1,2,...,n
i>j

(zi � zj).
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We have shown that Sn is true for n = 2, 3, 4. Suppose that n � 4 and Sn is true.
Use the column-wise elimination process demonstrated in the preceding cases and
the induction hypothesis to obtain

detVn+1 = det

2

6664

1 z1 · · · z
n�1
1 z

n
1

1 z2 · · · z
n�1
2 z

n
2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

1 zn+1 · · · z
n�1
n+1 z

n
n+1

3

7775

= det

2

6664

1 0 · · · 0 0
1 z2 � z1 · · · z

n�1
2 � z

n�2
2 z1 z

n
2 � z

n
2 z1

.

.

.
.
.
.

. . .
.
.
.

.

.

.

1 zn+1 � z1 · · · z
n�1
n+1 � z

n�2
n+1z1 z

n
n+1 � z

n
n+1z1

3

7775

= (zn+1 � z1)(zn � z1) · · · (z2 � z1) det

2

64
1 z2 · · · z

n�1
2

.

.

.
.
.
.

. . .
.
.
.

1 zn+1 · · · z
n�1
n+1

3

75

= (zn+1 � z1)(zn � z1) · · · (z2 � z1)
Y

i,j=2,3,...,n+1
i>j

Y

i,j=2,3,...,n+1
i>j

(zi � zj)

=
Y

i,j=1,2,...,n+1
i>j

Y

i,j=1,2,...,n+1
i>j

(zi � zj).

This shows that Sn+1 is true. The principle of mathematical induction ensures that
Sn is true for all n = 1, 2, . . ..

(c) The formula for detSn shows that Vn is invertible if and only if zi 6= zj for all
i, j = 1, 2, . . . , n such that i 6= j.

P.0.10 Consider the polynomial p(z) = ckz
k+ck�1z

k�1+· · ·+c1z+c0, in which k � 1, each
coe�cient ci is a nonnegative integer, and ck � 1. Prove the following statements:
(a) p(t + 2) = ckt

k + dk�1t
k�1 + · · · + d1t + d0, in which each di is a nonnegative

integer and d0 � 2k. (b) p(nd0+2) is divisible by d0 for each n = 1, 2, . . .. (c) p(n) is
not a prime for infinitely many positive integers n. This was proved by C. Goldbach
in 1752.

Solution. (a) Compute

p(t+ 2) = ck(t+ 2)k + ck�1(t+ 2)k�1 + · · ·+ c1(t+ 2) + c0

= ck(t
k + · · ·+ 2k) + ck�1(t

k�1 + · · ·+ 2k�1) + · · · c1(t+ 2) + c0

= ckt
k + dk�1t

k�1 + · · ·+ d1t+ d0,
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in which each dj is a nonnegative integer because it is a sum of nonnegative integer
multiples of the integers c0, c1, . . . , ck. Since each ci � 0, ck � 1, and k � 1, we have

d0 = ck2
k + ck�12

k�1 + · · ·+ 2c1 + c0 � ck2
k � 2k > 1.

(b) For each positive integer n, p(nd0 + 2) is a sum

p(nd0 + 2) = ck(nd0)
k + dk�1(nd0)

k�1 + · · ·+ d1(nd0) + d0,

in which each summand is either zero or a positive integer divisible by d0. Therefore,
p(nd0 + 2) is divisible by the positive integer d0 > 1.

(c) In (b) we have exhibited infinitely many positive integersm (namely,m = nd0+2
for n = 1, 2, . . .) such that p(m) is not prime.

P.0.11 If p is a real polynomial, show that p(�) = 0 if and only if p(�) = 0.

Solution. Let p(z) = anz
n + an�1z

n�1 + · · ·+ a1z+ a0, in which a0, a1, . . . , an are
real. If p(�) = 0, then

0 = 0 = p(�) = an�
n
+ an�1�

n�1
+ · · ·+ a1�+ a0

= an�
n
+ an�1�

n�1
+ · · ·+ a1�+ a0

= p(�).

If � is a non-real root of p, could � have multiplicity 2 while � has multiplicity 3?
This problem provides no information about the answer to this question, but the
following problem shows why � and � have the same multiplicities as zeros of p.

