
Detailed Solutions to Exercises

These are my solutions to the exercises from “A Basis Theory Primer.” Of
course, many problems have solutions other than the ones I sketch. Please
send comments and corrections to “heil@math.gatech.edu”.

Detailed Solutions to Exercises from Chapter 1

1.1 Since ‖ · ‖ is a norm, we must have λ = ‖1‖ 6= 0. Then given any x ∈ F,
we have ‖x‖ = ‖x · 1‖ = |x| ‖1‖ = λ |x|.
1.2 (a) Suppose xn → x, and choose ε > 0. Then there exists N > 0 such that
‖x − xn‖ < ε for all n > N. Hence, by the Triangle Inequality, if m, n > N
then ‖xm − xn‖ ≤ ‖xm − x‖ + ‖x− xn‖ < 2ε. Thus {xn}n∈N is Cauchy.

(b) Suppose that {xn}n∈N is Cauchy. Then there exists an N > 0 such
that ‖xm − xn‖ < 1 for all m, n ≥ N. Therefore, for n ≥ N we have

‖xn‖ = ‖xn − xN + xN‖ ≤ ‖xn − x‖ + ‖xN‖ ≤ 1 + ‖xN‖.

Hence for any n we have

‖xn‖ ≤ max
{
‖x1‖, . . . , ‖xN−1‖, ‖xN‖ + 1

}
,

so {xn} is bounded.

(c) Given x, y ∈ H, we have

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖ + ‖y‖,

so ‖x‖−‖y‖ ≤ ‖x− y‖. Reversing the roles of x and y, we obtain ‖y‖−‖x‖ ≤
‖x− y‖, so we have

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x− y‖.

(d) By the Reverse Triangle Inequality, if xn → y, then
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2 Detailed Solutions

∣∣∣‖x‖ − ‖xn‖
∣∣∣ ≤ ‖x− xn‖ → 0.

(e) If xn → x and yn → y, then

‖(x+ y)− (xn + yn)‖ = ‖(x−xn) + (y− yn)‖ ≤ ‖x− xn‖+ ‖y− yn‖ → 0.

(f) Suppose xn → x and cn → c. Then C = sup |cn| <∞, so

‖cx− cnxn‖ ≤ ‖cx− cnx‖ + ‖cnx− cnxn‖
= |c− cn| ‖x‖ + |cn| ‖x− xn‖
≤ |c− cn| ‖x‖ + C ‖x− xn‖ → 0.

1.3 (a) Suppose first that 1 ≤ p < ∞ and q = ∞. Given x = (x1, . . . , xd) ∈
Fd, we have |xk| ≤ ‖x‖∞ for each k. Therefore

|x|p =
(
|x1|p + · · · + |xd|p

)1/p ≤
(
d ‖x‖∞

)1/p
= d1/p ‖x‖∞.

Conversely, ‖x‖∞ = |xk| for some particular k, so we have

‖x‖∞ = |xk| ≤
(
|x1|p + · · · + |xd|p

)1/p
= ‖x‖p.

Hence | · |p and | · |∞ are equivalent norms on Fd.
If we now choose any 1 ≤ p, q ≤ ∞, then | · |p is equivalent to | · |∞, and

| · |∞ is equivalent to | · |q, so it follows that | · |p is equivalent to | · |q.
1.4 If ‖x‖ = 0 then ck(x) = 0 for each k, so x = 0. All of the other properties
of a norm follow easily. To show completeness, note that for each 1 ≤ k ≤ d
we have |ck(x)| ≤ ‖x‖. Also, the ck are linear, so if {xn}n∈N is a Cauchy
sequence in X, then for each fixed k we have

|ck(xm) − ck(xn)| = |ck(xm − xn)| ≤ ‖xm − xn‖.

This implies that {ck(xn)}n∈N is a Cauchy sequence of scalars and hence

converges to some scalar ck. Define x =
∑d

k=1 ckxk. The fact that xn → x
then follows just as in the proof that ℓp is complete.

1.5 We are given that ‖xn+1 − xn‖ < 2−n for every n. Choose any ε > 0,

and let N be large enough that 2−N+1 < ε. If n > m > N, then we have

‖xn − xm‖ ≤
n−1∑

k=m

‖xk+1 − xk‖ ≤
∞∑

k=m

1

2k
=

1

2m−1
<

1

2N−1
< ε.

