Singiresu S. Rao, Reliability Engineering, Pearson, Upper Saddle River, NJ, 2015

Chapter 1

Introduction

Answers to Review Questions

1.1

- 1. Reliability is the probability of a device performing its function over a specified period of time and under specified operating conditions.
- 2. A component ia an integral item which is nonmaintained. A system denotes an assembly of several components which may be maintained or nonmaintained.
- 3. The graph of failure rate versus time of any mechanical or electronic or other component is known as the bath-tub curve.
- 4. Failures in early stages of life of a product occur due to manufacturing defects and poor quality control procedures used. As these defective products are replaced or repaired (during the warranty period), the failure rate decreases as time progresses.
- 5. Because failures occur due to random causes.
- 6. In mechanical components: due to fatigue brought by a deterioration due to cyclic loading.
- 7. Air compressor: 6 x 10⁻⁶ per hour; Ball bearings: 1.1 x 10⁻⁶ per hour; Brakes: 4.3 x 10⁻⁶ per hour.
- 8. AC generator: 0.8×10^{-6} per hour; DC generator: 36.8×10^{-6} per hour; Neon lamp: 0.49×10^{-6} per hour
- 9. Static, fatigue, creep, corrosion, wear and instability (buckling) modes.
- 10. Factor of safety = (mean strength/mean load). It is considered inadequate because the same factor of safety implies different values of reliability in different situations.
- 11. Advisory Group on Reliability of Electronic Equipment. The report recommends that reliability testing must be made an integral part in the development of new systems.
- 12. Air travel: 9 per year per million persons; Road travel (motor vehicles): 300 per year per million persons.

- 13. IEEE Transactions on Reliability, Reliability Engineering and System safety.
- 14. Failure of S. S. Schenectady T-2 tanker: Due to brittle fracture.

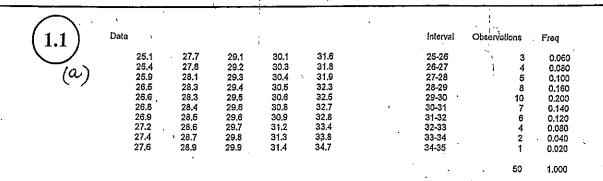
1.2

1. F 2. T 3. F 4. T 5. F

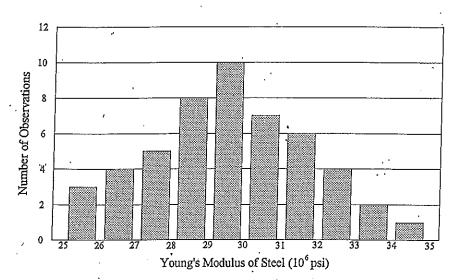
1.3

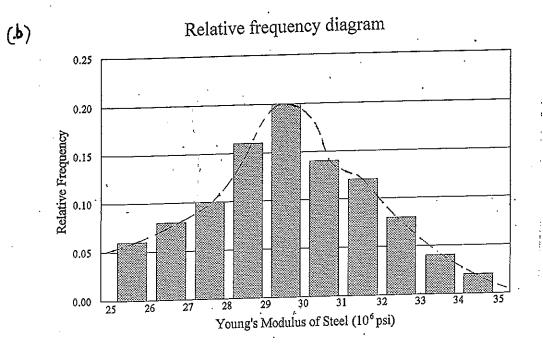
1. Infant 2. Random 3. Increases 4. Strength, Load

