
2 Some Properties of Groups

2.1 Suppose that there are two group identities, e and e′. Then e = e ·e′ = e′. Thus there is

only one group identity. Suppose that a−1 and ā are both inverses of the group element a.

Then using that a ·a−1 and a · ā must both be equal to the group identity,

ā = ā · (a ·a−1) = (ā ·a) ·a−1 = ea−1 = a−1.

Thus each group element has a unique inverse. From the properties of the inverse and

identity, (a · b)−1 · (a · b) = e. Multiply this expression from the right by b−1 and use b ·
b−1 = e to give

(a ·b)−1 ·a = b−1.

Multiply from the right by a−1 and use a ·a−1 = e to give

(a ·b)−1 = b−1 ·a−1.

Check this result against entries in Table 2.2: Let a = (12) and b = (23). Then from the

table a−1 = (12) and b−1 = (23), and also from the table

a ·b = (12) · (23) = (321).

Thus from the table (a ·b)−1 = (321)−1 = (123). From the formula derived above and the

table

(a ·b)−1 = b−1a−1 = (23) · (12) = (123).

Hence for this example (a ·b)−1 = b−1a−1, as asserted.

2.2 Define the permutations

( ) =

(
123

123

)

(12) =

(
123

213

)

(23) =

(
123

132

)

(13) =

(
123

321

)

(123) =

(
123

231

)

(321) =

(
123

312

)

so that, for example, (12){abc}→ {bac}. Carrying out all possible combinations, the mul-

tiplication table for A ·B is

A\B e (12) (23) (13) (123) (321)

e e (12) (23) (13) (123) (321)

(12) (12) e (321) (123) (13) (23)

(23) (23) (123) e (321) (12) (13)

(13) (13) (321) (123) e (23) (12)

(123) (123) (23) (13) (12) (321) e

(321) (321) (13) (12) (23) e (123)

2
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3 Some Properties of Groups

where e is the identity, e ≡ ( ). This is equivalent to Table 2.2. From the multiplication

table this is a group, because all group postulates are satisfied. The identity and any of the

three transpositions of two objects are closed under multiplication, so these form 2-element

subgroups isomorphic to S2,

S2 ∼ {e,(12)} ∼ {e,(13)} ∼ {e,(23)}.

The set of even permutations A3 = {e,(123),(321)} is closed under multiplication, so

this too is a subgroup. The multiplication table for C3 can be deduced from geometry.

The operators 1, c3, c2
3, and c3

3, rotate by 0, 2π
3

, 4π
3

, and 2π = 0, respectively, so the C3

multiplication table and isomorphism with A3 are

C3 e c3 c2
3

e e c3 c2
3

c3 c3 c2
3 e

c2
3 c2

3 e c3

←→

A3 e (123) (321)

e e (123) (321)

(123) (123) (321) e

(321) (321) e (123)

if we invoke the correspondence

e←→ e c3←→ (123) c2
3←→ (321)

between entries in the two multiplication tables.

2.3 The multiplication table is

C4 e a a2 a3

e e a a2 a3

a a a2 a3 e

a2 a2 a3 e a

a3 a3 e a a2

where a = c4, a2 = c2
4, a3 = c3

4, and a4 = c4
4 = e. Therefore, this is an abelian group.

2.4 Consider the multiplication table for G = {e,a,b}, where e is the identity. We must

have a ·a = b, since

• If a ·a = a, then a = e and a group can’t have two identities.

• If a ·a = e, then the elements {e,a} alone close a group of order two.

Then since a · a = b, it follows that a · b = b · a = e and b · b = a are the only consistent

choices. Therefore the multiplication table for the finite group of order three is unique and

given by

e a b

e e a b

a a b e

b b e a

.

We conclude that there is only one independent group of order three. Note, for example,
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4 Some Properties of Groups

that this multiplication table is isomorphic to that for the cyclic group C3 if we identify

a = c3 and b = c2
3 (see Example 2.18 and Problem 2.2).

2.5 From Example 2.15, the multiplication table for the cyclic group C4 is

C4 e a a2 a3

e e a a2 a3

a a a2 a3 e

a2 a2 a3 e a

a3 a3 e a a2

For the subgroup H = {e,a2}

eee−1 = e aea−1 = aa−1 = e

a2e(a2)
−1

= a2ea2 = e a3e(a3)
−1

= a3ea = e

ea2e−1 = a2 aa2a−1 = aa2a3 = a2

a2a2(a2)
−1

= a2a2a2 = a2 a3a2(a3)
−1

= a3a2a = a2,

where the cyclic condition a4 = e has been used and the inverses have been inferred from

the multiplication table and the requirement xx−1 = e. Therefore H is identical to all of its

conjugate subgroups

H ′ = {ghg−1 ; g ∈ G, h ∈H},

and is an invariant subgroup (Section 2.12). In fact, since all cyclic groups are abelian, it is

an abelian invariant subgroup.