P.0.12 Show that a real polynomial can be factored into real linear factors and real
quadratic factors that have no real zeros.

Solution. Let p be a real polynomial of degree n � 1. If n = 1 then p(z) = c1z+c0,
c1 6= 0, and the real number �c0/c1 is the only zero of p. Now suppose that n � 2.
If a non-real complex number µ1 is a zero of p, the preceding problem ensures that
µ1 is also a zero of p. Therefore, p is divisible by (z�µ1), by (z�µ1), and therefore
by their product, which is the real quadratic polynomial

g(z, µ1) = (z � µ1)(z � µ1) = z
2 � 2(Reµ1)z + |µ1|2,

that is, p(z) = g(z, µ1)qn�2(z), in which the quotient qn�2 is a real polynomial of
degree n� 2. If qn�2 has any non-real zeros, let µ2 be one of them. The preceding
argument shows that qn�2(z) = g(z, µ2)qn�4(z), in which the quotient qn�4 is a
real polynomial of degree n � 4 and p(z) = g(z, µ1)g(z, µ2)qn�4(z). Continue this
process until the quotient has no non-real zeroes, that is,

p(z) = g(z, µ1)g(z, µ2) · · · g(z, µk)qn�2k(z),

in which qn�2k is a real polynomial of degree n�2k that has no non-real zeros. If n =
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2k, then qn�2k(z) = c is a nonzero scalar and p(z) = cg(z, µ1)g(z, µ2) · · · g(z, µk).
If n > 2k, then qn�2k(z) has only real zeros �1,�2, . . . ,�n�2k and qn�2k(z) =
c(z � �1)(z � �2) · · · (z � �n�2k) for some nonzero scalar c. In this case,

p(z) = cg(z, µ1)g(z, µ2) · · · g(z, µk)(z � �1)(z � �2) · · · (z � �n�2k).

This argument shows that each non-real zero of p has the same multiplicity as its
complex conjugate.

P.0.13 Show that every real polynomial of odd degree has a real zero. Hint : Use the
Intermediate Value Theorem.

Solution. Let p(z) = cnz
n + cn�1z

n�1 + · · · + c1z + c0, in which n � 1 is odd,
cn 6= 0, and all the coe�cients are real. Let t 2 R be nonzero and define

g(t) = c
n�1

t
�1 + cn�2t

�2 + · · ·+ c1t
�n+1 + c0t

�n
.

Then p(t) = t
n(cn + g(t)). Since limt!±1 g(t) = 0, for su�ciently large positive

or negative M , the value p(M) has the same sign as M
n
cn and p(�M) has the

same sign as (�M)ncn. Since n is odd, Mn and (�M)n (and therefore also p(M)
and p(�M)) have opposite signs. Since p is a continuous real valued function, the
intermediate value theorem ensures that p(t) = 0 for some t 2 [�M,M ].

P.0.14 Let h(z) be a polynomial and suppose that z(z�1)h(z) = 0 for all z 2 [0, 1]. Prove
that h is the zero polynomial.

Solution. Since z(z�1)h(z) = 0 for all z 2 [0, 1] and z(z�1) 6= 0 for all z 2 (0, 1),
it follows that h(z) = 0 for all z 2 (0, 1). A polynomial has infinitely many zeros if
and only if it is the zero polynomial, so we conclude that h is the zero polynomial.

P.0.15 (a) Prove that the n⇥n Vandermonde matrix (0.9.2) is invertible if and only if the
n complex numbers z1, z2, . . . , zn are distinct. Hint : Consider the system Vnc = 0,
in which c = [c0 c1 . . . cn�1]T, and the polynomial p(z) = cn�1z

n�1+· · ·+c1z+c0.
(b) Use (a) to prove the Lagrange Interpolation Theorem (Theorem 0.7.6).

Solution. (a) The assertion has already been proved in P.0.9, but the hint directs
us to give a di↵erent proof. Let n � 2, let c = [c0 c1 . . . cn�1]T 2 Cn, and let p(z) =
cn�1z

n�1+ cn�2z
n�2+ · · ·+ c1z+ c0. Observe that Vnc = [p(z1) p(z2) . . . p(zn)]T.

