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Detailed Solutions to Exercises

These are my solutions to the exercises from “A Basis Theory Primer.” Of
course, many problems have solutions other than the ones I sketch. Please
send comments and corrections to “heil@math.gatech.edu”.

Detailed Solutions to Exercises from Chapter 1
1.1 Since || - || is a norm, we must have A = ||1|| # 0. Then given any = € F,
we have [lz|| = [lz - 1| = |=[ 1] = Alx].

1.2 (a) Suppose z,, — z, and choose € > 0. Then there exists N > 0 such that
|z — x,|| < e for all n > N. Hence, by the Triangle Inequality, if m, n > N
then ||@m — Znll < ||Tm — 2| + || — 2| < 2¢. Thus {z, }nen is Cauchy.

(b) Suppose that {z,}nen is Cauchy. Then there exists an N > 0 such
that ||z, — x,|| < 1 for all m, n > N. Therefore, for n > N we have

[znl = llen —2zn + 2yl < [on — 2l + [lon]] < 1+ 2y
Hence for any n we have
lznll < max{{lzall,..., lan—1l, llzx] + 1},

so {x,} is bounded.

(c) Given z, y € H, we have

lzll = Iz —y)+yll < llz—yl+lyl,
so |||l = ly|l < ||x — y||- Reversing the roles of z and y, we obtain ||y|| — ||| <
Iz = yll, so we have [||z]| — [ly[l] < [l - y]|-

(d) By the Reverse Triangle Inequality, if z,, — y, then
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< |l — x| — 0.

el = llzn
(e) If ,, — 2 and y,, — y, then
1@ +y) = (@n+ya)ll = l(&—2n)+ =yl < llz—anll+ly—yall — 0.
(f) Suppose x,, — z and ¢,, — ¢. Then C = sup|c,| < o0, so

llex — chan|l < |lcx — cnzl] + ||ent — cnn|

¢ = el |2l + lenl [l — zn]|

IN

e = enl ||z + C |l = zn]| — 0.

1.3 (a) Suppose first that 1 < p < 0o and ¢ = co. Given = = (z1,...,24) €
F?, we have |73| < ||7|ls for each k. Therefore

1 1
iy = (Jz1P + -+ |za?)? < (@]2]o0)” = &7 2] e

Conversely, ||z||c = |xk| for some particular k, so we have

1/
[2lloe = lzkl < (lza? + -+ |za?) " = ||zl

Hence | - |, and | - |oo are equivalent norms on F<.
If we now choose any 1 < p,q < oo, then | - |, is equivalent to | - |o, and
| - oo is equivalent to | - |4, so it follows that | - |, is equivalent to | - |4.

1.4 If ||z|| = 0 then ¢i(z) = 0 for each k, so x = 0. All of the other properties
of a norm follow easily. To show completeness, note that for each 1 < k < d
we have |c(z)| < ||z||. Also, the ¢ are linear, so if {zy}nen is a Cauchy
sequence in X, then for each fixed k we have

lek(zm) = cu(@n)| = [cx(@m —20)| < 2m — zal|-

This implies that {cg(zn)}nen is a Cauchy sequence of scalars and hence
converges to some scalar cg. Define x = 2221 cpx. The fact that z, — =
then follows just as in the proof that ¢P is complete.

1.5 We are given that ||x,+1 — x,|| < 27" for every n. Choose any ¢ > 0,
and let N be large enough that 2=V < . If n > m > N, then we have

n—1 00
1 1 1
zn —zm| < Z k1 — axll < 227 = om1 S o8I <€

k=m k=m
Hence {z,} is Cauchy.

1.6 Suppose that every subsequence of {x,,} has a subsequence that converges
to x, but the full sequence {z,} does not converge to . Then there exists
an £ > 0 such that given any N we can find an n > N such that ||z —z,| > €.
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Then we can find a subsequence {x,, } such that ||z — z,, || > ¢ for every k.
But then no subsequence of {x,, } can converge to x, which is a contradiction.

1.7 Tt is clear that || - ||r is a norm on Xg, so the issue is to show that Xg is
complete. Suppose that {x, } is Cauchy in Xg. Since |2 —zy| = ||m—2n||R,
we have that {z,} is Cauchy in X and therefore converges to some xz € X.
But then || — z,||r = ||x — zx| — 0, so x,, converges to x in Xr. Hence Xgr
is complete.