2.6 An invariant subgroup consists of whole classes. For S3 there are three classes:

{e} {(12), (23), (13)} {(123), (321)},

as may be verified by similarity transforms [see Eq. (2.21)]. Therefore, {e, (123), (321)}
(the alternating subgroup) is invariant because it consists of two whole classes. The sub-

group {e, (12)} cannot be invariant because e is a whole class but (12) is only part of a

class.

2.7 C4 is abelian (see Problem 2.3). For abelian groups every element is in a class by itself,

so every subgroup is invariant (consists of whole classes). Therefore, the subgroup {e,a2}
is abelian invariant (see Problem 2.5) and C4 is not simple (it contains invariant subgroups)

and it is not semisimple (it contains an abelian invariant subgroup).

2.8 (a) a∼ a requires that there be some group element g such that a = gag−1. The choice

g = e obviously satisfies this. (b) If a∼ b, then a = gbg−1 where g ∈G. Multiply from the

left by g−1 and from the right by g to give g−1ag= b, which implies that b∼ a. (c) If a∼ b

and b∼ c, then there are elements p,q ∈G such that

a = pbp−1 b = qcq−1.

Therefore,

a = pbp−1 = pqcq−1p−1 = pqc(pq)−1,
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5 Some Properties of Groups

where we have used that the reciprocal of a matrix product is formed by taking reciprocals

of the factors in reverse order:

(ABCD)−1 = D−1C−1B−1A−1.

Then, since pq must be a group element, a ∼ c. Thus class conjugation is an equivalence

relation, as defined in Box 2.5.

2.9 The figure

1

3

24

has the geometrical symmetry operations:

e = identity

a = reflection through the vertical 1–3 axis

b = reflection through the horizontal 2–4 axis

c = rotation in plane of rectangle about center by π

We may work out the multiplication table by applying all possible pairs of these symmetry

operations to the figure. For example, applying the product bc (rotation in the plane by π

and then reflection through the horizontal axis),

1

3

24( (bc =

3

1

42( (b =

1

3

42( (
1

3

24( (=  a

and bc = a. Evaluating all such products, the resulting multiplication table is

D2 e a b c

e e a b c

a a e c b

b b c e a

c c b a e

This group is called the 4-group or dihedral group D2. Generally the dihedral groups Dn

correspond to the rotation and reflection symmetries of the regular polygons. From the

multiplication table {e,a}, {e,b}, and {e,c} are subgroups. They are isomorphic to C2 ∼
Z2 because there is only one 2-element group C2 ∼ Z2 (see Box 2.2).
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6 Some Properties of Groups

2.10 From the geometry of the figure

1

32

a multiplication table may be constructed by applying two successive operations. Let

D12 = reflection about 3-axis e = identity

D13 = reflection about 2-axis D321 = clockwise rotation by 2π/3

D23 = reflection about 1-axis D123 = clockwise rotation by 4π/3.

Then, for example, the product D12D321 is

1

D12 D321

2 3

=

2

D12 

3 1

=

1

3 2

=

1

D23 

2 3

and D12D321 = D23. By carrying out all such pairs of operations, a 6× 6 multiplication

table may be constructed that is closed (group property) and equivalent to the table of

Problem 2.2, with the identification Dpq→ (pq). Thus the group is isomorphic to S3. We

have already seen in Problem 2.2 that S3 has four proper, distinct subgroups: the alternating

group, and three S2 subgroups formed from the identity and one of the three independent

transpositions.

2.11 The multiplication table of D2 is given in Problem 2.9. It has abelian invariant sub-

groups {e,a}, {e,b}, and {e,c}. Let’s form the left cosets of H = {e,a}:

e{e,a}= {e,a}= H a{e,a}= {a,e}= {e,a}= H

b{e,a}= {b,c} c{e,a}= {c,b}= {b,c}.

Therefore,

G/H = D2/H = {e,a}+ {b,c}.

Now let’s construct the multiplication table for G/H. Let

E = H = {e,a} M = {b,c}= b{e,a}.

