https://ebookyab.ir/solution-manual-a-basis-theory-primer-heil/

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Detailed Solutions to Exercises

These are my solutions to the exercises from "A Basis Theory Primer." Of course, many problems have solutions other than the ones I sketch. Please send comments and corrections to "heil@math.gatech.edu".

Detailed Solutions to Exercises from Chapter 1

1.1 Since $\|\cdot\|$ is a norm, we must have $\lambda = \|1\| \neq 0$. Then given any $x \in \mathbf{F}$, we have $\|x\| = \|x \cdot 1\| = |x| \|1\| = \lambda |x|$.

1.2 (a) Suppose $x_n \to x$, and choose $\varepsilon > 0$. Then there exists N > 0 such that $||x - x_n|| < \varepsilon$ for all n > N. Hence, by the Triangle Inequality, if m, n > N then $||x_m - x_n|| \le ||x_m - x|| + ||x - x_n|| < 2\varepsilon$. Thus $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy.

(b) Suppose that $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy. Then there exists an N > 0 such that $||x_m - x_n|| < 1$ for all $m, n \ge N$. Therefore, for $n \ge N$ we have

$$||x_n|| = ||x_n - x_N + x_N|| \le ||x_n - x|| + ||x_N|| \le 1 + ||x_N||.$$

Hence for any n we have

$$||x_n|| \leq \max\{||x_1||, \dots, ||x_{N-1}||, ||x_N|| + 1\},\$$

so $\{x_n\}$ is bounded.

(c) Given $x, y \in H$, we have

$$||x|| = ||(x-y) + y|| \le ||x-y|| + ||y||,$$

so $||x|| - ||y|| \le ||x - y||$. Reversing the roles of x and y, we obtain $||y|| - ||x|| \le ||x - y||$, so we have $|||x|| - ||y||| \le ||x - y||$.

(d) By the Reverse Triangle Inequality, if $x_n \to y$, then

2 Detailed Solutions

$$|||x|| - ||x_n||| \le ||x - x_n|| \to 0$$

(e) If $x_n \to x$ and $y_n \to y$, then

$$\|(x+y) - (x_n + y_n)\| = \|(x-x_n) + (y-y_n)\| \le \|x-x_n\| + \|y-y_n\| \to 0$$

(f) Suppose $x_n \to x$ and $c_n \to c$. Then $C = \sup |c_n| < \infty$, so

$$\begin{aligned} \|cx - c_n x_n\| &\leq \|cx - c_n x\| + \|c_n x - c_n x_n\| \\ &= |c - c_n| \|x\| + |c_n| \|x - x_n\| \\ &\leq |c - c_n| \|x\| + C \|x - x_n\| \to 0. \end{aligned}$$

1.3 (a) Suppose first that $1 \le p < \infty$ and $q = \infty$. Given $x = (x_1, \ldots, x_d) \in \mathbf{F}^d$, we have $|x_k| \le ||x||_{\infty}$ for each k. Therefore

$$|x|_p = (|x_1|^p + \dots + |x_d|^p)^{1/p} \le (d ||x||_{\infty})^{1/p} = d^{1/p} ||x||_{\infty}.$$

Conversely, $||x||_{\infty} = |x_k|$ for some particular k, so we have

$$||x||_{\infty} = |x_k| \le (|x_1|^p + \dots + |x_d|^p)^{1/p} = ||x||_p$$

Hence $|\cdot|_p$ and $|\cdot|_{\infty}$ are equivalent norms on \mathbf{F}^d .

If we now choose any $1 \leq p, q \leq \infty$, then $|\cdot|_p$ is equivalent to $|\cdot|_{\infty}$, and $|\cdot|_{\infty}$ is equivalent to $|\cdot|_q$, so it follows that $|\cdot|_p$ is equivalent to $|\cdot|_q$.

1.4 If ||x|| = 0 then $c_k(x) = 0$ for each k, so x = 0. All of the other properties of a norm follow easily. To show completeness, note that for each $1 \le k \le d$ we have $|c_k(x)| \le ||x||$. Also, the c_k are linear, so if $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X, then for each fixed k we have

$$|c_k(x_m) - c_k(x_n)| = |c_k(x_m - x_n)| \le ||x_m - x_n||.$$

This implies that $\{c_k(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence of scalars and hence converges to some scalar c_k . Define $x = \sum_{k=1}^d c_k x_k$. The fact that $x_n \to x$ then follows just as in the proof that ℓ^p is complete.