Hence {xn} is Cauchy.

1.6 Suppose that every subsequence of {xn} has a subsequence that converges
to x, but the full sequence {xn} does not converge to x. Then there exists
an ε > 0 such that given any N we can find an n > N such that ‖x−xn‖ > ε.
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Detailed Solutions 3

Then we can find a subsequence {xnk
} such that ‖x − xnk

‖ > ε for every k.
But then no subsequence of {xnk

} can converge to x, which is a contradiction.

1.7 It is clear that ‖ · ‖R is a norm on XR, so the issue is to show that XR is
complete. Suppose that {xn} is Cauchy inXR. Since ‖xm−xn‖ = ‖xm−xn‖R,
we have that {xn} is Cauchy in X and therefore converges to some x ∈ X.
But then ‖x− xn‖R = ‖x− xn‖ → 0, so xn converges to x in XR. Hence XR

is complete.

1.8 (a) The Triangle Inequality follows from d(f, h) = ‖(f − g) + (g − h)‖ ≤
‖f − g‖ + ‖g − h‖ = d(f, g) + d(g, h).

(b) A sequence {fn}n∈N converges to f ∈ X if limn→∞ d(fn, f) = 0, i.e.,
if

∀ ε > 0, ∃N > 0, ∀n ≥ N, d(fn, f) < ε.

A sequence {fn}n∈N is Cauchy if

∀ ε > 0, ∃N > 0, ∀m,n ≥ N, d(fm, fn) < ε.

(c) For each n, let xn be a rational number such that π < xn < π + 1/n.
Then {xn} is Cauchy, but it does not converge in the space Q. It does converge
in the larger space R, but since the limit does not belong to Q, it is not
convergent in Q.

1.9 (a) Let δ1, δ2 denote the first two standard basis vectors. These belong
to ℓp, but we have

‖x+ y‖p = (1 + 1)1/p = 21/p

while
‖x‖p + ‖y‖p = 1 + 1 = 2.

Since p < 1 we have 21/p > 2, so the Triangle Inequality is not satisfied by
‖ · ‖p.

(b) Suppose that 0 < p < 1. Let f(t) = (1+ t)p and g(t) = 1+ tp for t > 0.
Then f(0) = 1 = g(0). Also,

f ′(t) = p (1 + t)p−1 = p
1

(1 + t)1−p
and g′(t) = ptp−1 = p

1

t1−p
.

Since 0 < 1 − p < 1, we have t1−p < (1 + t)1−p, and therefore f ′(t) ≤ g′(t)
for t > 0. Hence g is increasing faster than f, and therefore f(t) ≤ g(t) for all
t ≥ 0. Next, given any a, b ≥ 0, we have

(a+ b)p = ap
(

1 +
b

a

)p
≤ ap

(
1 +

(
b

a

)p)
= ap + bp.

Hence, if x, y ∈ ℓp(I), then
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‖x+ y‖pp =
∑

k∈I

|xk + yk|p ≤
∑

k∈I

(
|xk|p + |yk|p

)
= ‖x‖pp + ‖y‖pp.

This establishes the Triangle Inequality.

(c) To show that the unit ball is not convex, note that the the standard
basis vectors δ1 and δ2 both belong to the closed unit ball

D =
{
x ∈ ℓp : ‖x‖p ≤ 1

}
,

but ∥∥∥δ1 + δ2
2

∥∥∥
p

p
=

(1

2

)p
+

(1

2

)p
=

2

2p
= 21−p > 1,

so (δ1 + δ2)/2 does not belong to the closed unit ball. Hence this set is not

convex in ℓp. This also shows that if ε > 0 is small, then the open unit ball

B1+ε(0) is not convex. By rescaling, the unit ball B1(0) is not convex either.

1.10 (a) Set f(t) = tθ−θt−(1−θ). Then f ′(t) = θtθ−1−θ. We have f ′(t) = 0
if and only if t = 1. Also, f is increasing for 0 < t < 1 and decreasing for
t > 1, and f(1) = 0, so f(t) ≤ 0 for all t > 0, with equality only for t = 1.

(b) Note that

1

p
+

1

p′
= 1, p′ =

p

p− 1
,

p′

p
=

1

p− 1
, p′ − p′

p
= 1.

With t = ap b−p
′

and θ = 1/p, we have by part (a) that

a b−p
′/p =

(
ap b−p

′)1/p ≤ ap b−p
′ 1

p
+

(
1 − 1

p

)
=

ap b−p
′

p
+

1

p′
.