1.4


1-c 2-e 3-b 4-a 5-f 6-d

Solutions Manual


Singiresu S. Rao, Reliability Engineering, Pearson, Upper Saddle River, NJ, 2015


Chapter 1

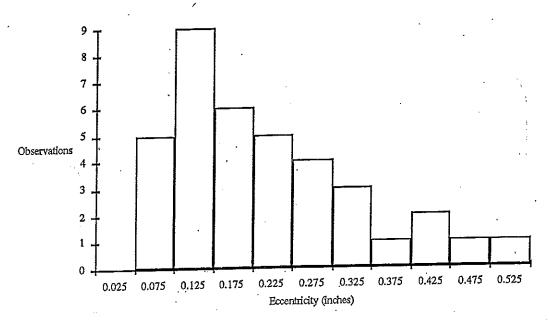
Introduction

Histogram

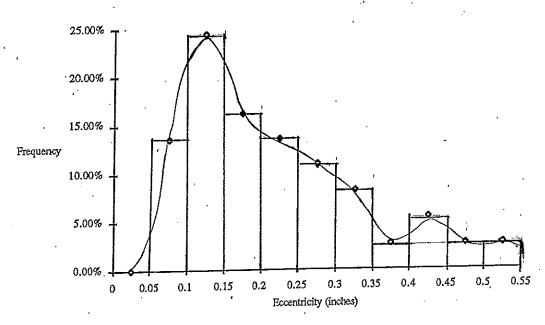
(c)

DATA	'YOUNG'S MOD	Xi - Xave	(Xi - Xave)^2
25.1	25100000	-4476000	2.0035E+13
29.9	29900000		1.0498E+11
28.1	28100000	-1476000	
32.5	32500000	2924000	8.5498E+12
28.5	28500000		
29.4	29400000	-176000	3.0976E+10
25.4	25400000	-4176000	1.7439E+13
33.4	33400000	3824000	1.4623E+13
31.9	31900000	2324000	5.401E+12
26.6	26600000		8.8566E+12
26.5	26500000	-3076000	9.4618E+12
31.2	31200000	1624000	2.6374E+12
29.2	29200000		1.4138E+11
26.9	26900000		7.161E+12
29.3	29300000		7.6176E+10
30.5	30500000		8.5378E+11
28.6	28600000		9.5258E+11
28.3	28300000		1.6282E+12
33.8	33800000		1.7842E+13
26.8	26800000	-2776000	7.7062E+12
27.4	27400000	-2176000	4.735E+12
32.3	32300000	2724000	7.4202E+12
29.8	29800000		5.0176E+10
30.3	30300000		5.2418E+11
30.4	30400000		
31.6	31600000	2024000	
29.5	29500000	-76000	5776000000
28.7	28700000	-876000	7.6738E+11
30.9	30900000	1324000	1.753E+12
1			•

		47760001	3.1542E+12	
27.8	278000001			
28.4	284000001		1.383E+12	_
34.7	347.00000	5124000	2.6255E+13	
30.1	30100000	524000	2.7458E+11	<u>. </u>
25.9	25900000	-3676000	1.3513E+13	
31.4	31400000	1824000	3.327E+12	
32.8	. 32800000	3224000	1.0394E+13	_
30.6	30600000	1024000	1.0486E+12	_
29.6	296000001	24000	576000000	
29.6	29600000	24000	576000000	_
28.9	28900000	-676000	4.5698E+11	
29.1	29100000	-476000	2.2658E+11	
27.2	27200000	-2376000	5.6454E+12	_!
31.3	31300000	1724000	2.9722E+12	
27.6	27600000	-1976000	3.9046E+12	
32.7	32700000	3124000	9.7594E+12	
28.3	28300000	-1276000	1.6282E+12	
31.8	31800000	2224000	4.9462E+12	
30.8	30800000	1224000	1.4982E+12	
27.7	27700000	-1876000	3.5194E+12	
29.7	29700000	124000	1.5376E+10	
25.1	20,00000	, = ,		
TOTALSUM	1478800000		2.4079E+14	
	29576000	16/in2 -	<i>-</i> /	
MEAN VALUE				_
STD DEV	2194498.58	Lb/in2		
		/_		_


:. $\bar{X} = 29.5760 \text{ Mpsi} = \text{mean value}$ $S_X = 2.1945 \text{ Mpsi} = \text{standard deviation}$