1.8 (a) The Triangle Inequality follows from d(f,h) = ||(f —g) + (g — h)|| <
1f =gl + llg = hll = d(f, 9) + d(g, h).
(b) A sequence {fn}nen converges to f € X if lim, o d(fn, f) =0, i.e.,
if
Ve>0, AN>0, VYn>N, d(fn,f)<e.
A sequence {f,}nen is Cauchy if

Ve>0, AN>0, VYmn>N, d(fm,fn)<e

(c) For each n, let z,, be a rational number such that 7 < x, < 7+ 1/n.
Then {x,, } is Cauchy, but it does not converge in the space Q. It does converge
in the larger space R, but since the limit does not belong to Q, it is not
convergent in Q.

1.9 (a) Let 91, 2 denote the first two standard basis vectors. These belong
to £P, but we have
lz +yll, = L+1VP = 217

while
lzllp+llyll, = 1+1 = 2.

Since p < 1 we have 21/? > 2, so the Triangle Inequality is not satisfied by
1 Mlp-

(b) Suppose that 0 < p < 1. Let f(t) = (1+¢)P and g(t) = 1+¢? for ¢ > 0.
Then f(0) =1 = g(0). Also,

O = p0e 0 =g md g0 = =

Since 0 < 1 —p < 1, we have t!7P < (1 +¢)*~P, and therefore f/(t) < ¢'(t)
for t > 0. Hence g is increasing faster than f, and therefore f(t) < g(t) for all
t > 0. Next, given any a, b > 0, we have

b\” b\”
(a+b)P = a? 1+E < a1+ o = aP +bP.

Hence, if z, y € ¢P(I), then


https://ebookyab.ir/solution-manual-a-basis-theory-primer-heil/

AR dhSBRAE YidgmHiT QM| BRLHE 2054358505535 (HARGIAMPWRAEIARS Hitaa)

4 Detailed Solutions
lz+ylls = D lok+uel” < D (lzel” + yel?) = 1|2 + 2.
kel kel

This establishes the Triangle Inequality.

(¢) To show that the unit ball is not convex, note that the the standard
basis vectors §; and d2 both belong to the closed unit ball

D={zet |z, <1},

but

01+ 02 ||P 1\?P 1\P 2 -
= —_ —_ = — = 2 p 1
H 2 Hp (2) +<2) 2 > b

s0 (01 + 02)/2 does not belong to the closed unit ball. Hence this set is not

convex in ¢P. This also shows that if € > 0 is small, then the open unit ball
B11:(0) is not convex. By rescaling, the unit ball B;(0) is not convex either.

1.10 (a) Set f(t) =t? —0t—(1—0). Then f'(t) = 0t~ —0. We have f'(t) = 0
if and only if ¢ = 1. Also, f is increasing for 0 < ¢t < 1 and decreasing for
t>1,and f(1) =0, so f(¢t) <0 for all ¢ > 0, with equality only for ¢t = 1.

(b) Note that

1 1
PR G

With ¢ = a? b~ and 6 = 1/p, we have by part (a) that

: : 1 1 Py 1
e e N R e
p p p p

Multiplying through by b and using the fact that p’ — (p//p) = 1, we obtain

ab = ab? PP < &

a? b
< +—.
p D

Equality holds if and only if a?b~?" = 1. This is equivalent to b*" = a?, or

1.11 Case 1 < p < oo. By Exercise 1.10, equality holds in ab < %p + bpi, if
and only if b = a?~!. For the normalized case ||z|/, = ||yl = 1, equality in
Holder’s Inequality requires that we have equality in equation (1.5), and this

will happen if and only if |yx| = |7x|P~! for each k. This is equivalent to
yel” = JyeP/ P = [P

For the nonnormalized case, if z, y # 0, equality holds in Holder’s Inequality if
and only if it holds when we replace « and y by z/||z||, and y/||y||,». Therefore,
we must have
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/ ' P

lwel” < |y ) _ (ka|> _ |$k|p’ kel

lyllE [yl B4 =l
Hence a |zx|? = 8 |yp?’ with o = ||y||£i and 3 = [|z|/5. On the other hand, if
either z = 0 or y = 0, then we have equality in Holder’s Inequality, and we
also have a |z [P = 8 |yx|?" with o, 8 not both zero.

