Solutions to Exercises

Chapter 1

Exercise 1. Use Eq. (1.6) and take the resistivity value from Table 1.2. Also, the wire has diameter 1 mm = 10^{-3} m so the area is $A = \pi r^2 = \pi (\frac{10^{-3} \text{ m}}{2})^2 = 7.85 \times 10^{-3} \text{ m}^2$. Finally, the length of the wire is 1 m, so $R = \rho \frac{L}{A} = (100 \times 10^{-8} \ \Omega \cdot \text{m})(\frac{1 \text{ m}}{7.85 \times 10^{-3} \text{ m}^2}) = 1.27 \ \Omega$.

Exercise 2. Equation (1.7) gives $P = I^2 R$ for resistors. Thus $I_{max} = \sqrt{(P/R)}$. For the 10 W resistor we obtain $I_{max} = \sqrt{(10 \text{ W}/10 \text{ k}\Omega)} = 0.032$ A and for the quarter-watt resistor $I_{max} = \sqrt{(0.25 \text{ W}/10 \text{ k}\Omega)} = 0.005$ A.

Exercise 3. Equation (1.8) gives $P = V^2/R$ for resistors. For the 100 Ω resistor we obtain $P = (100 \text{ V})^2/100 \Omega = 100 \text{ W}$ while for the 100 k Ω resistor we obtain $P = (100 \text{ V})^2/100 \text{ k}\Omega = 0.1 \text{ W}$.

Exercise 4. The current through R_3 is the same as the current supplied by the battery. To find this current, we first find the total resistance of the circuit. The parallel combination of R_1 and R_2 is $\frac{R_1R_2}{R_1+R_2} = \frac{6\cdot 5}{6+5} = 2.73 \ \Omega$. This resistance is then in series with R_3 so $R_{tot} = 3 \ \Omega + 2.73 \ \Omega = 5.73 \ \Omega$ and $I_3 = V_1/R_{tot} = 5 \ V/5.73 \ \Omega = 0.873 \ A$.

Exercise 5. Building on the result of the previous problem, the voltage across R_1 and R_2 is $V_1 - I_3 R_3 = 5 \text{ V} - (0.873 \text{ A})(3 \Omega) = 2.38 \text{ V}$. Therefore, $I_2 = (2.38 \text{ V})/(6 \Omega) = 0.397 \text{ A}$ and $I_1 = (2.38 \text{ V})/(5 \Omega) = 0.476 \text{ A}$.

Exercise 6. When the meter is connected, the input resistance of the meter R_m will be in parallel with the 1 k Ω resistor (call this resistor R_2). The resulting circuit will still be a voltage divider, but R_2 is replaced by the parallel combination of R_2 and R_m , $R_2//R_m = \frac{R_2 R_m}{R_2 + R_m}$. The voltage across this resistance is then given by the voltage divider equation [Eq. (1.21)]:

$$V_{out} = V_{in} \frac{R_2 / / R_m}{R_1 + (R_2 / / R_m)} = V_{in} \frac{R_2 R_m}{R_1 R_2 + R_1 R_m + R_2 R_m}$$

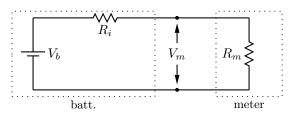
where we have called the 2 k Ω resistor R_1 . Putting in the numbers:

$$\begin{split} R_m &= 100 \ \Omega: \quad V_{out} = 3 \ \mathrm{V} \frac{(1 \ \mathrm{k\Omega})(100 \ \Omega)}{(2 \ \mathrm{k\Omega})(1 \ \mathrm{k\Omega}) + (2 \ \mathrm{k\Omega})(100 \ \Omega) + (1 \ \mathrm{k\Omega})(100 \ \Omega)} = 0.130 \ \mathrm{V} \\ R_m &= 1 \ \mathrm{k\Omega}: \quad \mathrm{V}_{out} = 3 \ \mathrm{V} \frac{(1 \ \mathrm{k\Omega})(1 \ \mathrm{k\Omega})}{(2 \ \mathrm{k\Omega})(1 \ \mathrm{k\Omega}) + (2 \ \mathrm{k\Omega})(1 \ \mathrm{k\Omega}) + (1 \ \mathrm{k\Omega})(1 \ \mathrm{k\Omega})} = 0.600 \ \mathrm{V} \end{split}$$

2

$$\begin{split} R_m &= 50 \text{ k}\Omega: \quad \mathcal{V}_{\text{out}} = 3 \text{ V} \frac{(1 \text{ k}\Omega)(50 \text{ k}\Omega)}{(2 \text{ k}\Omega)(1 \text{ k}\Omega) + (2 \text{ k}\Omega)(50 \text{ k}\Omega) + (1 \text{ k}\Omega)(50 \text{ k}\Omega)} = 0.987 \text{ V} \\ R_m &= 1 \text{ M}\Omega: \quad \mathcal{V}_{\text{out}} = 3 \text{ V} \frac{(1 \text{ k}\Omega)(1 \text{ M}\Omega)}{(2 \text{ k}\Omega)(1 \text{ k}\Omega) + (2 \text{ k}\Omega)(1 \text{ M}\Omega) + (1 \text{ k}\Omega)(1 \text{ M}\Omega)} = 0.999 \text{ V} \end{split}$$

Exercise 7.	When the voltmeter is	attached the circuit	appears as shown below.
-------------	-----------------------	----------------------	-------------------------



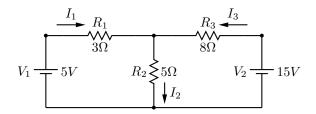
This is a voltage divider so $V_m = V_b \frac{R_m}{R_i + R_m}$. Solving for R_i gives $R_i = R_m \frac{V_b}{V_m} - R_m = (1000 \ \Omega) \frac{1.5 \ V}{0.9 \ V} - 1000 \ \Omega = 667 \ \Omega.$

Exercise 8. Referring to the diagram for Exercise 7, we have $V_m = V_b \frac{R_m}{R_m + R_i} = (1.5 \text{ V}) \frac{1 \text{ M}\Omega}{1 \text{ M}\Omega + 667 \Omega} = 1.499 \text{ V}.$

Exercise 9. Start by combining the 10 Ω and 5 Ω resistors in series to form a 15 Ω resistor. This, in parallel with the existing 15 Ω resistor gives a 7.5 Ω resistor. This resistor is in series with the 3 Ω and 2 Ω , giving a total of $3 + 7.5 + 2 = 12.5 \Omega$ across the terminals.

Exercise 10. From the result of Exercise 9 we know that the current supplied by the battery is $I_1 = V_{bat}/R_{tot} = 25 \text{ V}/12.5 \ \Omega = 2 \text{ A}$. This means the voltage across the 15 Ω resistor is $V_{15} = 25 \text{ V} - \text{I}_1(3 \ \Omega + 2 \ \Omega) = 15 \text{ V}$. This is also the voltage across the series combination of the 10 Ω and 5 Ω resistors. Thus the current through the 10 Ω resistor is $V_{15}/(10 \ \Omega + 5 \ \Omega) = 1 \text{ A}$.

Exercise 11. Assign current names and directions as shown below. For the left and right



halves of the circuit, KVL gives

a) $V_1 - I_1 R_1 - I_2 R_2 = 0$ b) $V_2 - I_3 R_3 - I_2 R_2 = 0 \rightarrow I_3 = \frac{V_2 - I_2 R_2}{R_3}$

and KCL gives $I_1 + I_3 = I_2$ or $I_1 = I_2 - I_3$. Using this last result in a) gives

$$V_1 - (I_2 - I_3)R_1 - I_2R_2 = 0$$