From the multiplication table and the coset multiplication law of Eq. (2.27),

pH ·qH = (pq)H
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7 Some Properties of Groups

we find that

E ·E = e{e,a}e{e,a}= e2{e,a}= E,

E ·M = e{e,a}b{e,a}= eb{e,a}= b{e,a}= {b,c}= M,

M ·E = b{e,a}e{e,a}= be{e,a}= b{e,a}= M,

M ·M = b{e,a}b{e,a}= bb{e,a}= e{e,a}= {e,a}= E,

so the multiplication table of the quotient group is

G/H E M

E E M

M M E

where E = H. This is the multiplication table for the group C2 ∼ Z2.

2.12 Consider an operator U(a) that rotates by an infinitesimal amount a around a speci-

fied axis. Applying to a wavefunction ψ(θ ),

U(a)ψ(θ ) = ψ(θ + a).

Expand in a Taylor series about θ :

ψ(θ + a) = ψ(θ )+ a
dψ(θ )

dθ
+

a2

2!

d2ψ(θ )

dθ 2
+ . . .

=
∞

∑
n=0

an

n!

dn

dθ n
ψ(θ ) = ea(d/dθ)ψ(θ )

= eia(−id/dθ)ψ(θ ) = e
i
h̄ aLψ(θ ),

where L≡ h̄
i
d/dθ is the generator of infinitesimal rotations about this axis,

U(a)≃ 1+
i

h̄
aL.

But since the rotations form a continuous and analytical group, all finite rotations connected

continuously to the identity can be generated by successive applications of the infinitesimal

generator L.

2.13 This problem is adapted from a discussion in O’Raifeartaigh [158]. For the set of

upper-triangular 3× 3 matrices

G =





1 α δ

0 1 β

0 0 1



 ,

where α , β , and δ are real numbers, a general multiplication of set elements is




1 α δ

0 1 β

0 0 1









1 α ′ δ ′

0 1 β ′

0 0 1



=





1 α ′′ δ ′′

0 1 β ′′

0 0 1





where we define

α ′′ ≡ α +α ′ δ ′′ ≡ δ + δ ′+αβ ′ β ′′ ≡ β +β ′.
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8 Some Properties of Groups

Thus these matrices form a group under matrix multiplication (it is called the Heisenberg

group). Consider the subset of matrices from this group

H = a(δ ) =





1 0 δ

0 1 0

0 0 1



 ,

formed by restricting G to those matrices with α = β = 0. Multiplication of any two such

elements gives

a(δ )a(δ ′) =





1 0 δ

0 1 0

0 0 1









1 0 δ ′

0 1 0

0 0 1



=





1 0 δ ′′

0 1 0

0 0 1



= a(δ ′′),

where δ ′′ = δ + δ ′. Hence the matrices with α = β = 0 form a subgroup H, which is

abelian since [a(δ ),a(δ ′) ] = 0. Forming the cosets for g ∈G,

gH =





1 α δ

0 1 β

0 0 1









1 0 δ ′

0 1 0

0 0 1



=





1 α δ ′′

0 1 β

0 0 1



 ,

Hg =





1 0 δ ′

0 1 0

0 0 1









1 α δ

0 1 β

0 0 1



=





1 α δ ′′

0 1 β

0 0 1



 ,

where δ ′′ ≡ δ + δ ′. Thus Hg = gH and H is an (abelian) invariant subgroup of G (see

Section 2.12). More formally, we can show by standard matrix inversion that

G−1 =





1 α δ

0 1 β

0 0 1





−1

=





1 −α αβ − δ

0 1 −β

0 0 1



 ,

so that

GHG−1 =





1 α δ

0 1 β

0 0 1









1 0 δ ′

0 1 0

0 0 1









1 −α αβ − δ

0 1 −β

0 0 1





=





1 0 δ ′

0 1 0

0 0 1



 ∈ H,

so H is an invariant subgroup of G, for which left and right cosets are equal. By direct

matrix multiplication it is clear that H is abelian, so it is an abelian invariant subgroup.

2.14 This proof follows Elliott and Dawber [56]. We have from Eq. (2.28) and Exam-

ple 2.19,

A
(α×β )
i j,kℓ (Ga)≡ A

(α)
ik (Ga)A

(β )
jℓ (Ga),

for the elements of a direct product matrix. Then under regular matrix multiplication of
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9 Some Properties of Groups

two such matrices that are themselves direct products, the elements are

[A(α×β )(Ga)A
(α×β )(Gb)]i j,kℓ = ∑

mn

A
(α×β )
i j,mn (Ga)A

(α×β )
mn,kℓ (Gb)

= ∑
mn

A
(α)
im (Ga)A

(β )
jn (Ga)A

(α)
mk (Gb)A

(β )
nℓ (Gb)

= ∑
m

A
(α)
im (Ga)A

(α)
mk (Gb)∑

n

A
(β )
jn (Ga)A

(β )
nℓ (Gb)

= A
(α)
ik (GaGb)A

(β )
jℓ (GaGb)

= A
(α×β )
i j,kℓ (GaGb),

where we have used Eq. (2.8) for the original matrices,

T (Ga) ·T (Gb) = T (GaGb).