1.5 We are given that $||x_{n+1} - x_n|| < 2^{-n}$ for every *n*. Choose any $\varepsilon > 0$, and let *N* be large enough that $2^{-N+1} < \varepsilon$. If n > m > N, then we have

$$||x_n - x_m|| \leq \sum_{k=m}^{n-1} ||x_{k+1} - x_k|| \leq \sum_{k=m}^{\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}} < \frac{1}{2^{N-1}} < \varepsilon.$$

Hence $\{x_n\}$ is Cauchy.

1.6 Suppose that every subsequence of $\{x_n\}$ has a subsequence that converges to x, but the full sequence $\{x_n\}$ does not converge to x. Then there exists an $\varepsilon > 0$ such that given any N we can find an n > N such that $||x - x_n|| > \varepsilon$.

Detailed Solutions

3

Then we can find a subsequence $\{x_{n_k}\}$ such that $||x - x_{n_k}|| > \varepsilon$ for every k. But then no subsequence of $\{x_{n_k}\}$ can converge to x, which is a contradiction.

1.7 It is clear that $\|\cdot\|_{\mathbf{R}}$ is a norm on $X_{\mathbf{R}}$, so the issue is to show that $X_{\mathbf{R}}$ is complete. Suppose that $\{x_n\}$ is Cauchy in $X_{\mathbf{R}}$. Since $\|x_m - x_n\| = \|x_m - x_n\|_{\mathbf{R}}$, we have that $\{x_n\}$ is Cauchy in X and therefore converges to some $x \in X$. But then $\|x - x_n\|_{\mathbf{R}} = \|x - x_n\| \to 0$, so x_n converges to x in $X_{\mathbf{R}}$. Hence $X_{\mathbf{R}}$ is complete.

1.8 (a) The Triangle Inequality follows from $d(f,h) = ||(f-g) + (g-h)|| \le ||f-g|| + ||g-h|| = d(f,g) + d(g,h).$

(b) A sequence $\{f_n\}_{n\in\mathbb{N}}$ converges to $f\in X$ if $\lim_{n\to\infty} d(f_n, f) = 0$, i.e., if

$$\forall \varepsilon > 0, \quad \exists N > 0, \quad \forall n \ge N, \quad \mathrm{d}(f_n, f) < \varepsilon.$$

A sequence $\{f_n\}_{n \in \mathbb{N}}$ is Cauchy if

$$\forall \varepsilon > 0, \quad \exists N > 0, \quad \forall m, n \ge N, \quad \mathrm{d}(f_m, f_n) < \varepsilon.$$

(c) For each n, let x_n be a rational number such that $\pi < x_n < \pi + 1/n$. Then $\{x_n\}$ is Cauchy, but it does not converge *in the space* \mathbf{Q} . It does converge in the larger space \mathbf{R} , but since the limit does not belong to \mathbf{Q} , it is not convergent in \mathbf{Q} .

1.9 (a) Let δ_1 , δ_2 denote the first two standard basis vectors. These belong to ℓ^p , but we have

$$||x+y||_p = (1+1)^{1/p} = 2^{1/p}$$

while

$$||x||_p + ||y||_p = 1 + 1 = 2.$$

Since p < 1 we have $2^{1/p} > 2$, so the Triangle Inequality is not satisfied by $\|\cdot\|_p$.

(b) Suppose that $0 . Let <math>f(t) = (1+t)^p$ and $g(t) = 1 + t^p$ for t > 0. Then f(0) = 1 = g(0). Also,

$$f'(t) = p(1+t)^{p-1} = p \frac{1}{(1+t)^{1-p}}$$
 and $g'(t) = pt^{p-1} = p \frac{1}{t^{1-p}}$.

Since 0 < 1 - p < 1, we have $t^{1-p} < (1+t)^{1-p}$, and therefore $f'(t) \leq g'(t)$ for t > 0. Hence g is increasing faster than f, and therefore $f(t) \leq g(t)$ for all $t \geq 0$. Next, given any $a, b \geq 0$, we have

$$(a+b)^p = a^p \left(1+\frac{b}{a}\right)^p \le a^p \left(1+\left(\frac{b}{a}\right)^p\right) = a^p + b^p.$$

Hence, if $x, y \in \ell^p(I)$, then

4 Detailed Solutions

$$||x+y||_p^p = \sum_{k \in I} |x_k+y_k|^p \le \sum_{k \in I} \left(|x_k|^p + |y_k|^p \right) = ||x||_p^p + ||y||_p^p$$

This establishes the Triangle Inequality.

