
Chapter 1

Number Systems

1.1 The Real Numbers

1. The set (0, 1] contains its least upper bound 1 but not its greatest lower
bound 0. The set [0, 1) contains its greatest lower bound 0 but not its
least upper bound 1.

2. The set Z ⊆ R has neither a least upper bound nor a greatest lower
bound.

3. We know that α ≥ a for every element a ∈ A. Thus −α ≤ −a for
every element a ∈ A hence −α ≤ b for every b ∈ B. If b′ > −α is a
lower bound for B then −b′ < α is an upper bound for A, and that is
impossible. Hence −α is the greatest lower bound for B.

Likewise, suppose that β is a greatest lower bound for A. Define
B = {−a : a ∈ A}. We know that β ≤ a for every element a ∈ A.
Thus −β ≥ −a for every element a ∈ A hence −β ≥ b for every b ∈ B.
If b′ < −β is an upper bound for B then −b′ > β is a lower bound for
A, and that is impossible. Hence −β is the least upper bound for B.

4. The least upper bound for S is
√

2.

5. We shall treat the least upper bound. Let α be the least upper bound
for the set S. Suppose that α′ is another least upper bound. It α′ > α
then α′ cannot be the least upper bound. If α′ < α then α cannot be
the least upper bound. So α′ must equal α.
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2 CHAPTER 1. NUMBER SYSTEMS

6. Certainly S is bounded above by the circumference of C . The least
upper bound of S is π. This exercise cannot work in the rational
number system because π is irrational.

7. Let x and y be real numbers. We know that

(x+ y)2 = x2 + 2xy + y2 ≤ |x|2 + 2|x||y|+ |y|2 .

Taking square roots of both sides yields

|x+ y| ≤ |x| + |y| .

8. We treat the supremum. Notice that, since the empty set has no ele-
ments, then −∞ ≥ x for all x ∈ ∅ vacuously. There are no real numbers
less than −∞, so −∞ is the supremum of ∅.

9. We treat commutativity. According to the definition in the text, we
add two cuts C and D by

C + D = {c+ d : c ∈ C, d ∈ D} .

But this equals
{d+ c : c ∈ C, d ∈ D}

and that equals D + C.

11. Consider the set of all numbers of the form

j

k
√

2

for j, k relatively prime natural numbers and j < k. Then certainly
each of these numbers lies between 0 and 1 and each is irrational.
Furthermore, there are countably many of them.

* 12. Let x be in the domain of f . Then x is a local minimum, so there are
rational numbers αx < x < βx so that

f(x) ≤ f(t)

for every t ∈ (αx, βx). Thus we associate to each value f(x) of the
function f a pair of rational numbers (αx, βx). But the set of such
pairs is countable. So the set of values of f is countable.
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* 13. Notice that if n−kλ = m− `λ then (n−m) = (k− `)λ. It would follow
that λ is rational unless n = m and k = `. So the numbers n− kλ are
all distinct.

Now let ε > 0 and choose an positive integer N so large that
λ/N < ε. Consider ϕ(1), ϕ(2), . . . , ϕ(N). These numbers are all
distinct, and lie in the interval [0, λ]. So two of them are distance not
more than λ/N < ε apart. Thus |(n1 − k1λ) − (n2 − k2λ)| < ε or
|(n1 − n2) − (k1 − k2)λ| < ε. Let us abbreviate this as |m− pλ| < ε.

It follows then that the numbers

(m− pλ), (2m− 2pλ), (3m − 3pλ), . . .

are less than ε apart and fill up the interval [0, λ]. That is the definition
of density.

1.2 The Complex Numbers

1. We calculate that

z · z

|z|2 =
z · z
|z|2 =

|z|2
|z|2 = 1 .

So z/|z|2 is the multiplicative inverse of z.

2. We calculate that

z/w = z · 1

w
= z · w

|w|2 = z · w/|w|2 = z · w

|w|2 =
z

w
.

3. Write
1 + i =

√
2eiπ/4 .

We seek a complex number z = reiθ such that

z3 = r3e3iθ = (reiθ)3 =
√

2eiπ/4 .

It follows that r = 21/6 and θ = π/12. So we have found the cube root

c1 = 21/6eiπ/12 .
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Now we may repeat this process with
√

2eiπ/4 replaced by
√

2ei9π/4.
We find the second cube root

c2 = 21/6ei9π/12 .

Repeating the process a third time with
√

2eiπ/4 replaced by
√

2ei17π/4,
we find the third cube root

c3 = 21/6ei17π/12 .

4. We first treat the commutative law for addition. Let z = x + iy and
w = u+ iv. Then

z + w = (x+ iy) + (u+ iv) = (x+ u) + i(y + v) .

Now we invoke the commutative law of addition for the real numbers
to write this as

(u+ x) + i(v + y) = (u+ iv) + (x+ iy) = w + z .

Now let us treat the commutative law for multiplication. With z, w
as above, we write

z · w = (x+ iy) · (u+ iv) = (xu− yv) + i(xv + uy) .