Therefore, the representation condition (2.8) is fulfilled for direct product matrices: if A

and B are representations, then their direct product A⊗B is also a representation. For the

characters,

χ (α×β )(Ga) = ∑
i j

A
(α×β )
i j,i j (Ga)

= ∑
i j

A
(α)
ii (Ga)T

(β )
j j (Ga)

= χ (α)(Ga)χ
(β )(Ga).

Therefore, the character of a direct product of two representations is the product of char-

acters for the two representations.

2.15 The representations Γ(4) and Γ(5) are equivalent (they have the same characters), so

they are related by a similarity transform. You can verify that Γ(5) is converted to Γ(4) if

each matrix is similarity transformed using [180]

S =





1 0 2

1
√

3 −1

1 −
√

3 −1



 .

Thus it is sufficient to examine one of Γ(4) or Γ(5). From Eq. (2.32),

aν =
1

NG
∑

i

niχ
∗
ν(i)χ(i),

where the sum is over classes, and χν(i) and χ(i) are the characters of a given class i in the

irrep ν and in the reducible representation U(g), respectively. Thus, for Γ(4)

a1 =
1

6
[(1)(1)(3)+ (2)(1)(0)+ (3)(1)(1)] = 1,

a2 =
1

6
[(1)(1)(3)+ (2)(1)(0)+ (3)(−1)(1)] = 0,

a3 =
1

6
[(1)(2)(3)+ (2)(−1)(0)+ (3)(0)(1)] = 1,
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10 Some Properties of Groups

so the Γ(4) and Γ(5) representations of S3 displayed in Fig. 2.4 are reducible, with the irrep

content Γ(1)⊕Γ(3).

2.16 From Eq. (2.27), define coset multiplication by pHqH = (pq)H. Then,

1. For H an invariant subgroup, this is a consistent definition and leads to closure because

Hg = gH and

pHqH = pHHq = pHq = pqH,

where we have used that under this multiplication law eHeH = eeH = H, so HH = H.

Therefore, the product of two cosets under coset multiplication is itself a coset, since if

p ∈G and q ∈G, then pq ∈ G.

2. Coset multiplication is associative since the original group multiplication is associative:

(pH)
(
(qH)(rH)

)
= (pH)(qrHH)

= p(qr)HHH

= (pq)rHHH

=
(
(pH)(qH)

)
(rH).

3. The coset E ≡ eH = H acts as an identity since, by the coset multiplication law,

eHqH = eqH = qH.

4. For each coset pH there is a unique inverse p−1H, since

(pH)(p−1H) = (pp−1)H = eH = E.

Therefore, the cosets form a group under the coset multiplication law if H is an invariant

subgroup.

2.17 If giH and g jH have an element in common, then gih1 = g jh2 for some elements

h1,h2 ∈ H, which implies that

gig
−1
j = h2h−1

1 .

But h2h−1
1 is an element of H by the group property and, by the rearrangement lemma (Sec-

tion 6.2.5), Hgig
−1
j = H and thus Hgi = Hg j. Thus, two cosets are identical if a common

element exists, so different cosets are completely disjoint.

2.18 (a) Let the order of G be n, the order of H be m, with the index of H in G being ℓ,

with n = mℓ. Then trivially, if n is a prime number either m = 1 or m = n, so there are no

proper subgroups.

(b) Let G be of order n, where n is a prime number, and choose g ∈ G but not equal to the

identity e. Then if we take successive products of g with itself k times, gk = e by the group

property, for some integer k. This means that
{

g,g2, . . . ,gk−1,e
}

is a cyclic subgroup. But from part (a) G can’t a proper subgroup because it is of prime
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11 Some Properties of Groups

order by hypothesis. Thus the cyclic subgroup can only be the full group and generally

groups of prime order n are isomorphic to cyclic groups Cn.

2.19 Since a is the unit matrix, it will play the role of the identity e. Construct the multi-

plication table by taking all possible matrix products. For example,

b · c = c ·b =

(
−1 0

0 1

)(
1 0

0 −1

)

=

(
−1 0

0 −1

)

= d.