For the converse direction, suppose that a |zgx|P = 8 |yk|p/ for each k € I,

where «, 0 € F are not both zero. If « = 0, then y; = 0 for every k, and hence
we trivially have ||zy|1 = 0 = ||z, |ly||,- Likewise, equality holds trivially if

B = 0. Therefore, we can assume both «, § # 0, and by dividing both sides
by (3, we may assume that 5 = 1 and a > 0. Then we have |yi|P = «a|zk|?, so

’ /
lyllyy = > el = @) lzal” = alallp.

kel kel

If either x = 0 or y = 0 then equality holds trivially in Holder’s Inequality, so
let us assume both z, y # 0. Then we have

lyel” alzel?  |al?

Iyl elall — l=llp

By the work above, this implies that equality holds in Holder’s Inequality.
Casep =1, p' = co. Set M = supy, |yx|. Suppose equality holds in Holder’s

Inequality, i.e.,
Sl = (bl ) (sup ).

kel kel
Then

D lwkyrl = Y M |xl.

kel kel

Hence

> (M = Jyi|) || = 0,

kel

but 0 < M — |yi| for every k, so we must have (M — |yi|) |zr| = 0 for every k.
Thus whenever z; # 0, we must have |yx| = M.

Conversely, if |y| = M for all k such that xp # 0, equality holds in
Holder’s Inequality.

1.12 We have /7 C (> for every p. Further, the constant sequence =z =
(1,1,1,...) belongs to £>° but not to any ¢ with p finite, so the inclusion is
proper.

Suppose 0 < p < g < oo and z € . If ||zl0c = 1, then
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o0 1/q
lelly = (Z w)
k=1

o 1/q
(Z P mw)
k=1
00 1/q
(Z |zk|p) — el < Jall
k=1

the last inequality following from the fact that p/q < 1 and ||z|, > ||z]|c = 1.
For the general case, apply this inequality to z/||2| -

To show that the inclusion is strict, set z = k~'/P. Then since q/p > 1,
we have

IN

=1
q __
lallg = " =7 < oo
k=1
while

=1
zll5 = ZE = o0.
k=1

Another example is 3 = (klog? k)~/4 for k > 2. The Integral Test shows

that
= 1
z||? = — < 0,
Il ;klong
while
> 1
lzllp =Y ——5— = o
— (klog™ k)r/da

1.13 We need the following lemma.

Lemma. If £ C R is measurable and 0 < |E| < oo, then there exists a
measurable F' C E such that |F| = |E|/2.

Proof. Let E; = E N (—o0o,t]. Then the sets E; are nested increasing
with ¢, their union is F, and their intersection is empty. Applying continuity
from both above and below, which is applicable since |E| < oo, we conclude
that

lim |E;| = |F] and lim |E;| =0.
t—oo t——o0

A similar argument shows that |E;| is a continuous function of ¢. Therefore
there must be some ¢ such that |E;| = |E|/2. O

Now we return to the proof of the exercise. Assume that 1 < p < ¢ < 0.
Taking Fy = FE, by applying the Lemma, we can find a set F; C E such
that |Ey| = |E|/2. Noting that |[E\E;| = |E|/2, we apply the lemma to
find E; C E\E; with |E2| = |E|/4, and note that E» is disjoint from Ej.
Continuing in this way we construct disjoint E,, C E such that |E,| = 27" |E|.
Consider
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f= Z2n/qXEn.

n

‘We have
1712, = /E|f|q = S 2B, = S22 B = oo,

so f ¢ Li(E). On the other hand,

1717, = [E P = 2wl
= Y 2wl
< 3 2EVIE| < o,

since p/q < 1. Hence f € LP(FE). Note that this f is unbounded, so this is
also an example of a function in LP(FE) that does not belong to L (FE).

1.14 Suppose that = € £4(I) for some finite g. Since only countably many
components of x can be nonzero, it suffices to consider I = N.