(c) To show that the unit ball is not convex, note that the standard basis vectors δ_1 and δ_2 both belong to the closed unit ball

$$D = \{ x \in \ell^p : \|x\|_p \le 1 \},\$$

but

$$\left\|\frac{\delta_1+\delta_2}{2}\right\|_p^p = \left(\frac{1}{2}\right)^p + \left(\frac{1}{2}\right)^p = \frac{2}{2^p} = 2^{1-p} > 1,$$

so $(\delta_1 + \delta_2)/2$ does not belong to the closed unit ball. Hence this set is not convex in ℓ^p . This also shows that if $\varepsilon > 0$ is small, then the open unit ball $B_{1+\varepsilon}(0)$ is not convex. By rescaling, the unit ball $B_1(0)$ is not convex either. **1.10** (a) Set $f(t) = t^{\theta} - \theta t - (1-\theta)$. Then $f'(t) = \theta t^{\theta-1} - \theta$. We have f'(t) = 0if and only if t = 1. Also, f is increasing for 0 < t < 1 and decreasing for

t > 1, and f(1) = 0, so $f(t) \le 0$ for all t > 0, with equality only for t = 1.

(b) Note that

$$\frac{1}{p} + \frac{1}{p'} = 1, \qquad p' = \frac{p}{p-1}, \qquad \frac{p'}{p} = \frac{1}{p-1}, \qquad p' - \frac{p'}{p} = 1.$$

With $t = a^p b^{-p'}$ and $\theta = 1/p$, we have by part (a) that

$$a \, b^{-p'/p} = \left(a^p \, b^{-p'}\right)^{1/p} \leq a^p \, b^{-p'} \, \frac{1}{p} + \left(1 - \frac{1}{p}\right) = \frac{a^p \, b^{-p'}}{p} + \frac{1}{p'}.$$

Multiplying through by $b^{p'}$ and using the fact that p' - (p'/p) = 1, we obtain

$$ab = a b^{p'-p'/p} \le \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

Equality holds if and only if $a^{p}b^{-p'} = 1$. This is equivalent to $b^{p'} = a^{p}$, or

$$b = a^{p/p'} = a^{p-1}.$$

1.11 Case $1 . By Exercise 1.10, equality holds in <math>ab \leq \frac{a^p}{p} + \frac{b^{p'}}{p'}$ if and only if $b = a^{p-1}$. For the normalized case $||x||_p = ||y||_{p'} = 1$, equality in Hölder's Inequality requires that we have equality in equation (1.5), and this will happen if and only if $|y_k| = |x_k|^{p-1}$ for each k. This is equivalent to

$$|y_k|^{p'} = |y_k|^{p/(p-1)} = |x_k|^p$$

For the nonnormalized case, if $x, y \neq 0$, equality holds in Hölder's Inequality if and only if it holds when we replace x and y by $x/||x||_p$ and $y/||y||_{p'}$. Therefore, we must have

Detailed Solutions

5

$$\frac{|y_k|^{p'}}{\|y\|_{p'}^{p'}} = \left(\frac{|y_k|}{\|y\|_{p'}}\right)^{p'} = \left(\frac{|x_k|}{\|x\|_p}\right)^p = \frac{|x_k|^p}{\|x\|_p^p}, \qquad k \in I.$$

Hence $\alpha |x_k|^p = \beta |y_k|^{p'}$ with $\alpha = ||y||_{p'}^{p'}$ and $\beta = ||x||_p^p$. On the other hand, if either x = 0 or y = 0, then we have equality in Hölder's Inequality, and we also have $\alpha |x_k|^p = \beta |y_k|^{p'}$ with α, β not both zero.

For the converse direction, suppose that $\alpha |x_k|^p = \beta |y_k|^{p'}$ for each $k \in I$, where $\alpha, \beta \in \mathbf{F}$ are not both zero. If $\alpha = 0$, then $y_k = 0$ for every k, and hence we trivially have $||xy||_1 = 0 = ||x||_p ||y||_{p'}$. Likewise, equality holds trivially if $\beta = 0$. Therefore, we can assume both $\alpha, \beta \neq 0$, and by dividing both sides by β , we may assume that $\beta = 1$ and $\alpha > 0$. Then we have $|y_k|^{p'} = \alpha |x_k|^p$, so

$$||y||_{p'}^{p'} = \sum_{k \in I} |y_k|^{p'} = \alpha \sum_{k \in I} |x_k|^p = \alpha ||x||_p^p.$$

If either x = 0 or y = 0 then equality holds trivially in Hölder's Inequality, so let us assume both $x, y \neq 0$. Then we have

$$\frac{|y_k|^{p'}}{\|y\|_{p'}^{p'}} = \frac{\alpha |x_k|^p}{\alpha \|x\|_p^p} = \frac{|x_k|^p}{\|x\|_p^p}$$

By the work above, this implies that equality holds in Hölder's Inequality.