The resulting multiplication table is

D2 e b c d

e e b c d

b b e d c

c c d e b

d d c b e

with a ≡ e. This is the multiplication table for the group D2 (see the solution of Prob-

lem 2.9). The group is abelian since the multiplication table is symmetric with respect to

reflection through the diagonal.

2.20 Consider the function set

f1(x) = x f2(x) =−x f3(x) =
1

x
f4(x) =−

1

x

under the binary operation of substituting one function in another. For example,

f1 · f1 ≡ f1( f1) = x = f1 f1 · f2 ≡ f1( f2) =−x = f2

f1 · f3 ≡ f1( f3) =
1

x
= f3 f1 · f4 ≡ f1( f4) =−

1

x
= f4.

Thus, f1(x) plays the role of an identity. Likewise

f2 · f1 =−x = f2 f2 · f2 =−(−x) = x = f1

f2 · f3 =−
1

x
= f4 f2 · f4 =−

(

−1

x

)

=
1

x
= f3.

Continuing in this manner we find the multiplication table

f1 f2 f3 f4

f1 f1 f2 f3 f4

f2 f2 f1 f4 f3

f3 f3 f4 f1 f2

f4 f4 f3 f2 f1

where e≡ f1 is the identity. This is a group, since

1. The set is closed under the multiplication operation of substitution.

2. There is an identity ( f1).

3. Each element has a unique inverse (the identity f1 appears exactly once in each row and

column). In fact, each element is its own inverse.

4. The substitution operation is associative.
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12 Some Properties of Groups

Since the multiplication table is symmetric about the diagonal, the group is abelian. As

shown in Problem 2.19, the matrices

a =

(
1 0

0 1

)

b =

(
1 0

0 −1

)

c =

(
−1 0

0 1

)

d =

(
−1 0

0 −1

)

have the same multiplication table under the binary operation of matrix multiplication if

we identify a↔ f1 = e, b↔ f2, c↔ f3, and d↔ f4.

2.21 This problem is adapted from a discussion in Zee [228]. By matrix multiplication

D(u)D(v) =

(
1 0

u 1

)(
1 0

v 1

)

=

(
1 0

u+ v 1

)

= D(u+ v),

which is the multiplication law for the additive group of real numbers. Thus D(u) is a

matrix representation of that group. Define a vector with components t and x. Then
(

t ′

x′

)

= D(v)

(
t

x

)

=

(
1 0

v 1

)(
t

x

)

=

(
t

vt + x

)

,

which corresponds to the set of equations

t ′ = t x′ = vt + x

that define the Galilean transformations relating time and coordinate for two observers

moving along the x-axis with relative velocity v.

2.22 If we define a similarity transform by Eq. (2.12), D′(x) = S−1D(x)S, then the product

of two transformed matrices is

D′(a) ·D′(b) = S−1D(a)S S−1D(b)S

= S−1D(a) ·D(b)S

= S−1D(a ·b)S
= D′(a ·b),

where in the second line SS−1 = 1 was used and in the third line Eq. (2.8),

D(a) ·D(b) = D(a ·b),

was used. But this means that D′(x) = S−1D(x)S is a representation if D(x) is a represen-

tation.

2.23 The actions of the operators R, I, σ , and E on the cartesian axes are

x
y

z

x
y

z

( (R
x

y

z
x

y

z
( (I

x
y

z

( (σ
x

y

z

x
y

z

( (E

x
y

z
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13 Some Properties of Groups

Thus, for example, the product I ·R is

x
y

z

x
y

z

( (R ( (I= = =I x
y

z

( (σ

x
y

z

so I ·R = σ . Working out the other products we find a multiplication table

C2h E R I σ

E E R I σ

R R E σ I

I I σ E R

σ σ I R E

which corresponds to the group labeled C2h in Table 5.1. There are two subgroups with

multiplication tables

S2 E I

E E I

I I E

C2 E R

E E R

R R E

Each element of S2 commutes with each element of C2 and we can write the C2h operators

uniquely as the product of one operation from S2 and one from C2,

E = E×E R = E×R I = I×E σ = I×R.

Therefore, C2h is equivalent to the direct product C2h = S2×C2.