Multiplying through by bp
′

and using the fact that p′ − (p′/p) = 1, we obtain

ab = a bp
′−p′/p ≤ ap

p
+
bp

′

p′
.

Equality holds if and only if apb−p
′

= 1. This is equivalent to bp
′

= ap, or

b = ap/p
′

= ap−1.

1.11 Case 1 < p < ∞. By Exercise 1.10, equality holds in ab ≤ ap

p + bp′

p′ if

and only if b = ap−1. For the normalized case ‖x‖p = ‖y‖p′ = 1, equality in
Hölder’s Inequality requires that we have equality in equation (1.5), and this
will happen if and only if |yk| = |xk|p−1 for each k. This is equivalent to

|yk|p
′

= |yk|p/(p−1) = |xk|p.

For the nonnormalized case, if x, y 6= 0, equality holds in Hölder’s Inequality if
and only if it holds when we replace x and y by x/‖x‖p and y/‖y‖p′. Therefore,
we must have
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|yk|p
′

‖y‖p′p′
=

( |yk|
‖y‖p′

)p′
=

( |xk|
‖x‖p

)p
=

|xk|p
‖x‖pp

, k ∈ I.

Hence α |xk|p = β |yk|p
′

with α = ‖y‖p
′

p′ and β = ‖x‖pp. On the other hand, if
either x = 0 or y = 0, then we have equality in Hölder’s Inequality, and we
also have α |xk|p = β |yk|p

′

with α, β not both zero.
For the converse direction, suppose that α |xk|p = β |yk|p

′

for each k ∈ I,
where α, β ∈ F are not both zero. If α = 0, then yk = 0 for every k, and hence
we trivially have ‖xy‖1 = 0 = ‖x‖p ‖y‖p′. Likewise, equality holds trivially if
β = 0. Therefore, we can assume both α, β 6= 0, and by dividing both sides
by β, we may assume that β = 1 and α > 0. Then we have |yk|p

′

= α |xk|p, so

‖y‖p
′

p′ =
∑

k∈I

|yk|p
′

= α
∑

k∈I

|xk|p = α ‖x‖pp.

If either x = 0 or y = 0 then equality holds trivially in Hölder’s Inequality, so
let us assume both x, y 6= 0. Then we have

|yk|p
′

‖y‖p′p′
=

α|xk|p
α‖x‖pp

=
|xk|p
‖x‖pp

.

By the work above, this implies that equality holds in Hölder’s Inequality.

Case p = 1, p′ = ∞. Set M = supk |yk|. Suppose equality holds in Hölder’s
Inequality, i.e.,

∑

k∈I

|xkyk| =

(∑

k∈I

|xk|
) (

sup
k

|yk|
)
.

Then ∑

k∈I

|xkyk| =
∑

k∈I

M |xk|.

Hence ∑

k∈I

(M − |yk|) |xk| = 0,

but 0 ≤M − |yk| for every k, so we must have (M − |yk|) |xk| = 0 for every k.
Thus whenever xk 6= 0, we must have |yk| = M.

Conversely, if |yk| = M for all k such that xk 6= 0, equality holds in
Hölder’s Inequality.

1.12 We have ℓp ⊆ ℓ∞ for every p. Further, the constant sequence x =
(1, 1, 1, . . . ) belongs to ℓ∞ but not to any ℓp with p finite, so the inclusion is
proper.

Suppose 0 < p ≤ q <∞ and x ∈ ℓp. If ‖x‖∞ = 1, then
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‖x‖q =

( ∞∑

k=1

|xk|q
)1/q

=

( ∞∑

k=1

|xk|p |xk|q−p
)1/q

≤
( ∞∑

k=1

|xk|p
)1/q

= ‖x‖p/qp ≤ ‖x‖p,

the last inequality following from the fact that p/q ≤ 1 and ‖x‖p ≥ ‖x‖∞ = 1.
For the general case, apply this inequality to x/‖x‖∞.

To show that the inclusion is strict, set xk = k−1/p. Then since q/p > 1,
we have

‖x‖qq =

∞∑

k=1

1

kq/p
< ∞,

while

‖x‖pp =

∞∑

k=1

1

k
= ∞.