Observations of eccentricity of applied load

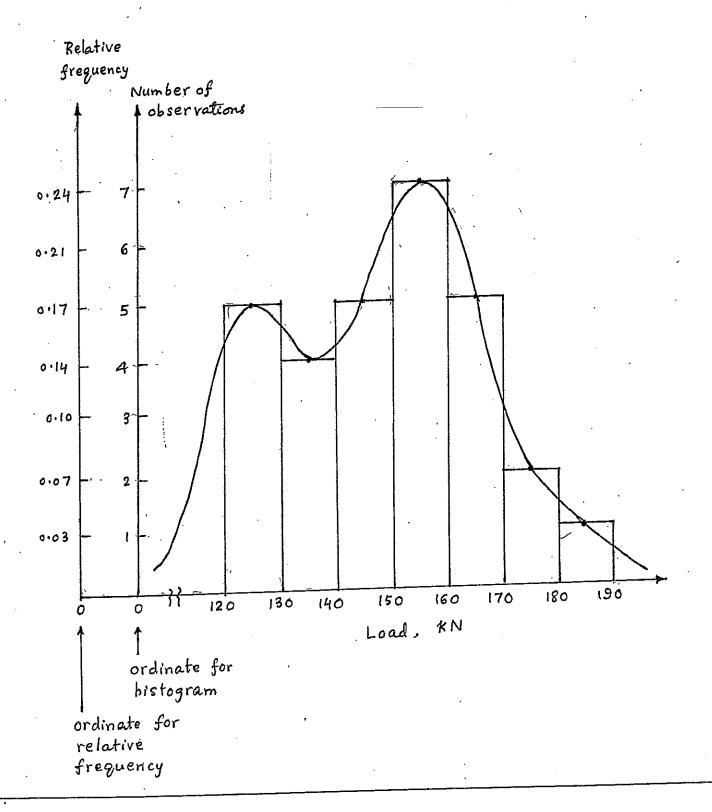

	<u> </u>	Σe	Σe^2
n	e •	inches	inches^2
	inches 0,410	0.410	0.1681
1	0.050	0.410	0.1706
2		0.460	0.1787
.3	0.090	0.745	0.216725
4 5	0.195	1,090	0.33575
	0.345	1,090	0,359775
6	0.155 0.320	1,565	0,462175
7	0.320	1,685	0.476575
. 8	0.120	1,975	0.560675
9	0.290	2.040	0.5649
10 11	0.003	2.315	0.640525
	0.273	2.545	0.693425
12 13	0.230	2,685	0.713025
13	0.140	2.950	0.78325
15	0.205	3.165	0.829475
15	0.070	. 3,235	0.834375
17	0.115	3,350	0.8476
18	0.305	3.655	0.940625
19	0.435	4.090	1.12985
20	0.130	4,220	1.14675
21	0.535	4,755	1,432975
22	0.110	4.865	1.445075
23	0,205	5.070	1.4871
24	0.085	5.155	1.494325
25	0.135	5.290	1.51255
26	0.125	5.415	1.528175
27	0.185	5.600	1.5624
28	0.480	6.080	1,7928
29	0.175	6.255	1.823425
30	0.145	6.400	1.84445
31	0.380	6.780	1.98885
32	0.165	6.945	2.016075
33	0.255	7.200	2.0811
34	0.180	7.380	2.1135
35	0.240	7.620	2.1711
36	0.220	7.840	2,2195
37	0.105	• 7,945	2.230525

••									<u> </u>		
Number of observations in each interval											
	7,0111.001	0.05		0,15	0.2	0.25	0.3	0.35	0.4	0.45	0;5
From:	U				0.25	0.3	0.35	0.4	0.45	0,5	0.55
To:	0.05	0.1	0.15						0.425	0.475	0.525
Midpoint	0.025	0.075	0.125	0.175	0.225	0.275	0.325	0.375	0,423	0.470	
	0	- 5	0	6	5	4	3	1	2 _	1	
Total:	U	3	-21000	16000	13.51%	10.81%	8.11%	2,70%	5,41%	2.70%	2.70%
Lynnanove	ለ ለለመሬ	13 51%	24.32%	16.22%	15.5170	10.0170	0.1170	2,1070	<u> </u>		