2.24 Under the map e→ +1 and a→−1 the C2 multiplication table given in Box 2.2

becomes

C2 e a

e e a

a a e

−→
C2 +1 −1

+1 +1 −1

−1 −1 +1

which preserves the group multiplication. Trivially, the map e→+1 and a→+1 satisfies

the C2 multiplication table, so it is a representation also. These representations are both

irreducible by application of Eq. (2.31) since the 1× 1 matrices have traces ±1, and from

∑µ n2
µ = nG in Eq. (2.29b) they are the only irreps (up to isomorphisms) because nG = 2

for C2.

2.25 By explicit matrix multiplication the matrices

e = t1 =

(
1 0

0 1

)

a = t2 =

(
0 1

1 0

)

satisfy the C2 multiplication table given in Box 2.2. For example,

t2 · t2 =
(

0 1

1 0

)(
0 1

1 0

)

=

(
1 0

0 1

)

= t1 = e.
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14 Some Properties of Groups

Therefore, they constitute a representation of the group C2. To diagonalize the matrix A we

must solve the characteristic equation

det(A−λ 1̂) = 0,

where λ is the eigenvalue and 1̂ is the unit matrix. Inserting the matrix

A = t2 =

(
0 1

1 0

)

gives two roots for the eigenvalues, λ± = ±1. To find the corresponding eigenvectors we

assume a basis

ψ = aψ++ bψ− ψ1 =

(
0

1

)

ψ2 =

(
1

0

)

To determine the coefficients we solve the linear equation

Aψ =

(
α β

γ δ

)(
a

b

)

= λ

(
a

b

)

.

From the first row of the matrix equation, choosing b = 1,

αa+β = λ a.

Choosing the λ =+1 eigenvalue gives a+ =−β/(α−1) = +1 and choosing the λ =−1

eigenvalue gives a− = −β/(α + 1) = −1, where in the last step we have inserted the

specific matrix
(

α β

γ δ

)

=

(
0 1

1 0

)

−→ α = 0 β = 1.

Thus, up to a normalization the new eigenvectors are

ψ+ = a+ψ1 +ψ2 = ψ1 +ψ2 =

(
1

1

)

ψ− = a−ψ1 +ψ2 =−ψ1 +ψ2 =

(
1

−1

)

.

Form a 2× 2 matrix S with columns corresponding to these eigenvectors,

S =
1√
2

(
1 1

1 −1

)

,

where we’ve chosen a convenient normalization. Since S is unitary, S† = S−1 and the sim-

ilarity transformation to the new basis for the matrix t2 is

St2S−1 =
1

2

(
1 1

1 −1

)(
0 1

1 0

)(
1 1

1 −1

)

=

(
1 0

0 −1

)

St1S−1 = t1 =

(
1 0

0 1

)

.

Thus, in the new diagonalized basis we see that the C2 representation formed by the 2×
2 matrices t1 and t2 is reducible, corresponding to a direct sum of the two irreducible

representations for C2 found in Problem 2.24.

2.26 This problem is based on a discussion in Gilmore [72]. Parameterize the complex

numbers of unit modulus by

C = x+ iy = cosφ + isinφ .
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15 Some Properties of Groups

Expand in a power series

C = cosφ + isinφ = 1− 1

2
φ2 +

1

4!
φ4− . . .+ i

(

φ − 1

3!
φ3 +

1

5!
φ5− . . .

)

.

Comparing term by term with the exponential power series

eiφ = 1+ iφ− 1

2
φ2− i

3!
φ3 +

1

4!
φ4− . . .

we see that

eiφ = cosφ + isinφ

and eiφ is a faithful mapping for the complex numbers of unit modulus if we restrict−π ≤
φ ≤ π . These form a group under multiplication since

1. Closure: eiφ eiθ = ei(φ+θ) = eiφ ′ with φ ′ = φ +θ .

2. Associativity: eiφ (eiθ eiα) = (eiφ eiθ )eiα = ei(φ+θ+α).

3. Existence of inverse: e−iφ eiφ = 1.

4. Identity: e0eiφ = eiφ e0 = eiφ .

Now consider the product

(cosφ + isinφ)(cosθ + isinθ ) = eiφ eiθ = ei(φ+θ).

Multiplying out the left side and rewriting the right side using eiα = cosα + isinα gives

cosφ cosθ − sinφ sinθ + i(cosφ sin θ + sinφ cosθ ) = cos(φ +θ )+ isin(φ +θ ).

Equating separately the real and imaginary parts of the two sides then gives the two trigono-

metric identies

cos(φ +θ ) = cosφ cosθ − sinφ sinθ

sin(φ +θ ) = cosφ sinθ + sinφ cosθ

that we sought to prove. This result is a simple example of a general property: all the

special functions of mathematical physics are representations of some group and standard

identities can be obtained by appropriate operations on representations of the group. See

Gilmore [72] for further discussion.