Suppose that z1, z2, . . . , zn are distinct. If Vn is not invertible then there is a
nonzero vector c such that Vnc = 0, and hence p(z1) = p(z2) = · · · = p(zn) = 0.
But p is a polynomial of degree at most n � 1, so it has more than n � 1 distinct
zeros if and only if it is the zero polynomial, that is, if and only if c0 = c1 = · · · =
cn�1 = 0, which is not possible since c 6= 0. This contradiction shows that Vn must
be invertible.

Conversely, suppose that z1, z2, . . . , zn are not distinct. Then two rows of Vn are
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16 Preliminaries

identical, so detVn = 0 and Vn is not invertible. This shows that z1, z2, . . . , zn are
distinct if and only if Vn is invertible.

(b) Using the notation of (a), the Lagrange Interpolation Theorem says that if
z1, z2, . . . , zn are distinct, then the linear system Vnc = [p(z1) p(z2) . . . p(zn)]T = w
has a unique solution c for any given w. A linear system has a unique solution for
any given right-hand side if and only if its coe�cient matrix is invertible, and part
(a) ensures that Vn is invertible if z1, z2, . . . , zn are distinct. If w and the distinct
values z1, z2, . . . , zn are real, then c = V

�1
n w is real, so the interpolating polynomial

p has real coe�cients.

P.0.16 If c is a nonzero scalar and p, q are nonzero polynomials, show that (a) deg(cp) =
deg p, (b) deg(p + q)  max{deg p, deg q}, and (c) deg(pq) = deg p + deg q. What
happens if p is the zero polynomial?

Solution. Suppose that m,n are nonnegative integers, p(z) = amz
m+am�1z

m�1+
· · ·+ a1z + a0, q(z) = bnz

n + bn�1z
�1 + · · ·+ b1z + b0, ambn 6= 0, and c 6= 0. Then

deg p = m and deg q = n. (a) cp(z) = camz
m + · · · and cam 6= 0, so deg(cp) = m =

deg p. (b) p(z)+q(z) = amz
m+ · · ·+bnz

n+ · · · . If m 6= n, the highest order nonzero
term in p+q is either amz

m or bnzn, so deg(p+q) = max{m,n} = max{deg p, deg q}.
If m = n, the highest order term in p + q is (an + bn)zn if an + bn 6= 0, in
which case deg(p + q) = n = max{deg p, deg q}. If m = n, an + bn = 0, and
p + q 6= 0, the highest order term in p + q has nonnegative degree less than n, so
deg(p+q) < n = max{deg p, deg q}. Ifm = n and p+q = 0, then �1 = deg(p+q) <
deg p + deg q. Therefore, in all cases we have deg(p + q)  max{deg p, deg q}. (c)
p(z)q(z) = ambnz

m+n + · · · , so deg(pq) = m+ n = deg p+ deg q.

If p is the zero polynomial, calculations in the extended real number system
show that (a) cp is the zero polynomial, so deg(cp) = �1 = deg(p); (b) p+ q = q,
so deg(p + q) = deg q = max{�1, deg q} = max{deg p, deg q}; (c) pq is the zero
polynomial, so deg(pq) = �1 = �1+ deg q = deg p+ deg q.

The problem does not ask, “What happens if p and q are both zero?”, but if they
are in (a) we have both p and cp zero polynomials, so �1 = deg(cp) = deg p; in (b)
we have p, q, and p+q all zero polynomials, so�1 = deg(p+q) = max{�1,�1} =
max{deg p, deg q}; in (c) we have p, q, and pq all zero polynomials, so �1 =
deg(pq) = �1+ (�1) = deg p+ deg q.

P.0.17 Prove the uniqueness assertion of the division algorithm. That is, if f and g are
polynomials such that 1  deg g  deg f and if q1, q2, r1 and r2 are polynomials
such that deg r1 < deg g, deg r2 < deg g, and f = gq1 + r1 = gq2 + r2, then q1 = q2

and r1 = r2.