If £ = 0 then ||z||, = O for every p, so we are done. Therefore, we may
assume x # 0, which implies ||zl # 0. By dividing through by ||z||cc, we
may assume that ||z|lcc = 1. Then for every p we have 1 = ||z||cc < ||z]p. In
particular, |x;| < 1 for every k. Therefore, for p > ¢ we have |z |P < |xg]?.
Hence z € ¢P. Further, for p > q,

00 1/p
lalle = 1 < llell, = (Z |zk|p)

k=1
o 1/p
< (X towr)
k=1
= |lz|¥/?
— 1 = [[7]lc asp— oo,

where the limit exists because ||z||, is finite and nonzero.
On the other hand, the vector z = (1,1,1,...) satisfies ||z|cc = 1, but
|||, = oo for every p < oo.

1.15 The proof is very similar to the proof that ¢?(N) is a Banach space.
For example, if {z,}n,en is a Cauchy sequence in ¢P(I) and we write z,, =
(r(1))ier, then for each fixed ¢ we have that (x,(i))nen is a Cauchy sequence
of scalars, and hence converges to some scalar z(i). For a given n, at most
countable many components of x,, can be nonzero. As a countable union of
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countable sets is countable, at most countably many components of z can be
nonzero. An argument similar to the one used in the proof of Theorem 1.14
then shows that x,, — = in the norm of ¢?(I), so ¢P(I) is complete.

1.16 (a) The Triangle Inequality follows from Holder’s Inequality, and an
argument similar to the one used in the proof of Exercise 1.3 shows that the
norm ||(x,y)||, is equivalent to the norm ||(z,y)]c-

(b) Suppose that X and Y are complete. If {(xn, yn)} is a Cauchy sequence
in X xY, then {x,} is a Cauchy sequence in X since we always have ||z| x <
|(z,y)|lp- Hence z,, — z for some = € X, and similarly y,, — y for some y € Y.
It then follows that (z,,y,) — (z,y) with respect to the norm on X x Y.

1.17 (a) =. Suppose that E is closed. If z ¢ E then since U = X\ E is open,
there exists some r > 0 such that B,.(z) C X\ E. Consequently, every element
of E is at least a distance r from x, and therefore x cannot be a limit point
of E. Hence every limit point of E belongs to F.

<. Suppose that E is not closed. Then X\ E is not open, so there exists
some x ¢ E such that B,(x) is not contained in X'\ E for any r > 0. Therefore,
for each r = 1/n we can find an z,, € EN Bl/n(:z:). But then z,, — z and
x, € E. Since ¢ ¢ E while z,, € E, we must have x,, # x. Therefore z is a
limit point of E, so F does not contain all of its limit points.

(b) Let F = EU{x € X : x is a limit point of E}. Our goal is to show
that F = E.

Suppose that € F¢ = X\F. Then, by definition, z ¢ E and x is not a
limit point of E. If every open ball B, (z) contained an element of E (which
necessarily must not be x), then = would be a limit point of E. Therefore,
there exist some B, (x) that contains no points of E. Suppose that B, (x)
contained some limit point y of . Then there would be points z,, € E such
that z, — y. But then for n large enough we would have z,, € B,(z), which
is a contradiction. Therefore B,.(x) C FC. Hence FC is open, so F is closed.
Since E C F, this implies that ECF.

Now we’ll show that F C E. Since E C E, we simply have to show that
the limit points of E are contained in E. So, suppose that = ¢ E. Since E is
closed, there exists some r > 0 such that B,(z) C X\E. Hence B,.(r) contains
no points of E, and therefore 2 cannot be a limit point of E. Hence F' C E.

(c) This follows by combining parts (a) and (b).

1.18 =-. Suppose that M is a Banach space with respect to the norm of X.
Suppose that z, € M and z,, — x € X. Then {z,, }»en is a Cauchy sequence
in M and hence must converge to some element y € M. However, as a sequence
in X we then have that x, — x and x, — y, so by uniqueness of limits,
x =y € M. Therefore M is closed.

<. Suppose that M is a closed subspace of X, and suppose that {z, }nen
is a Cauchy sequence in M. Then {z,},en is Cauchy in X, so there exists
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some x € X such that x,, — x. However, M is closed, so this implies that
x € M. Therefore every Cauchy sequence in M converges to an element of M,
so M is complete.