2.27 This problem is adapted from an example in Sternberg [185].

(a) Divide the integers up into four equivalence classes:

e≡ {0,4,−4,8,−8, . . .} a≡ {1,5,−3,9,−7, . . .}
b≡ {2,6,−2,10,−6, . . .} c≡ {3,7,−1,11,−5, . . .}

and construct a multiplication table of these classes under addition modulo 4. That is, add

two integers and subtract an integer multiple of 4 to bring it in the range−4 to+4. Consider

the product ac. Examples are

3+ 1 mod 4 = 0 ∈ e 5+ 7 mod 4 = 0 ∈ e 1+ 7 mod 4 = 0 ∈ e.
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16 Some Properties of Groups

Therefore ac = ca = e. Likewise, consider the product ab. For example,

1+ 2 mod 4 = 3 ∈ c 5+ 6 mod 4 = 3 ∈ c − 3+ 6 mod 4 = 3 ∈ c.

Therefore, ab = ba = c. Carrying out the other possible products gives the multiplication

table

Z4 e a b c

e e a b c

a a b c e

b b c e a

c c e a b

indicating that this is a group and it is abelian.

(b) Consider the matrices

e =

(
1 0

0 1

)

a =

(
0 −1

1 0

)

b =

(
−1 0

0 −1

)

c =

(
0 1

−1 0

)

.

Matrix multiplication gives results like

ab =

(
0 −1

1 0

)(
−1 0

0 −1

)

=

(
0 1

−1 0

)

= c

bc =

(
−1 0

0 −1

)(
0 1

−1 0

)

=

(
0 −1

1 0

)

= a.

Carrying out all possibilities, we find that these matrices have the same multiplication table

as Z4. Clearly e plays the role of the identity and the matrix inverse defines the inverse of

an element. For example

a−1 =

(
0 −1

1 0

)−1

=

(
0 1

−1 0

)

= c,

since this leads to

aa−1 =

(
0 −1

1 0

)(
0 1

−1 0

)

=

(
1 0

0 1

)

= e.

Thus, these matrices are a representation of Z4.

(c) Consider following the rotation operations in a plane

e = rotation by an integer multiple of 2π ,

a = rotation counterclockwise by π
2

,

b = rotation counterclockwise by π ,

c = rotation counterclockwise by 3π
2

.

We can multiply these by implementing first one rotation and then another. For example,

• ab = rotate counterclockwise by
(
π + π

2

)
= 3π

2
= c.

• bc = rotate counterclockwise by
(
π + 3π

2

)
= 5π

2
= π

2
= a.
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17 Some Properties of Groups

Carrying out all such multiplication we find the same multiplication table as for Z4 above.

Thus the cyclic group of four-fold rotations in the plane C4 is homomorphic to Z4.

(d) The group ZN can be represented by the elements

zi = e2π in/N (n = 0,1, . . .N− 1).

For Z4 we have N = 4 and n = 0,1,2,3, giving the elements

e≡ z0 = e0 = 1 a≡ z1 = e2π i/4 = e
π
2 i b≡ z2 = e4π i/4 = eiπ c≡ z3 = e

3
2 π i.

Taking products gives results like

ac = e(
π
2 +

3
2 π)i = e2π i = e ab = e(

π
2 +π)i = e

3
2 π i = c.

Forming all such products gives once again the multiplication table for Z4 given above.

2.28 From the constraints a2 = b2 = I = e and ab = ba = c we may deduce

ab = c→ aab = ac→ ac = b ba = c→ baa = ca→ ca = b

ab = c→ abb = cb→ cb = a ab = c→ cab = c2→ b2 = c2 = e.

The corresponding multiplication table is

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

which is identical to that of the 4-group in Problem 2.9. Thus specifying the constraints

a2 = b2 = I = e and ab = ba = c is a compact way to specify the content of the multipli-

cation table for the 4-group.

2.29 Let a and b be related by conjugation: a = gbg−1, with ap = e and bq = e. Then

e1/p = ge1/qg−1 = e1/q.

Therefore, p = q for a and b in the same conjugacy class.

2.30 (a) For an arbitrary group element ga and group identity e,

g−1
a ega = g−1

a ga = e.

Thus e is in a class of its own.

(b) Suppose that for group elements ga and gb,

g−1
c gbgc ≡ gd −→ gb = gcgdg−1

c

g−1
c gagc ≡ gd −→ ga = gcgdg−1

c .