Another example is xk = (k log2 k)−1/q for k ≥ 2. The Integral Test shows
that

‖x‖qq =

∞∑

k=2

1

k log2 k
< ∞,

while

‖x‖pp =

∞∑

k=2

1

(k log2 k)p/q
= ∞.

1.13 We need the following lemma.

Lemma. If E ⊆ R is measurable and 0 < |E| < ∞, then there exists a
measurable F ⊆ E such that |F | = |E|/2.

Proof. Let Et = E ∩ (−∞, t]. Then the sets Et are nested increasing
with t, their union is E, and their intersection is empty. Applying continuity
from both above and below, which is applicable since |E| < ∞, we conclude
that

lim
t→∞

|Et| = |E| and lim
t→−∞

|Et| = 0.

A similar argument shows that |Et| is a continuous function of t. Therefore
there must be some t such that |Et| = |E|/2. ⊓⊔

Now we return to the proof of the exercise. Assume that 1 ≤ p < q < ∞.
Taking E0 = E, by applying the Lemma, we can find a set E1 ⊆ E such
that |E1| = |E|/2. Noting that |E\E1| = |E|/2, we apply the lemma to
find E2 ⊆ E\E1 with |E2| = |E|/4, and note that E2 is disjoint from E1.
Continuing in this way we construct disjoint En ⊆ E such that |En| = 2−n |E|.
Consider
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f =
∑

n

2n/q χEn .

We have

‖f‖qLq =

∫

E

|f |q =
∑

n

2n |En| =
∑

n

2n 2−n |E| = ∞,

so f /∈ Lq(E). On the other hand,

‖f‖pLp =

∫

E

|f |p =
∑

n

2np/q |En|

=
∑

n

2np/q 2−n |E|

≤
∑

n

2n( p
q −1) |E| < ∞,

since p/q < 1. Hence f ∈ Lp(E). Note that this f is unbounded, so this is
also an example of a function in Lp(E) that does not belong to L∞(E).

1.14 Suppose that x ∈ ℓq(I) for some finite q. Since only countably many
components of x can be nonzero, it suffices to consider I = N.

If x = 0 then ‖x‖p = 0 for every p, so we are done. Therefore, we may
assume x 6= 0, which implies ‖x‖∞ 6= 0. By dividing through by ‖x‖∞, we
may assume that ‖x‖∞ = 1. Then for every p we have 1 = ‖x‖∞ ≤ ‖x‖p. In
particular, |xk| ≤ 1 for every k. Therefore, for p ≥ q we have |xk|p ≤ |xk|q.
Hence x ∈ ℓp. Further, for p ≥ q,

‖x‖∞ = 1 ≤ ‖x‖p =

( ∞∑

k=1

|xk|p
)1/p

≤
( ∞∑

k=1

|xk|q
)1/p

= ‖x‖q/pq

→ 1 = ‖x‖∞ as p→ ∞,

where the limit exists because ‖x‖q is finite and nonzero.
On the other hand, the vector x = (1, 1, 1, . . . ) satisfies ‖x‖∞ = 1, but

‖x‖p = ∞ for every p <∞.

1.15 The proof is very similar to the proof that ℓp(N) is a Banach space.
For example, if {xn}n∈N is a Cauchy sequence in ℓp(I) and we write xn =
(xn(i))i∈I , then for each fixed i we have that (xn(i))n∈N is a Cauchy sequence
of scalars, and hence converges to some scalar x(i). For a given n, at most
countable many components of xn can be nonzero. As a countable union of
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countable sets is countable, at most countably many components of x can be
nonzero. An argument similar to the one used in the proof of Theorem 1.14
then shows that xn → x in the norm of ℓp(I), so ℓp(I) is complete.

1.16 (a) The Triangle Inequality follows from Hölder’s Inequality, and an
argument similar to the one used in the proof of Exercise 1.3 shows that the
norm ‖(x, y)‖p is equivalent to the norm ‖(x, y)‖∞.

(b) Suppose thatX and Y are complete. If
{
(xn, yn)

}
is a Cauchy sequence

in X ×Y, then {xn} is a Cauchy sequence in X since we always have ‖x‖X ≤
‖(x, y)‖p. Hence xn → x for some x ∈ X, and similarly yn → y for some y ∈ Y.
It then follows that (xn, yn) → (x, y) with respect to the norm on X × Y.