1.19 Suppose that f € Cy(R), and choose any M > 0. If | f| < M everywhere,
then we certainly have |f| < M a.e.

For the converse, choose any M > 0, and suppose that there is a point
where |f(2z)| > M. Then since |f| is continuous, there must be an open inter-
val I containing x such that |f(y)| > M for y € I. But then |f| > M on a set
with positive measure, i.e., it is not true that |f| < M a.e. Hence this shows
by contrapositive argument that if | f| < M a.e., then |f| < M everywhere.

Consequently,

inf{M : f(x) <M ae} = inf{M : f(z) < M for every 2} = sup |f(z)|,
z€R

so the uniform and L norms agree for functions in Cy(R)).

1.20 (a) Suppose that {zx}Nen is a sequence in ¢ and 2y — x in £*°-norm.
Write 2y = (2n(k)) oy and = (2(k)), - Since £ convergence implies
componentwise convergence, we have that z(k) = limy_,o zn(k) for each
ke N.

By hypothesis, yn = limg—. xn (k) exists for each N. We have

lyar—yn| = lim Jzar(k)—aen(B)] < supfear(k) —an ()] = llzar—anes,

50 {yn} nven is a Cauchy sequence of scalars and therefore converges, say to y.
Fix any € > 0. Then there exists an N such that ||z — zn]le < € and
ly — yn| < e. Since |z(k) — zn (k)| < € for every k, we have

Jim Jy — (k)] < limsup<|y—yzv|+|yzv—xN(k)IJrle(k)—w(k)l)

k—oo

< e4+0+4e = 2e.

Since ¢ is arbitrary, we conclude that y = limg_,o z(k), so € ¢. Thus c is
closed in £*°.

Now assume in addition that xn € ¢g for each N. Then yy = 0 for every N,
so by the argument above we see that y = 0. Hence x € ¢, so ¢y is closed in
00 as well.

(b) Choose any = = (x(1),2(2),...) € ¢o. Define

Then xn € cgp, and

im sup |z(k)] = limsup |z(k)] = 0.

lim ||z — a2yl = 1
N—oo N—oo s N k—o00
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Hence cgp is dense in ¢g. However, cog is not closed, since any = € ¢y with
infinitely many nonzero components is an accumulation point of cog but does
not belong to cqp.

(¢) Choose any = € ¢o. Write z = (z(1), z(2) , and set

N

> w(k) 6.

zn = (z(1),...,2(N),0,0, =
k=1

)
By part (b) we know that ||z — xn]jec — 0 as N — oo. Since the zy is the
partial sums of the series Y (k) oy, we conclude that z = z(k) d%.

On the other hand, if a series © = Y ¢xdx converges in ¢>° norm then
the partial sums must converge componentwise. The partial sums are xy =
(c1,-..,¢n,0,0,...), so the kth component of z is precisely c.

1.21 (a) The fact that C,R) is a vector space and || - || is @ norm on Cy(R)
is clear, so we only need to show completeness.

Suppose that {f,}nen is a Cauchy sequence in Cy(R) with respect to the
uniform norm. Then for each z, we have

|fm(x) - fn(x)l < ||fm - fn”ooa

50 {fn(2)}nen is a Cauchy sequence of scalars, and hence converges. Define

f(z) =lim, .0 fn(z).
Now choose € > 0. Then there exists an N such that || f, — fnlleo < € for
all m, n > N. Fix n > N. Then for every z we have

[f(@) = fa(@)] = lim [fo(2) = fa(@)] < [[fm = fallo < &,

50 [|f = falleo < € forall n > N. Also, || fllec < [If = falloo + l[fnlloc, s0 [ is

bounded. Finally, the uniform limit of continuous functions is continuous, so
f € Cy(R) and f,, — f uniformly. This shows that C,(R) is complete.