Multiply gd = g−1
c gbgc from the left by gc and from the right by g−1

c to give

gcgdg−1
c = gcg−1

c gbgcg−1
c = gb.
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18 Some Properties of Groups

Thus, combining with ga = gcgdg−1
c from above,

gb = gcgdg−1
c = ga.

Hence the conjugate classes of gb and ga must be identical.

2.31 We may view Z2 as the group of integers 0 and 1 under addition modulo 2. Triv-

ially this is a group with 0 as the identity and trivially it must be isomorphic to C2 since

all 2-element groups are equivalent. More formally, constructing the multiplication table

explicitly gives

Z2 0 1

0 0 1

1 1 0

Obviously this is isomorphic to the multiplication table in Box 2.2 with the mapping 0↔ e

and 1↔ a. The multiplication table for the set {1,−1} under ordinary arithmetic multipli-

cation is

Z2 +1 −1

+1 +1 −1

−1 −1 +1

which clearly is isomorphic to C2 with the mapping +1↔ e and −1↔ a. Thus it is iso-

morphic also to Z2.

2.32 Suppose a direct product group G = A×B, with elements g = ab ∈ G, where a ∈ A

and b ∈ B, and where the elements of A commute with the elements of B. Consider an

arbitrary element ai of A. Then

gaig
−1 = abai(ab)−1

= abaib
−1a−1

= abb−1aia
−1

= aaia
−1 ∈ A,

where we’ve used in line 3 that the elements of A and B commute. Thus A is an invariant

subgroup of G = A×B. Likewise, for an arbitrary element bi of B,

gbig
−1 = abbi(ab)−1

= abbib
−1a−1

= aa−1bbib
−1

= bbib
−1 ∈ B,

and B also is an invariant subgroup of G = A×B.

2.33 From the solution of Problem 2.5, H = {e,a2} is an abelian invariant subgroup of

C4 = {e,a,a2,a3} with the multiplication table for C4 given in Example 2.15. The inde-

pendent left cosets of C4 with respect to H are (see Example 2.16)

H = eH = {e,a2} M ≡ a3{e,a2}= {a,a3}= aH,
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19 Some Properties of Groups

giving the coset decomposition

C4 = H +M = {e,a,a2,a3}.

From Eq. (2.27), the coset multiplication law is pHqH = (pq)H and the coset products are

(see Example 2.17)

H2 = HH = eHeH = e2H = H HM = eHaH = aH = M,

MH = aHeH = aH = M M2 = MM = aHaH = a2H = H,

where we have used M = aH and a2H = a2{e,a2}= {e,a2}=H. Thus the factor (quotient)

group C4/H has the multiplication table

C4/H H M

H H M

M M H

,

which is isomorphic to that for the group C2.

2.34 The elements M of SL(2,C) are 2× 2 matrices of the form

M =

(
a b

c d

)

detM = ad− bc = 1,

where the entries a,b,c, and d are arbitrary complex numbers. These matrices form a group

under matrix multiplication:

1. Matrix multiplication is associative.

2. Under matrix multiplication the product MM′ of two such matrices is a 2× 2 matrix

and it has unit determinant since det(MM′) = detM detM′ = 1, so closure is satisfied.

3. The unit 2× 2 matrix serves as a unique identity.

4. Since detM = 1 6= 0 the matrices are invertible, so M−1 exists and has detM−1 = 1:

MM−1 = 1 → det(MM−1) = 1 → detM detM−1 = 1 → detM−1 = 1;

Thus, each M ∈ SL(2,C) has a unique inverse M−1 ∈ SL(2,C), with MM−1 = M−1M

equal to the unit matrix.

Hence SL(2,C) satisfies the group postulates. In the general case matrices in SL(2,C) may

not commute, so the group is non-abelian.

2.35 We follow a discussion in Elliott and Dawber [56]. Define ψ ′(rrr) = ψ
(
G−1

j rrr
)
. Then

from Eq. (2.9),

T (Gi)T (G j)ψ(rrr) = T (Gi)ψ
(
G−1

j rrr
)

= T (Gi)ψ
′(rrr)

= ψ ′
(
G−1

i rrr
)

= ψ
(
G−1

j G−1
i rrr
)

= ψ
(
(GiG j)

−1rrr
)

= T (GiG j)ψ(rrr).
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20 Some Properties of Groups

Thus T (Gi)T (G j) = T (GiG j) and T (G) preserves the group multiplication law (2.8) for G

and is a valid representation.
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