Case $p = 1, p' = \infty$. Set $M = \sup_k |y_k|$. Suppose equality holds in Hölder's Inequality, i.e.,

$$\sum_{k \in I} |x_k y_k| = \left(\sum_{k \in I} |x_k| \right) \left(\sup_k |y_k| \right).$$

Then

$$\sum_{k\in I} |x_k y_k| = \sum_{k\in I} M |x_k|.$$

Hence

$$\sum_{k \in I} (M - |y_k|) \left| x_k \right| = 0$$

but $0 \le M - |y_k|$ for every k, so we must have $(M - |y_k|) |x_k| = 0$ for every k. Thus whenever $x_k \ne 0$, we must have $|y_k| = M$.

Conversely, if $|y_k| = M$ for all k such that $x_k \neq 0$, equality holds in Hölder's Inequality.

1.12 We have $\ell^p \subseteq \ell^\infty$ for every p. Further, the constant sequence x = (1, 1, 1, ...) belongs to ℓ^∞ but not to any ℓ^p with p finite, so the inclusion is proper.

Suppose $0 and <math>x \in \ell^p$. If $||x||_{\infty} = 1$, then

Detailed Solutions

$$\begin{aligned} \|x\|_{q} &= \left(\sum_{k=1}^{\infty} |x_{k}|^{q}\right)^{1/q} &= \left(\sum_{k=1}^{\infty} |x_{k}|^{p} |x_{k}|^{q-p}\right)^{1/q} \\ &\leq \left(\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{1/q} &= \|x\|_{p}^{p/q} \leq \|x\|_{p}. \end{aligned}$$

the last inequality following from the fact that $p/q \leq 1$ and $||x||_p \geq ||x||_{\infty} = 1$. For the general case, apply this inequality to $x/||x||_{\infty}$.

To show that the inclusion is strict, set $x_k = k^{-1/p}$. Then since q/p > 1, we have

$$||x||_q^q = \sum_{k=1}^\infty \frac{1}{k^{q/p}} < \infty,$$

while

 $\mathbf{6}$

$$||x||_p^p = \sum_{k=1}^\infty \frac{1}{k} = \infty$$

Another example is $x_k = (k \log^2 k)^{-1/q}$ for $k \ge 2$. The Integral Test shows that

$$||x||_q^q = \sum_{k=2}^\infty \frac{1}{k \log^2 k} < \infty,$$

while

$$|x||_p^p = \sum_{k=2}^\infty \frac{1}{(k \log^2 k)^{p/q}} = \infty.$$

1.13 We need the following lemma.

Lemma. If $E \subseteq \mathbf{R}$ is measurable and $0 < |E| < \infty$, then there exists a measurable $F \subseteq E$ such that |F| = |E|/2.

Proof. Let $E_t = E \cap (-\infty, t]$. Then the sets E_t are nested increasing with t, their union is E, and their intersection is empty. Applying continuity from both above and below, which is applicable since $|E| < \infty$, we conclude that

$$\lim_{t \to \infty} |E_t| = |E| \quad \text{and} \quad \lim_{t \to -\infty} |E_t| = 0.$$

A similar argument shows that $|E_t|$ is a continuous function of t. Therefore there must be some t such that $|E_t| = |E|/2$. \Box

Now we return to the proof of the exercise. Assume that $1 \leq p < q < \infty$. Taking $E_0 = E$, by applying the Lemma, we can find a set $E_1 \subseteq E$ such that $|E_1| = |E|/2$. Noting that $|E \setminus E_1| = |E|/2$, we apply the lemma to find $E_2 \subseteq E \setminus E_1$ with $|E_2| = |E|/4$, and note that E_2 is disjoint from E_1 . Continuing in this way we construct disjoint $E_n \subseteq E$ such that $|E_n| = 2^{-n} |E|$. Consider

Detailed Solutions

 $\overline{7}$

$$f = \sum_{n} 2^{n/q} \chi_{E_n}.$$

We have

$$||f||_{L^q}^q = \int_E |f|^q = \sum_n 2^n |E_n| = \sum_n 2^n 2^n |E| = \infty,$$

so $f \notin L^q(E)$. On the other hand,

$$\|f\|_{L^{p}}^{p} = \int_{E} |f|^{p} = \sum_{n} 2^{np/q} |E_{n}|$$

= $\sum_{n} 2^{np/q} 2^{-n} |E|$
 $\leq \sum_{n} 2^{n(\frac{p}{q}-1)} |E| < \infty,$

since p/q < 1. Hence $f \in L^p(E)$. Note that this f is unbounded, so this is also an example of a function in $L^p(E)$ that does not belong to $L^{\infty}(E)$.

1.14 Suppose that $x \in \ell^q(I)$ for some finite q. Since only countably many components of x can be nonzero, it suffices to consider $I = \mathbf{N}$.

