Abstract Algebra 3rd Edition Chapter 7.6 Problem SE Solution | Chegg.com https://www.chegg.com/homework-help/Abstract-Algebra-3rd-edition-...

1 of2

Chegg'Stu dy Textbook Solutions  Expert Q&A Search

Q ov

home / study / math / advanced mathematics / advanced mathematics solutions manuals / abstract algebra / 3rd edition / chapter 7.6 / problem 8e

Abstract Algebra (3rd Edition)
Chapter 7.6, Problem 8E Bookmark Show all steps: ON

Step-by-step solution

Step 1 of 16

Consider / be a nonempty partially ordered set, and Suppose {A, }l be a collection of abelian

groups. Let us suppose that /is directed; For all i, j e/, there exists f e/ with i, j<k.
Consider that for every pair of indices i, je/ with i< j, thereisamap p, 14— 4,

such that the following hold: (1) p,, @ = p,, Whenever i< j<k and(2) p,, =1forall je/

Suppose B= U". X {'} be the disjoint union of the A4,. Define a relation o on B as follows:
4

Comment

Step 2 of 16

(a.i)o (b, j) ifand only if there exists k e/ suchthat i,j<k and p,, (a)=p,,(b).

Comment

Step 3 of 16

(a) Show that & is an equivalence relation on B. We define iii“ A =Bfo.

To show that o is equivalence, we need to verify that it is reflexive, symmetric, and transitive.

1.( o is reflexive) Consider (a,i)e B. Note that j<i, and that

pula)=a

=pula)
Thus (u,i)a(a,i), and hence o is reflexive.
2.( o is symmetric) Consider (a,i)o (b, ). Then there exists k > i, j such that
P (a) =p,;(b). Certainly p , (b)=p,, (u), sothat (b, j)o(a,i). Hence o is symmetric.
3.( o is transitive) Suppose (a,i)o (b, j) and (b, j)o(c,k). Then there exist /> i, j such
that p,,(a)=p,,(b) and m= j.k suchthat p (b)=p,, (c). Since /is a directed poset,

there exists ¢ / suchthat 7=/ m.Now

p.(a)=p,(p,(a))
=, (P ()
=p,.(b)
= P (P (1))
Pi(a)= pos(Pin(c))
=p(c)

Thus (u.i)a(c,k), and hence o is transitive. Hence o is an equivalence relation.

Comment

Step 4 of 16

(b) Consider [x]_denote the class of x in lim 4, and define p,: 4, — lim 4, by
p'(a)=[(u,i):]". Show that if each p, , is injective, then p, is also injective for all i.
Suppose that the p, ; are all injective. Choose j e [, and Consider a,b € A4, such that

p,(a)=p,(b) Then [(u,i)l_ =[(h,i)1’.For some k=i, we have p,, (a)=p,,(b). Since

P, is injective, g=h.Hence p, is injective.

Comment

Step 5 of 16

(c) Assume that the p, , are all group homomorphism. For [(a.i)]" [(h j)l, € lil:n A,, show
that the operation [(u.i)l +|:(h.j)]" = [(p,_, (a)+p,, (b).k)]" , where k is any upper bound
of i and j, is well defined and makes ““l/’, an abelian group. Deduce that the p, are group
homomorphism. »
Consider that the £, are all group homomorphism. First we show that + is well defined.
Suppose [(u,,i, )]” = [(:::‘iz)]” and [(b,,j, )11 = [(h:,j: )1’ Then there exists s > i,,i, such
that p, (a)=p, (a,)and r=j,j, suchthat p, (b )=p,  (b,). Now choose arbitrary
k zi,j and k,>i,,j,. Againchoose 2>k, k,.r,s. See the following:
Pui (s (@) + 2,4 (B)) = £ (P, (@) + £ (2, (B))

=p.(@)+p,,(b)

=p. (o (@))+p., (P, (B))

=pu (P (@))+ 2., (P, (B))
Pos (P (@)+ 2,0 (B))=p,, (@) +p,., (b))

=P (P, (@) + P (£, (82))

=P (/’l s (@)+p,, (b ))
Hence, (p,, (a)+ P, (B).k)o(p, s (a)+p,. (b):k,), and
(@], +[(6:3)], =[(a.)],

=[(i)],

Thus + is well-defined.

Next we show that (Iim A,,+J is an abelian group.