1.17 (a) ⇒. Suppose that E is closed. If x /∈ E then since U = X\E is open,
there exists some r > 0 such that Br(x) ⊆ X\E. Consequently, every element
of E is at least a distance r from x, and therefore x cannot be a limit point
of E. Hence every limit point of E belongs to E.

⇐. Suppose that E is not closed. Then X\E is not open, so there exists
some x /∈ E such that Br(x) is not contained in X\E for any r > 0. Therefore,
for each r = 1/n we can find an xn ∈ E ∩ B1/n(x). But then xn → x and
xn ∈ E. Since x /∈ E while xn ∈ E, we must have xn 6= x. Therefore x is a
limit point of E, so E does not contain all of its limit points.

(b) Let F = E ∪ {x ∈ X : x is a limit point of E}. Our goal is to show
that F = E.

Suppose that x ∈ FC = X\F. Then, by definition, x /∈ E and x is not a
limit point of E. If every open ball Br(x) contained an element of E (which
necessarily must not be x), then x would be a limit point of E. Therefore,
there exist some Br(x) that contains no points of E. Suppose that Br(x)
contained some limit point y of E. Then there would be points xn ∈ E such
that xn → y. But then for n large enough we would have xn ∈ Br(x), which
is a contradiction. Therefore Br(x) ⊆ FC. Hence FC is open, so F is closed.

Since E ⊆ F, this implies that E ⊆ F .
Now we’ll show that F ⊆ E. Since E ⊆ E, we simply have to show that

the limit points of E are contained in E. So, suppose that x /∈ E. Since E is
closed, there exists some r > 0 such that Br(x) ⊆ X\E. Hence Br(x) contains
no points of E, and therefore x cannot be a limit point of E. Hence F ⊆ E.

(c) This follows by combining parts (a) and (b).

1.18 ⇒. Suppose that M is a Banach space with respect to the norm of X.
Suppose that xn ∈M and xn → x ∈ X. Then {xn}n∈N is a Cauchy sequence
inM and hence must converge to some element y ∈M. However, as a sequence
in X we then have that xn → x and xn → y, so by uniqueness of limits,
x = y ∈M. Therefore M is closed.

⇐. Suppose that M is a closed subspace of X, and suppose that {xn}n∈N

is a Cauchy sequence in M. Then {xn}n∈N is Cauchy in X, so there exists
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some x ∈ X such that xn → x. However, M is closed, so this implies that
x ∈M. Therefore every Cauchy sequence in M converges to an element of M,
so M is complete.

1.19 Suppose that f ∈ Cb(R), and choose anyM > 0. If |f | ≤M everywhere,
then we certainly have |f | ≤M a.e.

For the converse, choose any M > 0, and suppose that there is a point
where |f(x)| > M. Then since |f | is continuous, there must be an open inter-
val I containing x such that |f(y)| > M for y ∈ I. But then |f | > M on a set
with positive measure, i.e., it is not true that |f | ≤ M a.e. Hence this shows
by contrapositive argument that if |f | ≤M a.e., then |f | ≤M everywhere.

Consequently,

inf{M : f(x) ≤M a.e.} = inf{M : f(x) ≤M for every x} = sup
x∈R

|f(x)|,

so the uniform and L∞ norms agree for functions in Cb(R).

1.20 (a) Suppose that {xN}N∈N is a sequence in c and xN → x in ℓ∞-norm.
Write xN =

(
xN (k)

)
k∈N

and x =
(
x(k)

)
k∈N

. Since ℓ∞ convergence implies

componentwise convergence, we have that x(k) = limN→∞ xN (k) for each
k ∈ N.

By hypothesis, yN = limk→∞ xN (k) exists for each N. We have

|yM−yN | = lim
k→∞

|xM (k)−xN (k)| ≤ sup
k

|xM (k)−xN (k)| = ‖xM−xN‖ℓ∞ ,

so {yN}N∈N is a Cauchy sequence of scalars and therefore converges, say to y.
Fix any ε > 0. Then there exists an N such that ‖x − xN‖∞ < ε and

|y − yN | < ε. Since |x(k) − xN (k)| < ε for every k, we have

lim
k→∞

|y − x(k)| ≤ lim sup
k→∞

(
|y − yN | + |yN − xN (k)| + |xN (k) − x(k)|

)

≤ ε+ 0 + ε = 2ε.

Since ε is arbitrary, we conclude that y = limk→∞ x(k), so x ∈ c. Thus c is
closed in ℓ∞.