Now we invoke the commutative law for multiplication of real numbers,
as well as the commutative law for addition of real numbers, to rewrite
this as

(ux− vy) + i(uy + xv) = (u+ iv) · (x+ iy) = w · z .

5. We see that

φ(x+ x′) = (x+ x′) + i0 = (x+ i0) + (x′ + i0) = φ(x) + φ(x′) .

Also

φ(x · x′) = (x · x′) + i0 = (x+ i0) · (x′ + i0) = φ(x) · φ(x′) .
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6. Since i 6= 0, then either i > 0 or i < 0. If i > 0, then i · i > 0. But
i · i = −1 < 0. Contradiction. If instead i < 0, then −i > 0. Hence
(−i) · (−i) > 0. Thus again −1 > 0 and that is false. So we see that
the complex numbers cannot be ordered.

7. Let
p(z) = a0 + a1z + a2z

2 + · · · + akz
k

be a polynomial with real coefficients aj. If α is a root of this polynomial
then

p(α) = a0 + a1α + a2α
2 + · · · + akα

k = 0 .

Conjugating this equation gives

p(α) = a0 + a1α + a2α
2 + · · · + akα

k = 0 .

Hence α is a root of the polynomial p. We see then that roots of p
occur in conjugate pairs.

8. Write
i = 1 · eiπ/2 .

We seek a complex number z = reiθ so that z2 = 1 · eiπ/2. Thus

r2e2iθ = 1 · eiπ/2 .

We conclude that r = 1 and θ = π/4. So we have found the square
root

c1 = 1 · eiπ/4 .

We may repeat this construction with 1 · eiπ/2 replaced by 1 · ei5π/2.
We find the second square root

c2 = 1 · e5π/4 .

9. The function ϕ(x) = x+ i0 from R to C is one-to-one. Therefore

card(R) ≤ card(C) .

Since the reals are uncountable, we may conclude that the complex
numbers are uncountable.
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10. The kth roots of the complex number α 6= 0 are the roots of the poly-
nomial p(z) = zk − α. A polynomial of degree k has k roots. Since
p′ 6= 0 except at z = 0, we know that these roots are distinct.

11. The defining condition measures the sum of the distance of z to 1 + i0
plus the distance of z to −1 + i0. If z is not on the x-axis then |z −
1| + |z + 1| > 2 (by the triangle inequality). If z is on the x axis but
less than −1 or greater than 1 then |z− 1|+ |z+ 1| > 2. So the only z
that satisfy |z − 1| + |z + 1| > 2 are those elements of the x-axis that
are between −1 and 1 inclusive.

12. The k roots of z = reiθ are the k complex numbers

cj = r1/kei(θ+2jπ)/k , 0 ≤ j ≤ k − 1 . (∗)

We see that these numbers are distinct, and there are k of them. They
all have modulus r1/k, so they all lie on a circle centered at the origin
with radius r1/k. The jthe and (j + 1)th points specified in line (∗)
differ in argument by 2π/k. So they are equally spaced.

14. We write

−1 − i =
√

2 · ei5π/4 .

We seek a complex number z = reiθ so that

z2 = r2ei2θ =
√

2ei5π/4 .

Therefore r = 21/4 and θ = 5π/8. We have found the square root

c1 = 21/4ei5π/8 .

Now replacing
√

2ei5π/4 with
√

2ei13π/4, we find a second square root
of the form

c2 = 21/4ei13π/8 .

15. The set of all complex numbers with rational real part contains the set
of all complex numbers of the form 0 + yi, where y is any real number.
This latter set is plainly uncountable, so the set of complex number
with rational real part is also uncountable.
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17. The set S = {z ∈ C : |z| = 1} can be identified with T = {eiθ : 0 ≤
θ < 2π}. The set T can be identified with the interval [0, 2π), and that
interval is certainly an uncountable set. Hence S is uncountable.

19. Let p be a polynomial of degree k ≥ 1 and let α1 be a root of p. So
p(α) = 0. Now let us think about dividing p(z) by (z − α1). By the
Euclidean algorithm,

p(z) = (z − α1) · q1(z) + r1(z) . (∗)

Here q1 is the “quotient” and r1 is the “remainder.” The quotient
will have degree k − 1 and the remainder will have degree less than
the degree of z − α1. In other words, the remainder will have degree
0—which means that it is constant. Plug the value z = α1 into the
equation (∗). We obtain

0 = 0 + r1 .

Hence the remainder, the constant r1, is 0.

If k = 1 then the process stops here. If k > 1 then q1 has degree
k − 1 ≥ 1 and we may apply the Fundamental Theorem of Algebra to
q1 to find a root α2. Repeating the argument above, we divide (z−α2)
into q1 using the Euclidean algorithm. We find that it divides in evenly,
producing a new quotient q2.

This process can be repeated k− 2 more times to produce a total of
k roots of the polynomial p.
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