Column Load Eccentricity Histogram

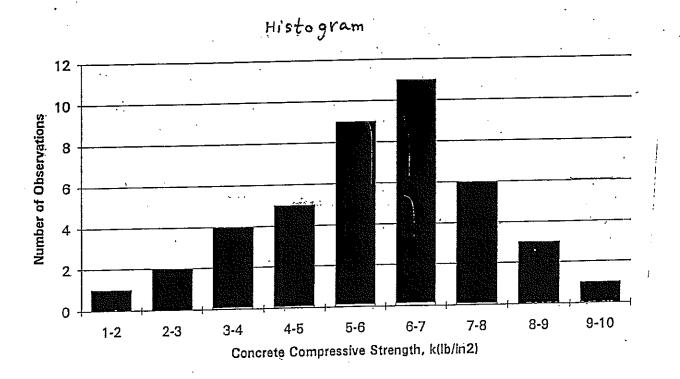
Column Load Eccentricity Relative Frequency

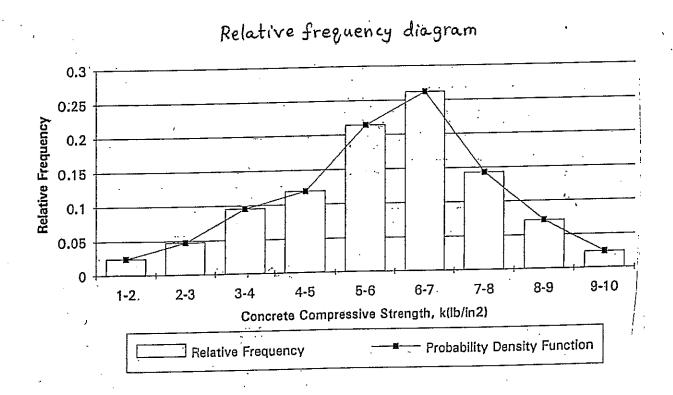
Mean value of eccentricity =
$$\overline{E} \simeq \mu = \frac{1}{N} \sum_{i=1}^{N} E_{i} = \frac{7.945}{37}$$


$$= 0.215 \text{ inch}$$
Standard deviation of eccentricity = $\left\{\frac{1}{N} \sum_{i=1}^{N} \left(E_{i} - \overline{E}_{i}\right)^{2}\right\}^{\frac{1}{2}}$

$$= \left\{\frac{1}{N} \sum_{i=1}^{N} E_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} E_{i}\right)^{2}\right\}^{\frac{1}{2}} = 0.119 \text{ inch}$$

29 values of maximum load carried by welded beams given. Smallest value: 123.1 KN, Largest value: 186.9 KN Range chosen: 120 KNi - 190 KN All data points are grouped into 7 intervals of 10 KN each.

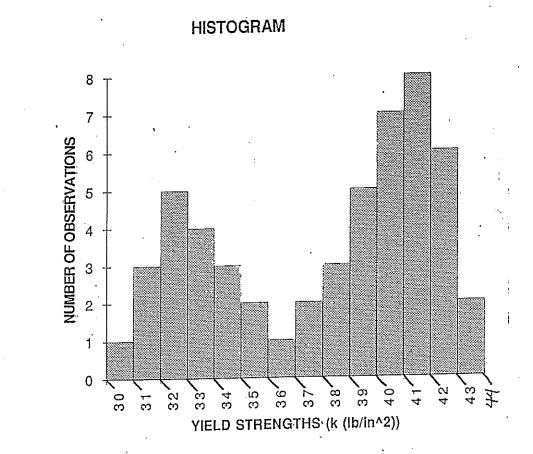

Range of load:	Frequency of load values falling in the range
≥ 120 < 130 kN	5
≥ 130 × 140 KN	4
2140 < 150 12N	5
≥ 150 < 160 kN	7
≥ 160 < 170 KN	5
2 170 < 180 KN	2
=180 <190 KN	. 1


1.3

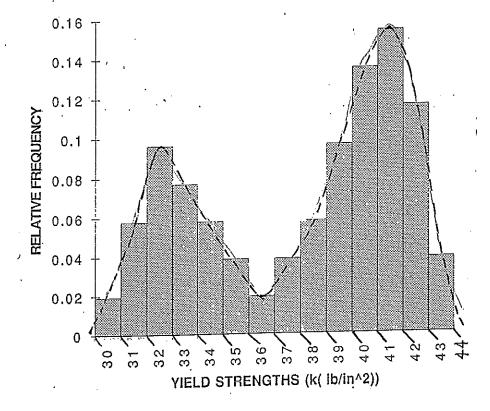
Mean value =
$$\bar{X} = \frac{243.2}{42} = 5.79 \text{ kpsi}$$