Now assume in addition that xN ∈ c0 for eachN. Then yN = 0 for everyN,
so by the argument above we see that y = 0. Hence x ∈ c0, so c0 is closed in
ℓ∞ as well.

(b) Choose any x = (x(1), x(2), . . . ) ∈ c0. Define

xN = (x(1), . . . , x(N), 0, 0, . . . ).

Then xN ∈ c00, and

lim
N→∞

‖x− xN‖ℓ∞ = lim
N→∞

sup
k>N

|x(k)| = lim sup
k→∞

|x(k)| = 0.
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Hence c00 is dense in c0. However, c00 is not closed, since any x ∈ c0 with
infinitely many nonzero components is an accumulation point of c00 but does
not belong to c00.

(c) Choose any x ∈ c0. Write x = (x(1), x(2), . . . ), and set

xN = (x(1), . . . , x(N), 0, 0, . . . ) =

N∑

k=1

x(k) δk.

By part (b) we know that ‖x − xN‖ℓ∞ → 0 as N → ∞. Since the xN is the
partial sums of the series

∑
x(k) δk, we conclude that x =

∑
x(k) δk.

On the other hand, if a series x =
∑
ckδk converges in ℓ∞ norm then

the partial sums must converge componentwise. The partial sums are xN =
(c1, . . . , cN , 0, 0, . . . ), so the kth component of x is precisely ck.

1.21 (a) The fact that CbR) is a vector space and ‖ · ‖∞ is a norm on Cb(R)
is clear, so we only need to show completeness.

Suppose that {fn}n∈N is a Cauchy sequence in Cb(R) with respect to the
uniform norm. Then for each x, we have

|fm(x) − fn(x)| ≤ ‖fm − fn‖∞,

so {fn(x)}n∈N is a Cauchy sequence of scalars, and hence converges. Define
f(x) = limn→∞ fn(x).

Now choose ε > 0. Then there exists an N such that ‖fm − fn‖∞ < ε for
all m, n > N. Fix n > N. Then for every x we have

|f(x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ ‖fm − fn‖∞ ≤ ε,

so ‖f − fn‖∞ ≤ ε for all n > N. Also, ‖f‖∞ ≤ ‖f − fn‖∞ + ‖fn‖∞, so f is
bounded. Finally, the uniform limit of continuous functions is continuous, so
f ∈ Cb(R) and fn → f uniformly. This shows that Cb(R) is complete.

(b) Suppose that fn ∈ C0(R) and fn → f uniformly. By part (a) we have
f ∈ Cb(R). Given ε > 0, there exists some n such that ‖f − fn‖∞ < ε. For
this n, there exists an R > 0 such that |fn(x)| < ε for all |x| > R. Hence for
|x| > R we have

|f(x)| ≤ |f(x) − fn(x)| + |fn(x)| ≤ ‖f − fn‖∞ + ε ≤ 2ε.

Hence f(x) → 0 as |x| → ∞, so f ∈ C0(R). Thus C0(R) is a closed subspace
of Cb(R).

(c) Choose any g ∈ C0(R). Then there exists anN > 0 such that |g(x)| < ε
for all |x| > N. Set

gN (x) =





g(x), |x| ≤ N,

linear, N ≤ |x| ≤ N + 1,

0, |x| > N + 1.
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Each gN belongs to Cc(R), and

‖g − gN‖∞ = sup
|x|>N

|g(x) − gN(x)| ≤ sup
|x|>N

(
|g(x)| + |gN (x)|

)
≤ 2ε,

so gN → g uniformly. Hence Cc(R) is dense in C0(R). However, if g(x) = e−x
2

,
then g belongs to C0(R) but does not belong to Cc(R), so Cc(R) is not closed.

(d) Suppose that fn ∈ C(T) and fn → f uniformly. By part (a) we have
f ∈ Cb(R). Since uniform convergence implies pointwise convergence, for each
x ∈ R we have

f(x+ 1) = lim
n→∞

fn(x+ 1) = lim
n→∞

fn(x) = f(x).

Hence f is 1-periodic, so f ∈ C(T) and therefore C(T) is closed in Cb(R).