(1) ( + is associative) Consider [(u:)] [(b/]] and [((k)] bein 1im4,  and Suppose
12i,j, t=j,k,and m=>[.Then we have the following.
[(a.i)]+[(5.)]+[(c:k)]=[ pu(@)+ p,, (B) ]+ [(c.k)]

Prn(P(@)*+ 23, () o (€)om) |

Pin(Ps(@))*+ £ (214 (B))+ i (€).m) |

Pn(@)+ Pn (20 (0))+ £ (€)) ) |

(a)+ o, (P, (B)+p0,(c) )m)]
)]#[(1(8)+ pus(0)1)]
ai) J+([(6.1)]+[(<.K)])

I

Il

[

I

[(Pin(@)+ £, (B) + i (c)om) ]
[(ai)]+[(b.1)]+[(e0)]=[(

[(e.n

[(a.i

[

So + is associative.

Comment

Step 6 of 16

(2)Forall i,jel,there exists k=>i,j,and p,, (0)=p,, (0)since the p, , are group
homomorphism. Hence [ (0,i)|=[(0., )] forall i, ;. Consider 0=|(0,i)|. Suppose
[(a.i)] € lim 4, Then

0+[(ai)]=[(0.0)]+[(a.i)]

(
(£.(0)+p,(0).1)]
(0+a.i)]

o

a.i)]

[
{
[

Thus, [(a.i)]+ 0= [(a.i)]. Hence 0= [(01)] is an additive identity element.

Comment

Step 7 of 16

3. Consider [(u‘i)] e lim 4,. Note that

[(ai)]+[(-a.i)]=[ (o (a)+ £, (-a).i) ]
:[ a—ll.l)]
=[(0.7)]

=0

Hence every element of |il}1 A, has an additive inverse.

Comment

Step 8 of 16

4. Suppose [(al)“_(b/)] elim 4, and Consider k >i, . Then

[(@0)]+[(8.1)]=[(Pu (a) + 2, (b).K)]
=[(£,4 (8)+ pu(a).K)]
SR
Hence + is commutative.
Thus (Iir:n A,,+) is an abelian group. Finally, we show that each #, : 4, = lim 4, is a group

homomorphism. Suppose a.b € 4,. Then

p,(a+b) =[(u+b‘i)]
=[(pu(@)+p,(b).1)]
=[(u.1):|+[ (b,i) :|
=pi(a)+p,(b)

Hence p, is a group homomorphism for all /.

Comment

Step 9 of 16

(d) Prove that if all the 4, are commutative rings with 1 (0 and allthe p, , are unital ring
homomorphism, then |il_n A, may likewise be given the structure of a commutative ring with
1# 0 suchthatthe p, are all ring homomorphism.
Define an operator on |i}.Tl A, as follows: [(a:)][(hj)] = [(p,_‘ (a)-p,, (b)k)] where k is
any upper bound of i and j in /. See this.
(1) ((-)is well defined) Consider [ (a,.i,)]=[(a,.i,)] and [(b,.),)]=[(bs. /)] Then there
exist r>i,i,and s> j,j, suchthat p, (a)=p,, (a)and p, (b)=p,  (b,). Choose
ki zij, k, 20, j,,and 12k k,. Now,
PP (@) 2,0 (0))= 20, (21, (@) 20, (£, ()
=p.la)p,,(h)
=p.u(p (@) 2. (2. (B))
AP ()
b,)
) Pis (s, (82))
Pys, (B:))

Thus (P,..k (a)-p; . (b,).l)a'(p,__h (@) ;. (b,).l), and particularly,

[a, i) ] [ b.j,) J [(a, i ]-[(b:,jz)].So (+) is well-defined.

=p. (.. (a

)-p.

Poi(Pos (@)-p,0, (B)) =P, (@) £, (
=P (P (@)

Aa)p

=Pus(Pis, (4

Comment

Step 10 of 16

2)( () is associative) Suppose

[(@.)].[(8.1)]-[(e.k)] € lim 4. Consider r2i,j, s> jk,and 12r,s.Thenwe have the

following:

[ul ] [ b, j :| [ c.k) ]: p.(a)p,. ( b)l][ L'.k

p..(p.(a)-p,, (b)) P, (c).1)]

£..(£.(0))- ., (p,, (8))- i, (e).1)]

(
(
(P (a)-2,, (B) pus (<)1) ]
(
(
(

[(@d)]-[(6.1)] (k)] =[ (0 (@) £ (0, (8))- . (pb((')).l)]
P (@) 2. (P (B)- i (€)).1)

al)] [(p‘ b)-py,(c), s)]
) ([(6.1)]-[(e.k)])

[
[
[
[
[
[

=
[(a.

Hence (-)is associative.

Comment

Step 11 of 16

(3) ( (-) distributes over (+) ) We will show that (-) distributes over (+) on the left; distributes
on the right is similar. Let [(tll)][(’)[)][(lk)] elim4,, Suppose r= jk,andlet 1>i,r.