Standard deviation = $\delta_{X} = \left\{ \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2} \right\}^{\frac{1}{2}} = 1.81 \text{ kpsi}$

Range of compressive strength (KPSi)	Number of occurrances	Relative frequency
1-2	l	1/42 = 0.024
2-3	2	2/42 = 0.048
3-4	4	4/42 = 0.095
4-5	5	5/42 = 0.119
5-6	9	9/42 = 0.214
6-7	H _e	11/42 = 0.262
7-8	6	6/42 = 0.143
8 — 9	3	3/42 = 0.071
9-10	1	1/42 = 0.024



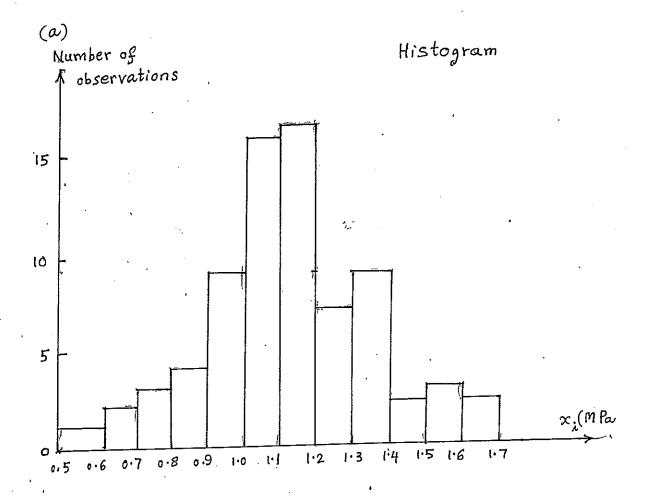
1.5

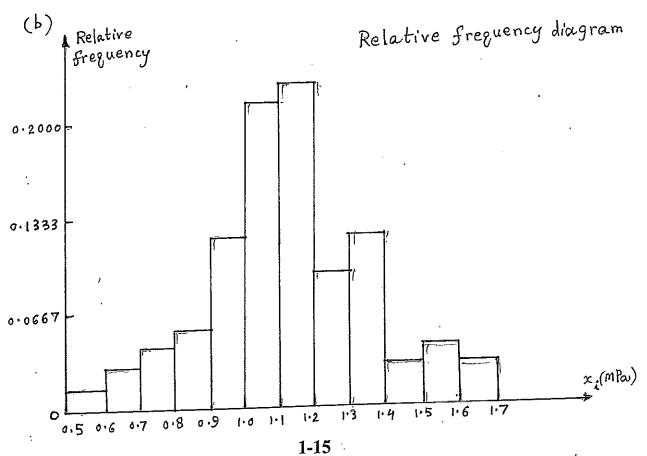

yield strength data of reinforcing bars (in Kpsi) made of two different grades of steel:

Range	# of Occourances	Relative Frequency
30.0 - 30.9	1	0.019
31.0 - 31.9	3	0.058
32.0 - 32.9	. 5	0.096
33.0 - 33.9	4	0.077
34.0 - 34.9	· 3	0.058
35,0 - 35,9	2	0,038
36,0 - 36.9	1	0.019
37.0 - 37.9	2	0,038
38.0 - 38.9	3	0.058
39.0 - 39.9	5	0.096
40.0 - 40.9	7	0.135
41.0 - 41.9	8	0.154
42.0 - 42.9	6	0.115
43.0 - 43.9	2	0.038

(a)

(C) The relative frequency diagram has two distinct peaks which shows that the two grades of steel have two different average yield strengths which are approximately 32.5 and 41.5 k(lb/in²).