1.22 (a) Let us show that C1
b (R) is complete. Suppose that {fn}n∈N is

a Cauchy sequence in C1
b (R). Then {fn}n∈N is Cauchy in Cb(R), so there

exists an f ∈ Cb(R) such that fn → f uniformly. Additionally, by definition
of C1

b (R), we know that

‖f ′
m − f ′

n‖∞ ≤ ‖fm − fn‖∞ + ‖f ′
m − f ′

n‖∞ = ‖fm − fn‖C1
b
,

so {f ′
n}n∈N is Cauchy with respect to the uniform norm. That is, {f ′

n}n∈N is a
Cauchy sequence in Cb(R). Since Cb(R) is complete, there exists a g ∈ Cb(R)
such that f ′

n → g uniformly. So, the remaining point is to show that g = f ′,
for then we will have that fn → f in the norm of C1

b (R).
To see this, fix ε > 0. Then there exists anN > 0 such that ‖f ′

m−f ′
n‖∞ < ε

whenever m, n > N. Fix x, y ∈ R and m, n > N. Applying the Mean-Value
Theorem to the function fm − fn, there exists a point c (depending on m, n,
x, and y) between x and y such that

(fm − fn)(y) − (fm(x) − fn)(x) = (y − x) (f ′
m − f ′

n)(c).

Consequently,

∣∣∣∣
fm(y) − fm(x)

y − x
− fn(y) − fn(x)

y − x

∣∣∣∣ = |f ′
m(c) − f ′

n(c)| ≤ ‖f ′
m − f ′

n‖∞ < ε.

Letting m→ ∞, we conclude that
∣∣∣∣
f(y) − f(x)

y − x
− fn(y) − fn(x)

y − x

∣∣∣∣ ≤ ε.

This is valid for x, y ∈ R as long as n > N.
Now, since fn is differentiable, there exists a δ > 0 such that

|x− y| < δ =⇒
∣∣∣∣f ′
n(x) −

fn(y) − fn(x)

y − x

∣∣∣∣ < ε.
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Further, since f ′
n → g uniformly, there exists an M such that ‖f ′

n − g‖∞ < ε
whenever n > M. Fix x, and suppose that |x − y| < δ. Then for n > M, N
we have

∣∣∣∣g(x) −
f(y) − f(x)

y − x

∣∣∣∣ < |g(x) − f ′
n(x)| +

∣∣∣∣f ′
n(x) −

fn(y) − fn(x)

y − x

∣∣∣∣

+

∣∣∣∣
fn(y) − fn(x)

y − x
− f(y) − f(x)

y − x

∣∣∣∣

< ε+ ε+ ε = 3ε.

Hence

g(x) = lim
y→x

f(y) − f(x)

y − x
,

so f is differentiable at x, and f ′(x) = g(x). Thus fn → f in the norm of
C1
b (R), so this space is complete.

A proof by induction shows that Cmb (R) is complete for each m.

(b) If we replace the norm on C1
b (R) by the uniform norm, then it is no

longer complete. Let w(x) = max{1 − |x|, 0} be the hat function on [−1, 1].
Then we can find differentiable functions fn ∈ C1

b (R) such that ‖w−fn‖∞ →
0. For example, we just need to “smooth out” the corners of the graph of w
to find fn. Therefore {fn} is a Cauchy sequence in the uniform norm, but it
does not converge within C1

b (R) because w /∈ C1
b (R).

1.23 (a) If f is Hölder continuous with α > 0 then

lim
y→x

∣∣∣∣
f(x) − f(y)

x− y

∣∣∣∣ ≤ lim
y→x

C |x− y|α
|x− y| = lim

y→x
C |x− y|1−α = 0.

Therefore f is differentiable and f ′(x) = 0 for every x, so f is constant.

(b) By the Mean-Value Theorem, given x and y there exists some c be-
tween x and y such that f(x) − f(y) = f ′(c) (x − y), so

|f(x) − f(y)| = |f ′(c)| |x− y| ≤ ‖f ′‖∞ |x− y|.

If f ′ is bounded, then it follows that f is Lipschitz.
The function f(x) = |x| is Lipschitz, but is not differentiable at every

point.

(c) By definition, 0 ≤ ‖f‖Cα <∞ for each f ∈ Cα(R).
Suppose that ‖f‖Cα = 0. Then f(0) = 0 and

|f(x) − f(y)

|x− y|α = 0, all x 6= y.

Consequently, f(x) = f(y) for all x 6= y. Hence f(x) = 0 for every x, i.e.,
f = 0.
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