If x = 0 then $||x||_p = 0$ for every p, so we are done. Therefore, we may assume $x \neq 0$, which implies $||x||_{\infty} \neq 0$. By dividing through by $||x||_{\infty}$, we may assume that $||x||_{\infty} = 1$. Then for every p we have $1 = ||x||_{\infty} \leq ||x||_p$. In particular, $|x_k| \leq 1$ for every k. Therefore, for $p \geq q$ we have $|x_k|^p \leq |x_k|^q$. Hence $x \in \ell^p$. Further, for $p \geq q$,

$$\begin{aligned} \|x\|_{\infty} &= 1 \leq \|x\|_{p} &= \left(\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{1/p} \\ &\leq \left(\sum_{k=1}^{\infty} |x_{k}|^{q}\right)^{1/p} \\ &= \|x\|_{q}^{q/p} \\ &\to 1 = \|x\|_{\infty} \quad \text{as } p \to \infty, \end{aligned}$$

where the limit exists because $||x||_q$ is finite and nonzero.

On the other hand, the vector x = (1, 1, 1, ...) satisfies $||x||_{\infty} = 1$, but $||x||_p = \infty$ for every $p < \infty$.

1.15 The proof is very similar to the proof that $\ell^p(\mathbf{N})$ is a Banach space. For example, if $\{x_n\}_{n \in \mathbf{N}}$ is a Cauchy sequence in $\ell^p(I)$ and we write $x_n = (x_n(i))_{i \in I}$, then for each fixed *i* we have that $(x_n(i))_{n \in \mathbf{N}}$ is a Cauchy sequence of scalars, and hence converges to some scalar x(i). For a given *n*, at most countable many components of x_n can be nonzero. As a countable union of

8 Detailed Solutions

countable sets is countable, at most countably many components of x can be nonzero. An argument similar to the one used in the proof of Theorem 1.14 then shows that $x_n \to x$ in the norm of $\ell^p(I)$, so $\ell^p(I)$ is complete.

1.16 (a) The Triangle Inequality follows from Hölder's Inequality, and an argument similar to the one used in the proof of Exercise 1.3 shows that the norm $||(x, y)||_p$ is equivalent to the norm $||(x, y)||_{\infty}$.

(b) Suppose that X and Y are complete. If $\{(x_n, y_n)\}$ is a Cauchy sequence in $X \times Y$, then $\{x_n\}$ is a Cauchy sequence in X since we always have $||x||_X \leq ||(x, y)||_p$. Hence $x_n \to x$ for some $x \in X$, and similarly $y_n \to y$ for some $y \in Y$. It then follows that $(x_n, y_n) \to (x, y)$ with respect to the norm on $X \times Y$.

1.17 (a) \Rightarrow . Suppose that *E* is closed. If $x \notin E$ then since $U = X \setminus E$ is open, there exists some r > 0 such that $B_r(x) \subseteq X \setminus E$. Consequently, every element of *E* is at least a distance *r* from *x*, and therefore *x* cannot be a limit point of *E*. Hence every limit point of *E* belongs to *E*.

 \Leftarrow . Suppose that E is not closed. Then $X \setminus E$ is not open, so there exists some $x \notin E$ such that $B_r(x)$ is not contained in $X \setminus E$ for any r > 0. Therefore, for each r = 1/n we can find an $x_n \in E \cap B_{1/n}(x)$. But then $x_n \to x$ and $x_n \in E$. Since $x \notin E$ while $x_n \in E$, we must have $x_n \neq x$. Therefore x is a limit point of E, so E does not contain all of its limit points.

(b) Let $F = E \cup \{x \in X : x \text{ is a limit point of } E\}$. Our goal is to show that $F = \overline{E}$.

Suppose that $x \in F^{\mathbb{C}} = X \setminus F$. Then, by definition, $x \notin E$ and x is not a limit point of E. If every open ball $B_r(x)$ contained an element of E (which necessarily must not be x), then x would be a limit point of E. Therefore, there exist some $B_r(x)$ that contains no points of E. Suppose that $B_r(x)$ contained some limit point y of E. Then there would be points $x_n \in E$ such that $x_n \to y$. But then for n large enough we would have $x_n \in B_r(x)$, which is a contradiction. Therefore $B_r(x) \subseteq F^{\mathbb{C}}$. Hence $F^{\mathbb{C}}$ is open, so F is closed. Since $E \subseteq F$, this implies that $\overline{E} \subseteq F$.

Now we'll show that $F \subseteq \overline{E}$. Since $E \subseteq \overline{E}$, we simply have to show that the limit points of E are contained in \overline{E} . So, suppose that $x \notin \overline{E}$. Since \overline{E} is closed, there exists some r > 0 such that $B_r(x) \subseteq X \setminus \overline{E}$. Hence $B_r(x)$ contains no points of E, and therefore x cannot be a limit point of E. Hence $F \subseteq \overline{E}$.