(b) Suppose that f,, € Cy(R) and f,, — f uniformly. By part (a) we have
f € Cy(R). Given € > 0, there exists some n such that ||f — fnllec < €. For
this n, there exists an R > 0 such that |f,(z)| < ¢ for all |x| > R. Hence for
|z] > R we have

[f(@)] < [f(@) = fa(@)[ + [fa(@)] < [If = fullo +e < 2e

Hence f(xz) — 0 as |z| — o0, so f € Co(R). Thus Cp(R) is a closed subspace
of Cb(R)

(¢) Choose any g € Cy(R). Then there exists an N > 0 such that |g(z)| < e
for all |x| > N. Set

g(x), [z[ <N,
gn(z) = < linear, N <|z| <N +1,
0, 2| > N + 1.
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Each gn belongs to C.(R), and

lg —gnllee = sup |g(x) —gn(x)] < sup (lg(z)[ +|gn(2)]) < 2e,
|z|>N |z|>N

so gy — g uniformly. Hence C.(R) is dense in Cy(R). However, if g(x) = e,
then g belongs to Cy(R) but does not belong to C.(R), so C.(R) is not closed.

(d) Suppose that f, € C(T) and f, — f uniformly. By part (a) we have
f € Cy(R). Since uniform convergence implies pointwise convergence, for each
x € R we have

fl+1) = lm fo(z+1) = lim fo(2) = f(2).

Hence f is 1-periodic, so f € C(T) and therefore C'(T) is closed in Cp(R).

1.22 (a) Let us show that C}(R) is complete. Suppose that {f,}nen is
a Cauchy sequence in C}(R). Then {f,}nen is Cauchy in Cy(R), so there
exists an f € Cp(R) such that f, — f uniformly. Additionally, by definition
of C}(R), we know that

1fo = Falloe < Mfm = falloo + o = frlloo = Il fm = fulley,

50 {f! }nen is Cauchy with respect to the uniform norm. That is, {f/ }nen is @
Cauchy sequence in Cy(R). Since Cy(R) is complete, there exists a g € Cp(R)
such that f/ — ¢ uniformly. So, the remaining point is to show that g = f,
for then we will have that f, — f in the norm of C} (R).

To see this, fix e > 0. Then there exists an N > 0 such that || f}, — f/ || < €
whenever m, n > N. Fix z, y € R and m, n > N. Applying the Mean-Value
Theorem to the function f,, — f,, there exists a point ¢ (depending on m, n,
x, and y) between x and y such that

(fm = ) (@) = (fm(2) = fu)(z) = (y —2) (fr, = f2)(0)-

Consequently,
Il = Snle) _ B =S8 o)~ )] < W= ol < =
y—x y—x

Letting m — oo, we conclude that

Y- y—

< e.

This is valid for z, y € R as long as n > N.
Now, since f, is differentiable, there exists a § > 0 such that

_ fn(y) = falz)

fale) = L=

lt —y| <0 = < €.
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12 Detailed Solutions

Further, since f], — ¢ uniformly, there exists an M such that || f] — g|lcc < &
whenever n > M. Fix x, and suppose that |z — y| < §. Then for n > M, N

we have
o) - LD g0 g+ - LU0l
y— y—x
< e4+e4e = 3e.
Hence
o) =t LU=

so f is differentiable at x, and f'(x)
C}(R), so this space is complete.
A proof by induction shows that C}"(R) is complete for each m.

(z). Thus f, — f in the norm of

(b) If we replace the norm on C}(R) by the uniform norm, then it is no
longer complete. Let w(z) = max{1 — |z|,0} be the hat function on [—1, 1].
Then we can find differentiable functions f,, € C}(R) such that ||w— fu|/cc —
0. For example, we just need to “smooth out” the corners of the graph of w
to find f,. Therefore {f,} is a Cauchy sequence in the uniform norm, but it
does not converge within C}(R) because w ¢ C} (R).

1.23 (a) If f is Holder continuous with o > 0 then

z—y

lim <

Yy—x

Therefore f is differentiable and f/(x) = 0 for every x, so f is constant.

(b) By the Mean-Value Theorem, given z and y there exists some ¢ be-
tween 2 and y such that f(z) — f(y) = f'(¢) (x — y), so

[f@) = f)l = [FOle =yl < [If ooz =yl

If f/ is bounded, then it follows that f is Lipschitz.

The function f(z) = |z| is Lipschitz, but is not differentiable at every
point.

(¢) By definition, 0 < || f]lce < oo for each f € C¥(R).

Suppose that || f||ce = 0. Then f(0) = 0 and

M:Q all z # y
[z —yl|* ’ '

Consequently, f(z) = f(y) for all  # y. Hence f(x) = 0 for every z, i.e.,
f=0.
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