(d)


		•	
DATA	Y, STRENGTHS	Xi - Xave	(XI - Xave)^2
35.7	35700	-2315.38462	5361005.92
31.1	31100	-6915.38462	47822544.4
33.2		-4815.38462	
42.5		4484.61538	20111775.1
41,2		3184.61538	
42.8		4784.61538	
37.5		-515.384615	265621.302
40.7	, 40700	2684.61538	7207159.76
42.3	42300	4284.61538	18357929
42.2	42200	4184.61538	17511005.9
34.1	34100	-3915.38462	
40.9	40900	2884.61538	8321005.92
43.3	43300	5284.61538	27927159.8
38.8	, 38800	784.615385	
40.4	40400	2384.61538	5686390.53
42.9	42900	4884.61538	23859467.5
38.4	38400	384.615385	147928.994
41.7	41700	3684.61538	
42.7	42700	4684.61538	21945621.3
40.1	40100	2084.61538	
41.4	41400	3384.61538	11455621.3
39.2	39200	1184.61538	1403313.61
43.4	43400		28994082.8
40.8	40800	2784.61538	7754082.84
39,6	39600	1584.61538	2511005.92
33.8		-4215.38462	17769467.5
36.6		-1415.38462	2003313.61
39.9		1884.61538	3551775.15
32.3		-5715.38462	32665621.3
^ 32.6		-5415.38462	29326390.5
32.9		-5115.38462	26167159.8
, 34.5		-3515.38462	12357929
30.2	30200	-7815.38462	61080236.7
38.1	38100	84.6153846	7159.76331
41.5	41500	3484.61538	12142544.4
31.2	31200	-6815.38462	46449467.5
31.7	31700	<u>-6315.38462</u>	39884082.8
34.6	34600	-3415.38462	11664852.1
41.1	41100	3084.61538	9514852.07

ı	37.2	37200	-815.384615	664852.071
-	39.5	39500		2204082.84
\vdash	39.3	39300		1650236.69
┝		35500	-2515.38462	6327159.76
F	35.5			
L	33.7		-5515.38462	
_	32.5			
	40.3	40300	2284.61538	
Г	41.8	41800	3784.61538	
	32.2	32200	-5815.38462	33818698.2
	40.6	40600	2584.61538	6680236.69
-	33.4	33400	-4615.38462	21301775.1
	41.6	41600	3584.61538	12849467.5
┢	41.3	41300	3284.61538	10788698.2
H	1110			
-	OTAL SUM	1976800	LB/IN^2	816187692
_	MEAN VALUE	38015.3846		
-	STD. DEV.	3961.80731		
10	סוט. טבע.	0001.00701		
		1		

1.6) Data on compressive strength of aluminum-lithium specimens (in MPa):

Interval of compressive strength (MPa)	Number Of observed values	Relative frequency Value
0.5001-0.6000	1	0.0133
0.6001-0.7000	. 2	0.0267
0.7001-0.8000	3	0.04.00
0.8001-0.9000	4	0.05 33
0.9001 - 1.0000	9	0,1200
1.0001 - 1.1000	. 16	0.2133
1.1001 - 1.2000	17	0.2267
1.2001 - 1.3000	7	0.0933
1.3001 - 1.4000	9	0.1200
1.4001 - 1.5000	2	0.0267
1-5001 - 1.6000	3	0.0400
1.6001 - 1.7000	2	0.0267
Total	75	1.0000

(c) Mean value =
$$\bar{x} = \frac{1}{75} \sum_{i=1}^{75} x_i = \frac{1}{75} (1.0335 + 0.9302 + ... + 1.3091)$$

= 1.12.27 MPa

Standard deviation =
$$S_X = \left\{ \frac{1}{75} \sum_{i=1}^{75} (x_i - \overline{x})^2 \right\}^{\frac{1}{2}}$$

$$= \left\{ \frac{1}{75} \left[(1.0335 - 1.1227)^2 + \dots + (1.3091 - 1.1227)^2 \right] \right\}^{\frac{1}{2}}$$

$$= 0.0227 \text{ MPa}$$

(d) From the given data, number of specimens that gave a value of
$$x_i$$
 below 1 MPa = 19 out of $75 = \frac{19}{75} = 0.2533$ or 25.33% .