(c) This follows by combining parts (a) and (b).

1.18 \Rightarrow . Suppose that M is a Banach space with respect to the norm of X. Suppose that $x_n \in M$ and $x_n \to x \in X$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in M and hence must converge to some element $y \in M$. However, as a sequence in X we then have that $x_n \to x$ and $x_n \to y$, so by uniqueness of limits, $x = y \in M$. Therefore M is closed.

 \Leftarrow . Suppose that *M* is a closed subspace of *X*, and suppose that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in *M*. Then $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy in *X*, so there exists

Detailed Solutions

9

some $x \in X$ such that $x_n \to x$. However, M is closed, so this implies that $x \in M$. Therefore every Cauchy sequence in M converges to an element of M, so M is complete.

1.19 Suppose that $f \in C_b(\mathbf{R})$, and choose any M > 0. If $|f| \leq M$ everywhere, then we certainly have $|f| \leq M$ a.e.

For the converse, choose any M > 0, and suppose that there is a point where |f(x)| > M. Then since |f| is continuous, there must be an open interval I containing x such that |f(y)| > M for $y \in I$. But then |f| > M on a set with positive measure, i.e., it is not true that $|f| \le M$ a.e. Hence this shows by contrapositive argument that if $|f| \le M$ a.e., then $|f| \le M$ everywhere.

Consequently,

$$\inf\{M: f(x) \le M \text{ a.e.}\} \ = \ \inf\{M: f(x) \le M \text{ for every } x\} \ = \ \sup_{x \in \mathbf{R}} |f(x)|,$$

so the uniform and L^{∞} norms agree for functions in $C_b(\mathbf{R})$.

1.20 (a) Suppose that $\{x_N\}_{N \in \mathbf{N}}$ is a sequence in c and $x_N \to x$ in ℓ^{∞} -norm. Write $x_N = (x_N(k))_{k \in \mathbf{N}}$ and $x = (x(k))_{k \in \mathbf{N}}$. Since ℓ^{∞} convergence implies componentwise convergence, we have that $x(k) = \lim_{N \to \infty} x_N(k)$ for each $k \in \mathbf{N}$.

By hypothesis, $y_N = \lim_{k\to\infty} x_N(k)$ exists for each N. We have

$$|y_M - y_N| = \lim_{k \to \infty} |x_M(k) - x_N(k)| \le \sup_k |x_M(k) - x_N(k)| = ||x_M - x_N||_{\ell^{\infty}},$$

so $\{y_N\}_{N \in \mathbb{N}}$ is a Cauchy sequence of scalars and therefore converges, say to y.

Fix any $\varepsilon > 0$. Then there exists an N such that $||x - x_N||_{\infty} < \varepsilon$ and $|y - y_N| < \varepsilon$. Since $|x(k) - x_N(k)| < \varepsilon$ for every k, we have

$$\lim_{k \to \infty} |y - x(k)| \leq \limsup_{k \to \infty} \left(|y - y_N| + |y_N - x_N(k)| + |x_N(k) - x(k)| \right)$$
$$\leq \varepsilon + 0 + \varepsilon = 2\varepsilon.$$

Since ε is arbitrary, we conclude that $y = \lim_{k \to \infty} x(k)$, so $x \in c$. Thus c is closed in ℓ^{∞} .

Now assume in addition that $x_N \in c_0$ for each N. Then $y_N = 0$ for every N, so by the argument above we see that y = 0. Hence $x \in c_0$, so c_0 is closed in ℓ^{∞} as well.

(b) Choose any $x = (x(1), x(2), \dots) \in c_0$. Define

$$x_N = (x(1), \ldots, x(N), 0, 0, \ldots).$$

Then $x_N \in c_{00}$, and

$$\lim_{N \to \infty} \|x - x_N\|_{\ell^{\infty}} = \lim_{N \to \infty} \sup_{k > N} |x(k)| = \limsup_{k \to \infty} |x(k)| = 0.$$

10 Detailed Solutions

Hence c_{00} is dense in c_0 . However, c_{00} is not closed, since any $x \in c_0$ with infinitely many nonzero components is an accumulation point of c_{00} but does not belong to c_{00} .

(c) Choose any $x \in c_0$. Write x = (x(1), x(2), ...), and set

$$x_N = (x(1), \dots, x(N), 0, 0, \dots) = \sum_{k=1}^N x(k) \,\delta_k.$$

By part (b) we know that $||x - x_N||_{\ell^{\infty}} \to 0$ as $N \to \infty$. Since the x_N is the partial sums of the series $\sum x(k) \delta_k$, we conclude that $x = \sum x(k) \delta_k$.