Then we have the following:
[(@)]-([(e.N)]+[(e.0)])=[(@D)][(p,. (B)* s, (c).r)]
[(pul@)-p.. (o, (B)+ 1, () 1)]
[(p,, (2 (2 (B))+ 2., ( m,(f)))-')]
(2. (@)-(,, (B)+ £r(€)) 1)]
=[
[
[
[

L}

[(u.i)]-([(b.] ((‘k (p’,(u) 2. (b)+p,(a) p,(c l)]
(P (2 (@) £, (B))+ £ (P (a)- 1, (€))1) ]

(P (a)-p,. (8).1)|+[(p. (@) 21, (€)1)]
(a,i) ] [ (b)) ] |: al)][((k)]

I

Hence (-)distributes over (+).

Thus (Iim A,.+,~) is a ring.

Comment

Step 12 of 16

However, we have the following.

(1) Consider the 4, are all commutative. Suppose [(ut)“_(b[)] elimA4,andlet k>i,;.

Then we have the following:
[(@i)]-[(b.1)]=[ (s (@), (8).K)]

=[(p4 () pru(a).k)]

(@)
Hence lim 4, is a commutative ring. If all the A, are commutative, then lim 4, is commutative.
(2) Note that because the p, , are unital ring homomorphism

pu(1)=1
=pu(1)

Whenever k =i, j . Hence [(l:)] :[(l,j)] forall i, /. Define 1=[(1,i)].

Consider [(u.i)] elim4,. Then,

e {0l
(22 (a0
:[ l-a,i ]
~[(@)]
Thus, [(u,i)]-] =|:(u,i):|. Hence | is a multiplicative identity in lim4, . If allthe A4, have
1#0 andthe p,, are unital, then |il_n A, has a multiplicative identity.
3. Suppose [(0:)] = [(l:)] Then there exists j>i suchthat p, (0)=p, (1), so that

0=1in A, a contradiction. Hence | () in |il_n 4.

Thus if the A, are commutative rings with | (), then |iLn A, is a commutative ring with 1% 0.

Thus, if 120 forall 4, then 1#( in limA4,

Comment

Step 13 of 16

Therefore, that if all the A, are commutative rings with | () and all the p,, are unital ring
homomorphism, then |il_“ A, may likewise be given the structure of a commutative ring with

1 # 0 such that the p, are all ring homomorphism.

Comment

Step 14 of 16

(e) Under the hypotheses of part (c), prove that |i5n A, has the following universal property:

if Cis any abelian group such that for each e / there is a homomorphism ¢, : 4, —— C with
@=0;°p, whenever i< j, then there is a unique homomorphism ¢: 4 —— C such that
@op, =g, foralli

Consider, C is an abelian group and that we have an indexed family of group homomorphism
@,: A, ——>C suchthat ¢, =@ op, foral i, jel.

Define ¢:lim 4, ——C by (p([(ul)]) =@, (a). We need to show that ¢ is a well defined
group homomorphism.

Suppose [(a:)] = [(b/)] .

Then there exists k >i, j suchthat p,, (a)=p,, (b)- Since p, (s) is well defined,

2. (Pis (@)= 0: (0,4 (b))- Then, (¢, 2, )(a)=(0: 29,4 ) (k). and we have
¢,(a)=g,(b). Hence, (p([(ul)]) =¢([b./]), and ¢ is well defined.

Comment

Step 15 of 16

Consider [(a.i)].[(b. 1)] elim4,, andlet k>4, j. Thenwe have the following:

o([(an)]+[(b)]) = ([ (. (@)+ £,. (8).4)])
=0u(pu(a)+ P, ()
=0 (pu(@)+ (b))
=(‘/’x °Pix )(U)+('A °Pjx )(I’)
o([(@n]+[(0.)) =0, (0)+0, ()
- o)) +0(((51))
So ¢ is a group homomorphism. Finally, for alliand all a € 4,,
(¢op)(@)=0(p,(a))
=o(({(ai)))
=¢,(a)

Hence, @op, =g, foralli

Comment

Step 16 of 16

Suppose that we have a group homomorphism ¥ : lim 4, —> C which also satisfies

yop =@ foral je/.Thenforalliandall ae 4,

v([(@i)])=v(n(a)
=(veop,)(a)
=¢,(a)
=(9p)(a)
v([(@i)])=0(p(a))
=o([(a1)])
Hence ¥ =¢.
Therefore, |iL“ A, has the following universal property: if C is any abelian group such that for
each je [ there is a homomorphism ¢, : 4 ——>C with ¢, =@, ¢p, whenever i<j,

then there is a unique homomorphism ¢: 4 —— C such that @o p, = ¢, foralli.

Comment
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