Solution. If f = gq1 + r1 = gq2 + r2, then 0 = g(q1 � q2) + (r1 � r2) so that
g(q1 � q2) = r2 � r1. If r2 � r1 = 0, then the assumption that g 6= 0 (deg g � 1)
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ensures that q1 � q2 = 0 and we have uniqueness. Now suppose that r2 � r1 6= 0, so
deg(r2 � r1) � 0, which implies that q1 � q2 6= 0. We are given that deg r1 < deg g
and deg r2 < deg g, so part (c) of the preceding problem ensures that

deg g > deg(r2 � r1) = deg(g(q1 � q2)) = deg g + deg(q1 � q2) � deg g,

that is, deg g > deg g. This contradiction ensures that r2 � r1 6= 0 is impossible, so
r2 � r1 = 0 is the only possibility and we have uniqueness.

P.0.18 Give an example of a nonconstant function f : R ! R such that f(t) = 0 for
infinitely many distinct values of t. Is f a polynomial?

Solution. f(t) = sin t is a real-valued function that has infinitely many real zeros.
It is not a polynomial.

P.0.19 Let A = diag(1, 2) and B = diag(3, 4). If X 2 M2 intertwines A and B, what can
you say about X? For a generalization, see Theorem 10.4.1.

Solution. Let

X =


a b

c d

�
.

The intertwining relation AX �BX = 0 in this case is

1 0
0 2

� 
a b

c d

�
�

a b

c d

� 
3 0
0 4

�
=


0 0
0 0

�
,

which is 
a b

2c 2d

�
�

3a 4b
3c 4d

�
= �


2a 3b
c 2d

�
=


0 0
0 0

�
.

Therefore, a = b = c = d = 0 and X = 0.

P.0.20 Verify the identity (0.5.2) for a 2⇥ 2 matrix, and show that the identity (0.3.4) is
(0.5.3).

Solution. If

A =


a b

c d

�
,

then

adjA =


d �b

�c a

�
.

Compute

A adjA =


a b

c d

� 
d �b

�c a

�
= (ad� bc)


1 0
0 1

�
= (detA)I
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18 Preliminaries

and

(adjA)A =


d �b

�c a

� 
a b

c d

�
= (ad� bc)


1 0
0 1

�
= (detA)I.

If detA 6= 0, then A((detA)�1 adjA) = ((detA)�1 adjA)A = I, so A
�1 =

(detA)�1 adjA.

P.0.21 Deduce (0.5.3) from the identity (0.5.2).

Solution. Suppose that detA 6= 0 and let B = (detA)�1 adjA. Since AB = BA =
I, B is, by definition, the inverse of A.

P.0.22 Deduce the second assertion in Theorem 0.8.1 from the first.

Solution. LetX = B = A. Then AA = AA, so the first assertion becomes p(A)A =
Ap(A) in this case. This is the second assertion.

P.0.23 Let A =
h
0 1
0 0

i
, B =

h
4 3
1 2

i
, and C =

h
3 4
1 2

i
. Show that AB = AC even though

B 6= C.

Solution. Compute

AB =


0 0
1 2

�
= AC,

in which B 6= C. We cannot cancel A in the equation AB = AC (that is, we cannot
multiply both sides by A

�1) because A is not invertible.

P.0.24 Let A 2 Mn. Show that A is idempotent if and only if I �A is idempotent.

Solution. We have

(I �A)2 = I � 2A+A
2 = (I �A) + (A2 �A).

Therefore, (I�A)2 = (I�A) if and only if A2�A = 0. That is, I�A is idempotent
if and only if A is idempotent.

P.0.25 Let A 2 Mn be idempotent. Show that A is invertible if and only if A = I.

Solution. If A2 = A and A is invertible, then A = A
�1

A
2 = A

�1
A = I. If A = I

then A is an invertible idempotent matrix.

P.0.26 Let A,B 2 Mn be idempotent. Show that tr((A�B)3) = tr(A�B).