On the other hand, if a series $x = \sum c_k \delta_k$ converges in ℓ^{∞} norm then the partial sums must converge componentwise. The partial sums are $x_N = (c_1, \ldots, c_N, 0, 0, \ldots)$, so the *k*th component of *x* is precisely c_k .

1.21 (a) The fact that $C_b \mathbf{R}$) is a vector space and $\|\cdot\|_{\infty}$ is a norm on $C_b(\mathbf{R})$ is clear, so we only need to show completeness.

Suppose that $\{f_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $C_b(\mathbb{R})$ with respect to the uniform norm. Then for each x, we have

$$|f_m(x) - f_n(x)| \leq ||f_m - f_n||_{\infty},$$

so $\{f_n(x)\}_{n \in \mathbb{N}}$ is a Cauchy sequence of scalars, and hence converges. Define $f(x) = \lim_{n \to \infty} f_n(x)$.

Now choose $\varepsilon > 0$. Then there exists an N such that $||f_m - f_n||_{\infty} < \varepsilon$ for all m, n > N. Fix n > N. Then for every x we have

$$|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \le ||f_m - f_n||_{\infty} \le \varepsilon,$$

so $||f - f_n||_{\infty} \leq \varepsilon$ for all n > N. Also, $||f||_{\infty} \leq ||f - f_n||_{\infty} + ||f_n||_{\infty}$, so f is bounded. Finally, the uniform limit of continuous functions is continuous, so $f \in C_b(\mathbf{R})$ and $f_n \to f$ uniformly. This shows that $C_b(\mathbf{R})$ is complete.

(b) Suppose that $f_n \in C_0(\mathbf{R})$ and $f_n \to f$ uniformly. By part (a) we have $f \in C_b(\mathbf{R})$. Given $\varepsilon > 0$, there exists some n such that $||f - f_n||_{\infty} < \varepsilon$. For this n, there exists an R > 0 such that $||f_n(x)| < \varepsilon$ for all |x| > R. Hence for |x| > R we have

$$|f(x)| \leq |f(x) - f_n(x)| + |f_n(x)| \leq ||f - f_n||_{\infty} + \varepsilon \leq 2\varepsilon.$$

Hence $f(x) \to 0$ as $|x| \to \infty$, so $f \in C_0(\mathbf{R})$. Thus $C_0(\mathbf{R})$ is a closed subspace of $C_b(\mathbf{R})$.

(c) Choose any $g \in C_0(\mathbf{R})$. Then there exists an N > 0 such that $|g(x)| < \varepsilon$ for all |x| > N. Set

$$g_N(x) = \begin{cases} g(x), & |x| \le N, \\ \text{linear}, & N \le |x| \le N+1, \\ 0, & |x| > N+1. \end{cases}$$

Detailed Solutions 11

Each g_N belongs to $C_c(\mathbf{R})$, and

$$||g - g_N||_{\infty} = \sup_{|x| > N} |g(x) - g_N(x)| \le \sup_{|x| > N} (|g(x)| + |g_N(x)|) \le 2\varepsilon,$$

so $g_N \to g$ uniformly. Hence $C_c(\mathbf{R})$ is dense in $C_0(\mathbf{R})$. However, if $g(x) = e^{-x^2}$, then g belongs to $C_0(\mathbf{R})$ but does not belong to $C_c(\mathbf{R})$, so $C_c(\mathbf{R})$ is not closed.

(d) Suppose that $f_n \in C(\mathbf{T})$ and $f_n \to f$ uniformly. By part (a) we have $f \in C_b(\mathbf{R})$. Since uniform convergence implies pointwise convergence, for each $x \in \mathbf{R}$ we have

$$f(x+1) = \lim_{n \to \infty} f_n(x+1) = \lim_{n \to \infty} f_n(x) = f(x).$$

Hence f is 1-periodic, so $f \in C(\mathbf{T})$ and therefore $C(\mathbf{T})$ is closed in $C_b(\mathbf{R})$.