Solution. Compute

(A�B)3 = (A�B)(A2 �AB �BA+B
3) = (A�B)(A�AB �BA+B)

= A
2 �A

2
B �ABA+AB �BA+BAB +B

2
A�B

2

= A�B +BAB �ABA.
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Therefore,

tr(A�B)3 = tr(A�B) + tr(BAB �ABA)

= tr(A�B) + tr(AB
2 �A

2
B)

= tr(A�B) + tr(AB �AB)

= tr(A�B).
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1 Vector Spaces

1.7 Problems

P.1.1 In the spirit of the examples in Section 1.2, explain how V = Cn can be thought
of as a vector space over R. Is V = Rn a vector space over C?

Solution. Vector addition and scalar multiplication are defined entrywise as addi-
tion and scalar multiplication of the real and imaginary parts of each entry. That
is, if v = [a1+ b1i a2+ b2i . . . an+ bni]T and w = [c1+d1i c2+d2i . . . cn+dni]T

are in V and c 2 R, then

v +w =

2

6664

a1 + c1 + (b1 + d1)i
a2 + c2 + (b2 + d2)i

.

.

.

an + cn + (bn + dn)i

3

7775
and cv =

2

6664

ca1 + cb1i

ca2 + cb2i

.

.

.

can + cbni

3

7775
.

The zero vector is [0 0 . . . 0]T.

V = Rn is not a vector space over C. For example, u = [1 1 . . . 1]T 2 V and
i 2 C but iu = [i i . . . i]T /2 V.

P.1.2 Let V be the set of real 2 ⇥ 2 matrices of the form v =
h
1 v
0 1

i
. Define v + w =

h
1 v
0 1

i h
1 w
0 1

i
(ordinary matrix multiplication) and cv =

h
1 cv
0 1

i
. Show that V

together with these two operations is a real vector space. What is the zero vector
in V?

Solution. We show that the eight axioms hold.

(i) We have

v +w =
h
1 v
0 1

i h
1 w
0 1

i
=
h
1 v + w
0 1

i
=
h
1 v
0 1

i
= v

if and only if w = 0, that is, if and only if w is the identity matrix. Since I2 2 V,
we see that V has a zero vector, namely, I2.
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(ii) We have

v +w =
h
1 v
0 1

i h
1 w
0 1

i
=
h
1 v + w
0 1

i
=
h
1 w + v
0 1

i
=
h
1 w
0 1

i h
1 v
0 1

i
= w + v

so vector addition is commutative.

(iii) Matrix multiplication is associative so vector addition in V is also associative.

(iv) We have

v +w =
h
1 v
0 1

i h
1 w
0 1

i
=
h
1 v + w
0 1

i
=
h
1 0
0 1

i

if and only if w = �v, that is, if and only if

w =
h
1 �v
0 1

i
.

Thus, additive inverses exist and are unique.

(v) We have

1v =
h
1 1v
0 1

i
=
h
1 v
0 1

i
= v.

(vi) We have

a(bv) = a

⇣h
1 bv
0 1

i⌘
=
h
1 abv
0 1

i
= (ab)v.

(vii) We have

c(v +w) = c

⇣h
1 v
0 1

i h
1 w
0 1

i⌘

= c

h
1 v + w
0 1

i
=
h
1 c(v + w)
0 1

i

=
h
1 cv + cw
0 1

i
=
h
1 cv
0 1

i h
1 cw
0 1

i
= cv + cw.

(viii) We have

(a+ b)v =
h
1 (a + b)v
0 1

i
=
h
1 av + bv
0 1

i
=
h
1 av
0 1

i h
1 bv
0 1

i
= av + bv.

P.1.3 Show that the intersection of any (possibly infinite) collection of subspaces of an
F-vector space is a subspace.

Solution. Let V be a F-vector space and let {U↵ : ↵ 2 I} be a collection of sub-
spaces of V; I is some index set. Let

W =
\

↵2I

U↵

Theorem 1.3.3 ensures that it is su�cient to show that cu + v 2 W whenever
u,v 2 W and c 2 F. Let u,v 2 W and c 2 F. Then for all ↵ 2 I, u,v 2 U↵.
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