1.22 (a) Let us show that $C_b^1(\mathbf{R})$ is complete. Suppose that $\{f_n\}_{n \in \mathbf{N}}$ is a Cauchy sequence in $C_b^1(\mathbf{R})$. Then $\{f_n\}_{n \in \mathbf{N}}$ is Cauchy in $C_b(\mathbf{R})$, so there exists an $f \in C_b(\mathbf{R})$ such that $f_n \to f$ uniformly. Additionally, by definition of $C_b^1(\mathbf{R})$, we know that

$$\|f'_m - f'_n\|_{\infty} \leq \|f_m - f_n\|_{\infty} + \|f'_m - f'_n\|_{\infty} = \|f_m - f_n\|_{C_b^1},$$

so $\{f'_n\}_{n \in \mathbf{N}}$ is Cauchy with respect to the uniform norm. That is, $\{f'_n\}_{n \in \mathbf{N}}$ is a Cauchy sequence in $C_b(\mathbf{R})$. Since $C_b(\mathbf{R})$ is complete, there exists a $g \in C_b(\mathbf{R})$ such that $f'_n \to g$ uniformly. So, the remaining point is to show that g = f', for then we will have that $f_n \to f$ in the norm of $C_b^1(\mathbf{R})$.

To see this, fix $\varepsilon > 0$. Then there exists an N > 0 such that $||f'_m - f'_n||_{\infty} < \varepsilon$ whenever m, n > N. Fix $x, y \in \mathbf{R}$ and m, n > N. Applying the Mean-Value Theorem to the function $f_m - f_n$, there exists a point c (depending on m, n, x, and y) between x and y such that

$$(f_m - f_n)(y) - (f_m(x) - f_n)(x) = (y - x)(f'_m - f'_n)(c).$$

Consequently,

$$\left|\frac{f_m(y) - f_m(x)}{y - x} - \frac{f_n(y) - f_n(x)}{y - x}\right| = |f'_m(c) - f'_n(c)| \le ||f'_m - f'_n||_{\infty} < \varepsilon.$$

Letting $m \to \infty$, we conclude that

$$\left|\frac{f(y)-f(x)}{y-x}-\frac{f_n(y)-f_n(x)}{y-x}\right| \leq \varepsilon.$$

This is valid for $x, y \in \mathbf{R}$ as long as n > N.

Now, since f_n is differentiable, there exists a $\delta > 0$ such that

$$|x-y| < \delta \implies \left| f'_n(x) - \frac{f_n(y) - f_n(x)}{y-x} \right| < \varepsilon.$$

12 Detailed Solutions

Further, since $f'_n \to g$ uniformly, there exists an M such that $||f'_n - g||_{\infty} < \varepsilon$ whenever n > M. Fix x, and suppose that $|x - y| < \delta$. Then for n > M, Nwe have

$$\left| g(x) - \frac{f(y) - f(x)}{y - x} \right| < |g(x) - f'_n(x)| + \left| f'_n(x) - \frac{f_n(y) - f_n(x)}{y - x} \right|$$
$$+ \left| \frac{f_n(y) - f_n(x)}{y - x} - \frac{f(y) - f(x)}{y - x} \right|$$
$$< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

Hence

$$g(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

so f is differentiable at x, and f'(x) = g(x). Thus $f_n \to f$ in the norm of $C_b^1(\mathbf{R})$, so this space is complete.

A proof by induction shows that $C_b^m(\mathbf{R})$ is complete for each m.

(b) If we replace the norm on $C_b^1(\mathbf{R})$ by the uniform norm, then it is no longer complete. Let $w(x) = \max\{1 - |x|, 0\}$ be the hat function on [-1, 1]. Then we can find differentiable functions $f_n \in C_b^1(\mathbf{R})$ such that $||w - f_n||_{\infty} \to 0$. For example, we just need to "smooth out" the corners of the graph of wto find f_n . Therefore $\{f_n\}$ is a Cauchy sequence in the uniform norm, but it does not converge within $C_b^1(\mathbf{R})$ because $w \notin C_b^1(\mathbf{R})$.

1.23 (a) If f is Hölder continuous with $\alpha > 0$ then

$$\lim_{y \to x} \left| \frac{f(x) - f(y)}{x - y} \right| \le \lim_{y \to x} \frac{C |x - y|^{\alpha}}{|x - y|} = \lim_{y \to x} C |x - y|^{1 - \alpha} = 0.$$

Therefore f is differentiable and f'(x) = 0 for every x, so f is constant.

(b) By the Mean-Value Theorem, given x and y there exists some c between x and y such that f(x) - f(y) = f'(c)(x - y), so

$$|f(x) - f(y)| = |f'(c)| |x - y| \le ||f'||_{\infty} |x - y|.$$

If f' is bounded, then it follows that f is Lipschitz.

The function f(x) = |x| is Lipschitz, but is not differentiable at every point.

(c) By definition, $0 \le ||f||_{C^{\alpha}} < \infty$ for each $f \in C^{\alpha}(\mathbf{R})$. Suppose that $||f||_{C^{\alpha}} = 0$. Then f(0) = 0 and

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} = 0, \quad \text{all } x \neq y.$$

Consequently, f(x) = f(y) for all $x \neq y$. Hence f(x) = 0 for every x, i.e., f = 0.